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1. Introduction

The study of symmetry in mechanical systems has a very long history, going back to
the foundations of classical mechanics. Typical questions include: how can we exploit
the symmetry to simplify the problem? To what degree can we separate rotational from
vibrational motion? What are the simplest or generic dynamical behaviors of a symmetrical
system? The simplest non-equilibrium solution of a symmetrical systemrigagive
equilibrium, which is a solution that moves only in a symmetry direction; an example is
the steady spinning of a rigid body around one of its principal axes. Like equilibria in
general, these solutions can be used as organizing centres for understanding more complex
dynamics.

In recent decades, symmetry has received particular attention in the field of geometric
mechanics. Some key achievements are: the theory of symplectic reduction (see for exam-
ple [1,2,19,33,26]); the Marle—Guillemin—Sternberg normal form (the Hamiltonian slice
theorem) [12,6]; and the energy-momentum method [27,13,10,22]. These and many related
results have given a firm geometrical foundation to the study of symmetry of Hamiltonian
systems on symplectic manifolds. Many important mechanical systems have phase space
which are (co-)tangent bundles, with (co-)tangent lifted symmetries. The geometrical the-
ory of symmetry specific to (co-)tangent bundles has also seen many recent advances (see
for example [11,15,13,16,5,32,29]). However, our understanding of lifted symmetries with
non-trivial isotropy is far from complete.

The present paper considers Lagrangian and Hamiltonian systems on (co-)tangent
bundles, with lifted symmetries and configuration-space isotropy. We present a practical
geometrical framework for studying such systems using degenerate parametrisations of
neighbourhoods of phase space points with configuration-space isotropy. The parametrisa-
tions are defined in Sections 2 and 3; they are tubes (defined below) around zero points in
the (co-)tangent fibres. We find a Legendre transform in the new coordinates (Section 4),
which allows us to study relative equilibria of Lagrangian systems in a Hamiltonian
context. Finally, we study simple mechanical systems (Section 6), giving a set of necessary
and sufficient conditions for the existence of a relative equilibrium, expressed in terms
of anaugmented-amended potential which generalises both the augmented potential and
amended potential familiar from systems with free symmetries (see [13]).

For the motivation of this paper we are indebted to a series of molecular physicists
and chemists, going back at least to Watson [34]. Our results in Sections 2—4 provide a
theoretical foundation for techniques they have used in particular examples. Our geometrical
formulation of these techniques builds on the presentation in [9].

We begin by summarising relevant basic facts about Lie group symmetries, including
Palais’ slice theorem (see[1,3,7,4,14,26]). The starting point of our approach will be to apply
the slice theorem in a configuration spazeNe will then use the resulting parametrisation
to study the phase spacg@ and7*Q.

1.1. Basic definitions and notation

Let G be a Lie group, with Lie algebrg, and consider a smooth left action 6fon
a finite-dimensional manifolds, written (g, ) — g - g. For everyé € g andz € M, the
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infinitesimal action Of € onzis

d
E-z= Eexp(té)-ztzo-

Theisotropy subgroup of z € M is G, .= {g € G|g - z = z}. An action isfree if all of the
isotropy subgroup§& , are trivial.

An action isproper if the map(g, z) — (z, g - z) is proper (i.e. the preimage of every
compact setis compact). Note that this is always the casesitompact. A key elementary
property of proper actions is that all isotropy subgroups are compaGtalfts properly
and freely onM, then M/ G has a unique smooth structure such that: M — M/G is
a submersion (in factyg is a principal bundle). One useful consequence is that for every
z€ M,we have kel,ng =T,(G - z) = ¢ - z.

Given aG action® : G x Q — Q, the groupG has atangent lift action onTQ, given
by g - v = TdP,(v), and acotangent lift action onT*Q, given by g - o = (TP,-1)*«. In
this context, the spac@ called theconfiguration space or base space. The tangent or
cotangent lift of a proper (resp. free) action is proper (resp. free). Far an@, the isotropy
groupGy is called theconfiguration space isotropy of any pointv € 7,0 orz € T; Q. The
cotangent bundl&*Q has a canonical symplectic form, given in given local coordinates
by w = dg’ A dp;. Every cotangent-lifted action ofi*Q is symplectic with respect to
this symplectic form and has an Agquivariant momentum map given ky(«,), §) =
(a(p 5 ! ‘I>

1.2. Palais’ slice theorem

LetK be a Lie subgroup af, andS is a manifold on whiclK acts. Consider the following
two left actions onG x S:

K acts byrwisting : k- (g,s) = (¢gk™ 1, k - 5)

1
G acts by leftmultiplication © vy - (g, s) = (yg, ). @

It is easy to show that these actions are free and proper and commute.ilibé product
G xk S is the quotient ofG x S by the twist action oK. It is a smooth manifold; in fact
G xg S — G/K isthe vector bundle associated to fhaction onS. The left multiplication
action of G commutes with the twist action and drops to a sma@taction onG xg S,
given byy - [g, s1k = [vg. slk-

Now consider & action on a manifold/, and a point € M, and letk = G, be the
isotropy subgroup of. A tube for the G action at; is aG-equivariant diffeomorphism from
some twisted produdf x g S to an open neighbourhood 6f - z in M, that maps4, O]k
to z. The space& may be embedded iG x ¢ S as{[e, s]x : s € S}; the image of the latter
by the tube is called dice.

The slice theorem of Palais [28] states that tubes always exist for smooth proper actions
of a Lie groupG on manifoldM. One version of the theorem is as follows. Givea M,
with isotropy groupK = G, there always exists &-invariant Riemannian metric on
a neighbourhood of. Let N be the orthogonal complemept z. Then there exists a
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K-invariant neighbourhoo# of 0 in N such that the map

T.GxgS— M

[g.s]x —> g-exps

(where exp is the Riemannian exponential) is a tube for ¢haction atz. The K-invariant
complementV to g - z is sometimes called &near slice to theG action atz. The twisted
productG xx N may be identified with the normal bundle to the or6it z. If the G
action is linear, then we can replace “expwith “( z 4 s)” in the above statement, arsd
may be chosen to be any neighbourhood of 0 suchrtiminjective.

1.3. Configuration space slices

Consider a Lagrangiah : TQ — R, invariant under a proper tangent-lifted action of a
Lie groupG. Letgo € Q andK = G,.
We can apply Palais’s slice theorem aroygdgiving a tube

T:GxgS§S— Q0

[, 5]k —> g exp,s

()

If O is an open subset of a vector space, withcting linearly, as, for example, in gravi-
tational and molecula¥-body problems, thefi can be identified with a neighbourhood of
the origin in a linear subspace @fitself, and the tube defined hy[g, s]x) = g - (g0 + ).
In any case, pulling backby the projectiomrk : G x S - G xg S givesamap o g :
G x § — Q which we regard as degenerate “parametrisatiory) of a neighbourhood of
g, defining the “slice coordinates?(s). This parametrisation is semi-global in the sense
that it is global in the group direction and local in the slice direction. The tangent and
cotangent lifts ofrg o t give parametrisations(G x S) — TQ andT*(G x S) — T*Q.
In this paper we will describe mechanical systemsfghand T* Q, with configurations
in the neighbourhood of the group orlgit- go, by pulling them back td'(G x S) and
T*(G x S). We now describe the actions 6fandK on these spaces.

Let g andt be the Lie algebras af andK. Throughout the paper we identif§G with
G x gandT*G with G x g* using the trivialisations given by:

T6=>Gxg and T"G—> G x g*
TLeS > (8.¢)  T'Lgapr—> (g, 1)

whereL, is left multiplication byg. Similarly, we make the identifications
TGxSETGxTS=GxgxTS

T*(GxS)=ET'GxT*S=ZGxg"xT*S
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Note thatT'S andT*S are trivial, asS is a subset of a vector space. We write elements

of TS as ¢, s) and elements of *S as ¢, o). The left multiplication action o6 and twist
action ofK on G x S lift to free, proper, commuting actions di{G x S) and7*(G x S).
In the above trivialisations, the lifted actions are:

tangent lifted twist - (g, ¢, s, §) = (gk~ %, Ade, k - 5, k - 5)

cotangent lifted twist & - (g, 11, s, 0) = (gk 1, Ad¥_1 i, k - 5. k - 0)

tangent lifted left multiplication y - (g, ¢, s, 5) = (yg, ¢, 5, 5)

cotangent lifted left multiplication y - (g, 1, s, o) = (yg, u, s, o).
The corresponding infinitesimal actions&€ ¢ andy € g are:

tangent lifted twist £ - (g, ¢, 5, 5) = (—§,ad, -5, & - 5)

cotangent lifted twist £ - (g, u, s, 0) = (=&, —Ad{1, & - 5, & - 0)

tangent lifted left multiplication u - (g, ¢, s, 5) = (Ad,-11, 0, 0, 0)

cotangent lifted left multiplication 7 - (g, i, s, o) = (Ad,-17, 0, 0, 0).

The cotangent-lifted actions have the following momentum maps, with respect to the
canonical symplectic form ofi*(G x S):

twist : Jx(g, 1, s,0) = —ple + Js(s, 0) = —ule + s Qo € £
left multiplication : Js(g, i, s, o) = Ad;‘;_lu €g",

wheres o is defined by(s 0 o, &) = (0, & - s) for all £ € £ and is the momentum map
Js : T*S — ¥* for the action ofK on T*S. The momentum magy is equivariant with
respect to the twist action & and invariant under the left multiplication action@f while
Jg is equivariant with respect to the action@fand invariant under the twist action.

For simplicity of notation, we will sometimes identif@ with G xx S andgg with
[e, Ol

2. The Lagrangian side

The goal of this section is to describe the tangent bufiiie x ¢ S) and any Lagrangian
system on it, using a parametrisation@yx ¢+ x 7S c T(G x S).

Fix a K-invariant complement ot in g, which we denotet* (such a complement
can always be found by averaging ovérsincekK is compact). Consider the projection
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g G xS — G xg S. Its tangent map is &-invariant G-equivariant surjection. If we
describe pointsif (G x x S)asTrk(g, ¢, s, 5), then we have two kinds of degeneracy in our
coordinates: first,g, s) is not uniquely determined by (g, s); second, given a choice of
(g, 5), the tangent vectok(s) € T(,.5)(G x S)is not uniquely determined becaugg 5w x
has a kernel,

kerT(gJ)nK =t-(g.5)={(-&E&-s)|t ct]

Note thatt* x S is complementary to ke, sk for every (g, s). Therefore we can elimi-

nate the second kind of degeneracy in our coordinates by restriétiatp G x ¢+ x TS C
T(G x S). Our new parametrisation @f(G x g S) is

Trg G x & x TS — T(G xg S).

Note that for any £, s) € G x S, the mapT, o7k is an isomorphism frontt x T,S to
Tig,51x (G xk S). Composingrg with the tuber from Eq. (2) gives a mapg(s) — g -
exp,, s- Differentiating this gives

T(tonk):G x ¢t x TS — TQ
(gv é" s, S) — g- (é‘ . equo s+ Tx equO(:S‘))

This formalises the observation tHatQ = g - g @ S near the point at which the slicgis
defined.

SinceG x t+ x TS andTrg areK-invariant, the mafirx descends to the quotient by
K,

3)

Tk : (G x ¥+ x TS)/K —> T(G xk S).

It is easily checked that this map isGaequivariant diffeomorphism.
TheK action onG x ¢+ x TS is exactly the twist action o6 x (¢ x 7S) given by the
adjoint action ork on ¢+ and the tangent-lifted action &fon 7'S. ThusT ¢ may be written

Trk : G xg (& x TS) — T(G xk S)
[e,0,0]x —> 0 € [e, Olg

and we see thdbrk is actually a tube fof (G x ¢ S) around Oc [e, 0]k

Now let L : T(G xg S) — R be a smooth Lagrangian. We defihe 7(G x §) - R
byL = L o Trg andL : G x ¢ x TS — R as the restriction of to G x &' x TS. Using
Hamilton’s principle one can prove:

Proposition 1. If L is a regular Lagrangian on T(G x g S) then the Euler—Lagrange equa-
tions for L have solutions. Furthermore, a curve ¢ : [a, b] — G X ¢ x TS is a solution
for the Euler-Lagrange equations for L if and only if ¢ projects to a curve on T(G x g S)
which is a solution for the Euler—Lagrange equations for L.
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3. The Hamiltonian side

In this section we describe a parametrisatiolf6(G x x S) by G x € x T*S that is
dualto the parametrisation {G x x S)by G x & x TS described in the previous section.
Heret® is the annihilator ot in g. Note that our choice of splitting = ¢ & ¢+ induces a
dual splittingg = (¢+)° @ & = ¢ @ (¢1)*.

Recall that/k is the momentum map for the cotangent-lifted twist actioki oh7*(G x
S). By regular cotangent bundle reduction, the symplectic reduced space d§i¢®()/[<
is symplectomorphic t@*((G x S)/K) = T*(G xg S); this is a special case of results
due to Satzer and Marsden (see [1]). The isomorpfﬁsrﬂ,}l(O)/K — T*(G xg S) is
the quotient byk of the map

p: JgH0) = T*(G xk S),  (p(p), Tk (v)) = (p, v). (4)

(This mapp is a sort of “push-forward” byt ¢, thoughr g is notinjective.) LetH : T*(G x g
S) — R be a Hamiltonian, and defin# : J,;l(O) — R by H = H o p. The cotangent
bundle reduction theorem implies that, given awnvariant extensionH®* of H, the
Hamiltonian vector fieldX yex projects down to the original Hamiltonian vector fieXgy,
in the sense thalp(X yex(z)) = X (po(z)) for everyz J,}l(O). Both X gex and Xy are
defined with respect to the canonical symplectic forms on the relevant cotangent bundles.
Finally, it is easy to check thatandp areG-equivariant.

The level setl,;l(O) is conveniently parametrised as follows,

901G X XT*S > JgH0)C G x g* x T*S

(g,v,5,0)~> (g, v+5Oo0,s,0).

The formulaJg (g, i, s, ) = —ule + s O o shows thap is well-defined and surjective. Its
inverse isp(g, i, s, o) = (g, leL, s, 0). Itis clear tha is G- andK- equivariant. We define
H=Hogp=Hopog.

Sincey is G- andK-equivariant, it descends toG@equivariant map

¢: (G x ¥ x T*S)/K — JH0)/K.

ThekK action onG x ¢+ x T*S is the same as the twist action 6nx (¢ x 7*S) given by

the adjoint action oK on £° and the cotangent-lifted action &fon 7'S. Thus the domain
of ¢ may be written asG x g (£° x T*S). In summary, writingIlx for the projection
T*(G x S) —> T*(G x S)/K, we have

GxexTsS £ JH0)
14

Ug | Ugl N
O xx (8 x T*S) =25 JZ1(0) /K 2 T* (G x i S)

The composition o ¢ is a special case of the symplectic tube given by the cotangent bundle
slice theorem [32], which is a constructive version of the Hamiltonian slice theorem, also
known as the Marle—Guillemin—Sternberg normal form (see [12,6]). The tube is based at the
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pointOe Ty (G xk ), wherego = [e, O]x = 7k (e, 0), meaningthap o ¢([e, 0, 0, O]g) =
q0-

4. Legendre transforms

In the previous two sections we have found twisted parametrisatiofi® @fnd 7* 0
respecting a given symmetry. Given an original symmetric Lagrangidi@ar symmetric
Hamiltonian onT*Q, we have defined “lifted Lagrangians” and “lifted Hamiltonians”
using the new parametrisations. In the present section we consider the situation when the
original Hamitonian is obtained from the original Lagrangian as the Legendre transform of
the energy. We obtain Legendre transforms of the lifted Lagrangians, and show that lifted
Hamiltonians are related to the lifted Lagrangians in the natural way.

Recall that, for any smooth functiah : 7TQ — R, the Legendre transform d@f is the
mapFL : TQ — T*Q defined by

oL
FL(g,v) = %(q, v) Yge Q,veT,0

The Lagrangiad is said to beegular if the derivative off L has maximal rank everywhere,
and to bewyperregular if FL is a diffeomorphism betweerQ and7* Q. Theenergy func-
tion associated ta is E : TQ — R given by E(v) = FL(v) - v — L(v). If L is G-invariant
thenFL is G-equivariant andt is G-invariant. In classical theory, given a hyperregular
Lagrangian, the HamiltoniaH of a mechanical system is obtainedfis= E o FL™L.

Let L : T(G xx S) — R be aG-invariant Lagrangian. In Section 2 we defined two
related “lifted” LagrangiansL : T(G x S) — R given byL = L o Trg; andL defined as
the restriction of. to G x ¢+ x TS. The Legendre transform &fL has codomaifi™*(G x
S), though we will see shortly that it is not surjective. Identify(rtd) * with £, the Legendre
transform ofF L has codomaiir x £° x T*S; we will see thatiis surjective. The following
diagram summarises our main definitions so far; all of the upwards arrows are inclusions.

TG xS) L TG xS)

T T N
GxtxTS L5 Gxe x5 -2 Ji(0)
Try | 4
T(G xx S)(t° x T*S) FE T* (G xx ) (5)

Proposition 2. Let L be a Lagrangian on T(G x g S), and let L and L be defined as above.
Then

(1) (FL(v), w) = (FL(Trg(v)), TnK(w) forallv,w € T(G x S).

(2) The image of FL is contained in Jx X (0) and poFL =FL o Trg.

(3) Foreveryv € T(G x S), the corank of T,FL is at least dim K, with equality if and only
if L is regular at Trrg (v).



770 M. Roberts et al. / Journal of Geometry and Physics 56 (2006) 762-779

4) po FL equals the restriction of FLt0 G x &- x TS.
(5) If L is hyperregular then FL is a diffeomorphism.

Proof.

(1) Foreveryg,s) € G x Sandeveryw, w € T, (G x S),

(FL(v), w) =

(L o Trrg)
< v

0w = (e Tax) o e w).

By linearity of Tt on fibres, this equal§dL /ov)(Trk (v)), Tk (w)).
(2) By the first claim(FL(v), £ - (g, s)) = Oforallv € T(,5)(G x S) and all¢ e €, which
implies Jx (FL(v)) = 0. By definition ofp,

(p o FL(v), Trgx(w)) = (FL, w) = (FL(Trk(v)), Tk (w)),

for all v, w € T(G x S), which shows thap o FL = FL o Trrg.

(3) Letv e T(G x S). Itfollows directly from Claim 2 that the corank B FL is at least the
codimension ot],;l(O), which equals the dimension &t The corankequals dim K
if and only if T,FL is onto Ty, /5 (0), which is equivalent td,(p o FL) being
surjective. In light of Claim 2, this is equivalent to the surjectivity{FL o Trk).
Sinceng is a submersion, this is equivalent TH(FL) being surjective, i.eL being
regular ab. _

(4) SincelL is the restriction of. to G x ¢+ x T, it follows that(FL(v), w) = (FL(v), w)
foranyv, w € G x £ x TS. ThusFL(v) is the restriction oFL(v)to G x &+ x TS. In
coordinates, ifL(v) = (g, i, 5, 0), thenFL(v) = (g, ptlyr. 5. 0) = ¢~ HFL(v)).

(5) If Lis hyperregular, then Claims 2 and 3 imply that tRatis a surjective submersion
onto Jx(0). Supposé&'L(v1) = FL(vz). From Claim 1 and the surjectivity dfr,
it follows that FL(Trk(v1)) = FL(Tg (v2)). Hyperregularity ofL then implies that
Tk (v1) = Tk (v2). Sincevy andv must be in the same tangent filifg (G x ),
this is equivalent ta, — vy € kerTi, oymx =€ (g, 5). If v1 andvz are both inG x
¢ x TS, this implies thatv; = vo. Hence the restriction ofL to G x ¢+ x TS is
a bijective submersion, and hence a diffeomorphism, dr;»tjc(O) From Claim 4, it
follows thatFL is a diffeomorphisnG x & x T*S. O

Proposition 3. Let L be a hyperregular Lagrangian on T(G xg S), with energy function
E,andlet H=E o (IFL) 1 . Let L and L be defined as above, with corresponding energy
functions E and E.Let H and H be as defined in Section 3,i.eH = H o pand H = H o ¢.
Then:

(1) E EoTrg
2 E= E|G><EL><TS
(3) HoIFL E
(4) H=Eo(FL)™!
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Proof.

(1) Forevery € T(G x S), using Claim 1 of Proposition 2, we have
E(v) = (FL(v), v) — L(v) = (FL(Trk (v)). (Trk (v))) — L(Trk (v))
= E(Trk(v)).

(2) For everyv € G x e x TS, we haveE(v) IFL(v) — L(v). Using the definition
of L as the restrlcnon of. and Claim 3 of Proposmon 2, it follows thﬁ(v)
(o~ oIFL(v) L(v). Nowg~1(g, 1, s, 0) = (8 1lgL, s, 0),andv € G x £ x TS,
so(p~ 1o IE‘L(v) = (FL(v), v). It follows that E(v) = E(v).

(3) From Claim 2 of Proposition 2FC) Yo poFL = Trg. Hence

HoFL=HopoFL=Eo(FL) topoFL=EoTrgx=E

(by Claim 1).

(4) Using Claims 2 and 3 of the present proposition, we I"Ia\te(IFL) l=FEo(FL) 1=
HoFL o (FL)~1. By Claim 3 of Proposition 2, this equaf# o ¢, which equals{ by
definition. O

We have thus found “the link” between our lifted Lagrangians and Hamiltonians. We
will next study the lifted Hamiltonian system, with emphasis on relative equilibria, and then
use our lifted Legendre transforR1. to study the relative equilibria of simple mechanical
systems.

5. Hamilton’s equations and relative equilibria

In this section we outline a calculation of Hamilton’s equations in the twisted parametri-
sation ofT*Q given in Section 3. The result will be a special case oftihelle equations
or reconstruction equations (see Remark 4). We then apply these to give conditions for the
existence of relative equilibria.

Recall that, given any-invariant extension#® of the function # := H o p, the
restriction of the Hamiltonian vector fiel® gex to ng(O) projects down to the orignal
Hamiltonian vector fieldX  on 7* Q. We now choose a particular extensig$. Recall
the diffeomorphisme : G x £ x T*S — J,;l(O), o(g, 11,s,0)=(g 1L +s00s,0)
(Proposition 4.3). Its inverse map is simply (g, u, s, o) = (g, gL, s, 0). Define H&X
to be the pull-back offf by the projectionPy : G x g x S x §* — G x €7 x § x §*
given by P¢(g, i, s, 0) = (g, uleL, 5, 0); equivalently

H®(g, 1. 5,0) = H(g. tly. 5. 0).

SinceP}; andy areG- andK-invariant, so is7®*. Itis well-known that Hamilton's equa-
tions onT*(G x §), with respect to the canonical symplectic form and the left trivialisation
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T*(G x S) 2 G x g* x § x §*, take the following form (see for example [14]),

3HeXt

{= o
= adp
 oHe (6)
s = 2

[0}

aHext
o=

as

It is clear from the definition of7®*! that H®! may be replaced by in the third and
fourth equations. Splittinginto ¢ andé components angd into ¢* andé° components, we
find that the first equation above splits irio= dH®/du, = 0 and¢y = IH®You, =
OH /o .

SinceH®is K-invariant, Noether’s theorem implies thlaj(tl(O) is an invariant manifold
for the flow of X yex:. It is thus valid to compute the pull bagk X yex on G x € x T*S
by applying the change of variable= 1, + s $ 0. We introduce the notatioﬁ:lzu =
(adg’f,u)m, incorporating a projection ontd. The u; equation of the pull-backed vector
field is

jrr = adg5,, (L1 +500).
Observe that sincaH /g, € ¢~ ands ¢ o € £* we have, for everg € ¢,
OH
H 81 == ,—)=0.
(@7 0, (50 0).8) <aog(s<>g) 3;u>

Thusa@g/aﬂl(s Qo) =adz,. (sOo).Hencethe vectorfield" X gexoNG x £ x T*S

o0H /op .
is:
=0
¢ 0H
J_ —_— —
oL
junt =agﬁ/a;ulu +ady,, sOo )
. 0H
§=—
oo
_ OH
T s

Remark 4. The above equations are actually a special case diithéle equations (re-
construction equations) for Hamiltonian systems [20,25,31], based at the phase space point
Oe T;‘O Q. We have derived them directly here rather than apply the general theory.
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Remark 5. The above equations dor describe the restriction of the vector fieXgyex to
G x t° x § x §*. Instead, they describe the restrictiondyfex« to ng(O), described in the
coordinatesg, u 1, s, o) defined byp.

Recall the surjective submersign J,;l(O) — T*(G xg S) from cotangent bundle re-
duction (see Eq. (4)). Recall that a poipfz) € T*(G xg S) is a relative equilibrium
if and only if Xy(p(z)) = n- p(z) for somen € g. We say that such a relative equilib-
rium hasvelocity n, even thoughy is not well-defined in the presence of isotropy. Since
o J,;l(O)/K — T*(G xk S) is a diffeomorphism, it follows that ke, p = ¢ - z. S0p(z)
is a relative equilibrium with velocity if and only if

Xpyext(z) =n% -z + €K .2 (8)

for somet € ¢, where we have used superscripts to distinguisiGthadk actions. Since

is G- andK-equivariant, we can pull back this condition@ox € x 7*S as follows:o(¢(z))

is a relative equilibrium if and only i* X yex(z) = n¢ - z + &K . z. Using the formulae in
Eq. (7) for the vector fiel& gex and using Lemma 2.1 for the expressions of the infinitesimal
actionsn® - z and&X - z, we obtain

Py(Ad, 1n) — & =0

Pyu (Ady177) = a%

—aduy = ad;ji g, 11+ a9, 8O0 9)
fs= 00

fo=-""

Remark 6. The lastthree equation of (9) are the relative equilibria conditions on the reduced
space.l,;l(O)/G, whereas the first two equations lift the dynamics back to the unreduced
spacel,;l(O) C G x g* x T*S. Note that the reduced space is a mixed Poisson-cotangent
bundle space with coupled dynamics. The reduced space is subject to a residual symmetry
given by the isotropy groui action on the sliceS. In particular this implies that in the
reduced space the relative equilibria are not points, but dynamical orbits, relative equilibria
themselves with respect to tikeaction on the slice.

6. Simple mechanical systems

In this section we consider the special case gfiwle mechanical system, which is one
in which the Lagrangiai : TQ — R has the form

L(g. vg) = 3K(vg, vg) = V(9) (10

for someG-invariant Riemannian metrik on TQ, called thekinetic energy, and some
G-invariant potentialv : 9 — R. We compute the Lagrangiah and HamiltonianH for
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such systems and uggtogether with the results of the previous section to give conditions
for the existence of relative equilibria of simple mechanical systems.

Let go € Q have isotropy grouk = G,,. Let N = (g - qo)* be the orthogonal com-
plement to the tangent to the group orbit throughwith respect to the given metric. By
applying Palais’ slice theorem as in Section 1, we obtain, for some neighboshobd
in N, aG-equivariant diffeomorphism : G xx S — Q. Note that7;S = N for anys € S.
Recall from Eg. (3) the parametrisation

T(tonk):G x & x TS — TQ

11
(8,,5,5) > g (¢ - exp, 5 + Ty €xp,, §) -
andrecallthatforany s) € G x S,the mad{, ,)(r o mg)isan isomorphism frori- x N
to T, 5, Q. We will write the metric tensor in these coordinates. Since the metdg is
invariant,K(z[g, s] ) depends only om. For anys, we see thaK(s) is a symmetric bilinear
form ontt x N, which we represent as a matrix. This matrix can be written in block form,
with respect to the splittin@y{, 4, 0 = ¢ @ N, as follows:

I(s) C(s)
K(s) = T
C(s) m(s)
The blockl, is called thereduced locked inertia tensor. It is related to the usual locked
inertia tensofl by

]I(g : equo S)(S’ 7)) = ]Ir(s)(Adg*lg’ Adg*]-n)

for any & n € ¢-. The blockm(s) is called thereduced mass. The terminology comes
from the fact that the kinetic energy matrix is often the mass matrix. Noteltiatand
m(s) are invertible. The blockC(s) is called theCoriolis tensor. It couples the system,
and is related to the usual Coriolis forces. Our choice of coordinates enfo(6gs- 0,
sinceT(.,0)(r o k) mapst’ x {0} to & - go = £ - go and{0} x N to Toexp, (N) = N =
(- go)*. This will mean that the mechanical system in slice coordinates is decoupled
atqo.

The potentiall can be written in slice coordinates Hés), since it isG-invariant. Thus
the Lagrangiarl. : G x ¢~ x TS — R defined in Section 2 takes the form

L(g. 1, 5,8 = L(T(r o mk)(g, C1, 8, 5)) = %(Q §)K(s) <§l> — V().

It follows that

_ I C
o) D))
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The inverse of this Legendre transform can be written as follows, using the new matrices
A :=T171C andM := m — CTI7IC,

-1 —1AT -1
_ 1 _ e I+ AM™A —AM w1
(FL(g,s)) (n1,0) =K(s) ( o ) = ( _M-1AT M-1 o

(13)

wherel -1, A, andM are all functions of.
We now compute the Hamiltoniald : G x (t1)* x T*S — R. Recall the formuld =

_(]FL) from Proposition 3. For a simple mechaniéathe energy function i€(v) =
(FL(v), v) — L(v) = (1/2)v"Kv + V, S0, just as in the free case, we have
H(p)=3p"Kp+V.

Using Eq. (13), we find

H=3p T ) + 30— ATpy )™M Yo — ATuy) + V. (14)
Note that
0H 0H m _
(Em ao> Kis)” 1( o ) = (FL(g.) M1, 0)

We will now compute the relative equilibrium conditions from Eg. (9) in the case of
simple mechanical systems. The partial derivativeH @fre as follows:

dH

8;7 = ]Ir_ll/d_ - AI\\AI_]'(U - ATMJ_)

OH

5 M Yo —ATpy)

3H d - dA

ot _ X T A =1, AT

ds ds (2’“‘in ’“) LM e —Aw

M L dav

+3 (0 — AT ) ——(O - A1) + N

Note that the last of the relative equilibrium conditions in Eq. (%9 i& = —aﬁ/as. We

now show that this equation can be expressed in terms of the following function, which
is a generalisation of both the amended and augmended potentials familiar from the free
case.

Definition 7. The augmented-amended potential is the function

Vi 6(s) = 3t — CE- )T o —CE- )] — 3 -9)"mE-5)+ V. (15)
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Lemma 8. If we assume that € -5 = MY (o — ATu)) (this is one of the relative equi-
librium conditions in EQ. (9))then the equation & - o = —0H /0s is equivalent to dV,, | ¢/
ds=0

Proof. Recalling the definitiong := I-1C andM := m — CTI71C, we have

Ve = 2:“1_]1 Y — T AE-s) - 2(5 -s)TMI(E - 5) + V.

Hence

dVy, e d (1 4 TdA
ds  ds (2'%‘}1 HL Mg (&-9)

1 ,dM , . d av
—5(5'5) K(E'S)—(MJ_A"‘@'S) M)&(5'5)+a~

Assumingg - s = M~1(o — AT ), it follows that

dV/u § d /1 T T dA -1 T
DS 1= _ A
&~ g\l Yui ) =l — & (o 1)

1 dMI dv
— 50— ATML)TM*aM*(a ~ATp) -0 —(s N+ 4

Note that differentiating the identifyIM 1 = I gives

1AMy dM—l-

M-
ds ds

Also, from the definition of the inverse dual action hwe have

d
o f(s 5) = *UT(E )=—gE0)s=¢0

Hence

Ve d (14 rdA 1 T
. I M~ —A
& @ (2.%_ pi ) —pl— & (0 M)

M dv  oH
+ = (o—ATM)T (o—ATuL)+:§ ot =, tEo O
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Our calculations in this section imply that the general relative equilibrium conditions in
Eq. (9) take the following form for simple mechanical systems,

Pe(Ad,-1n) — & =0
d =M Ao — AT
Pei(Adg-1n) = o, — U #L— AM (0 1)
j7at
~adiuL =adj;,, 11+ ad /5, 800 (16)
OH _
frs=o—=M"o—ATu)
dVlu §
L)
ds

Remark 9. Note that the second and fourth equations may be jointly expressed as
(Pyr(Adg-1n), € - 5) = (FL) (11, 0)
In summary, we have the following,

Proposition 10. Ler (g, u1,5,0) € G x € x T*Sandz = po (g, ui,s, o). Thenzisa
relative equilibrium of X g with velocity n € g if and only there exists a & € € such that the
following conditions are satisfied,

(1) w1, &and s are such that s is a critical point of V,, | ¢ and
_ad;,UvL = ﬁ;lul,A(g.s)ML + acﬁ‘luL—A(E-s)(s O[M(E - s)+ AT L)

(2) o =M s)+ATuy
3) n=Adg(t + T L — AM Yo — ATpy)).

7. Comments

We have outlined a framework for studying mechanical systems determined by a sym-
metric Lagrangian oif'Q or a symmetric Hamiltonian off* Q, at configurations near a
given one,gp, with nontrivial isotropy. We have found tubes aroungg;(0)”, meaning
0eTypQor0eTy 0, which we consider as twisted parametrisationsforand7* Q.

These parametrisations are semi-local in the configuration space but global in the fibre direc-
tion. This means that we can study all local dynamics near a given configuration point using
one parametrisation. In particular, we can study all relative equilibria with configurations
neargo. This is particularly valuable given the incomplete development of slice theorems
and reduction theory for lifted actions. Indeed, constructive slice coordinates based at a
general relative equilibriumy, po) are not yet available, but we can study these relative
equilibria using our slice coordinates basedzgt 0); it is not necessary fogf, 0) to be an
equilibrium or relative equilibrium.
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We have defined a Legendre transform using our twisted parametrisatidif3 afd
T*Q. This is valuable because in many mechanical systems are most naturally described
with a Lagrangian, whereas relative equilibria are most naturally described in a Hamiltonian
setting. Beginning with a given Lagrangian @@ we are able to state necessary and
sufficient conditions for the existence of relative equilibria, using slice coordinatEs@n
Slice coordinates have the advantage that a single coordinate system covers configurations
of different isotropy types. In the case of simple mechanical systems, we have stated the
relative equilibria conditions in terms of angmented-amended potential which generalises
both the amended and the augmented potentials familiar from the case of free actions.
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