
International Journal of Bifurcation and Chaos, Vol. 11, No. 4 (2001) 983–997
c© World Scientific Publishing Company

SURROGATE DATA PATHOLOGIES AND THE
FALSE-POSITIVE REJECTION OF THE

NULL HYPOTHESIS

P. E. RAPP∗,†, C. J. CELLUCCI‡ and T. A. A. WATANABE†
†Department of Pharmacology and Physiology,

The Medical College of Pennsylvania and Hahnemann University,
The Arthur P. Noyes Clinical Research Center,

Norristown State Hospital, Norristown, Pennsylvania, USA
‡Department of Physics, Ursinus College,

Collegeville, Pennsylvania, USA

A. M. ALBANO
Physics Department, Bryn Mawr College,

Bryn Mawr, Pennsylvania, USA

T. I. SCHMAH
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It is shown that inappropriately constructed random phase surrogates can give false-positive
rejections of the surrogate null hypothesis. Specifically, the procedure erroneously indicated the
presence of deterministic, nonlinear structure in a time series that was constructed by linearly
filtering normally distributed random numbers. It is shown that the erroneous identification
was due to numerical errors in the estimation of the signal’s Fourier transform. In the example
examined here, the introduction of data windowing into the algorithm eliminated the false-
positive rejection of the null hypothesis. Additional guidelines for the use of surrogates are
considered, and the results of a comparison test of random phase surrogates, Gaussian scaled
surrogates and iterative surrogates are presented.

1. Introduction: The Method of
Surrogate Data

The method of surrogate data [Theiler et al., 1992;
Schreiber & Schmitz, 1999]; for citations of the ear-
lier surrogate literature see [Rapp et al., 1993] has
become a central tool for validating the results of
dynamical analysis. Generically stated, the proce-
dure can be reduced to four steps. First, a dynam-

ical measure, for example, the Lyapunov exponent

or correlation dimension is applied to the original

time series obtaining the result MOrig. Second, sur-
rogate data sets, which will be described presently,

are constructed using the original data set. Third,

the dynamical measure that was applied to the orig-

inal time series is applied to the surrogates. The av-
erage value of the measure obtained with surrogates
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is denoted 〈MSurr〉. Fourth, a statistical criterion
is used to determine if MOrig and 〈MSurr〉 are suffi-
ciently different. If they are, the surrogate null hy-
pothesis (the original and the surrogate data come
from the same population) is rejected.

The procedure used to construct surrogate data
sets from the original time series depends on the null
hypothesis being examined. If the null hypothesis
is: under measure M , the original time series is in-
distinguishable from identically distributed random
numbers, then the surrogate time series can be con-
structed by a random shuffle of the time series. A
random shuffle is a very unexacting test of deter-
ministic structure. Filtered random numbers, for
example, have a sequence-sensitive structure that
is destroyed by a random shuffle. If a sequence-
sensitive measure is used, filtered noise appropri-
ately rejects the random shuffle null hypothesis.
Random phase surrogates address the null hypoth-
esis: under measure M the original time series is
indistinguishable from linearly filtered random
numbers. Random phase surrogates are constructed
by calculating the original time series’ Fourier trans-
form, randomizing the phase and calculating the
inverse transform. The resulting time series is the
surrogate data set.

It is essential to test the software used to gen-
erate surrogate data against well standardized time

series of both types, that is, against deterministic
signals where the null hypothesis should be rejected,
and against time series based on random numbers
and filtered random numbers where the null hy-
pothesis should not be rejected. The importance of
validation calculations with the second class of ex-
ample is inadequately appreciated. Using a statisti-
cal criterion the null hypothesis is rejected if MOrig

and are 〈MSurr〉 are sufficiently different. Errors in
surrogate software can result in surrogate data sets
that are pathologically different from the original
time series. If this occurs, 〈MSurr〉 is always very
different from 〈MOrig〉, and a false-positive rejec-
tion of the surrogate null hypothesis results. Tests
where a failure to reject the null hypothesis is the
correct response are essential.

An example of this validation procedure was
constructed with three data sets. The first data
set was a time series of 8,192 iterates of the x-
coordinate of the Lorenz equations.

dx

dt
= cy − cx

dy

dt
= rx− y − xz

dz

dt
= −bz + xy

Fig. 1. Estimated correlation dimension for three time series as a function of embedding dimension. The three time series
were: uniformly distributed random numbers (upper function), the time series produced by linearly filtering that random data
(middle function), and a time series generated by integrating the Lorenz equations (lower function).
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where c = 10, b = 8/3, r = 28, δt = 0.006 and
x0 = y0 = z0 = 1. The second data set, is com-
posed of random numbers uniformly distributed on
[0, 1]. The third data set was constructed by linearly
filtering the set of random numbers. The Fourier
transform of 8,192 points was calculated. The jth
harmonic of the Fourier series was multiplied by Fj

Fj = max[0, 1− kj2] k = 0.37 × 10−6

The filtered data set is the inverse transform of
this modified Fourier series. In these calculations,
the applied measure was the correlation dimension.
The procedure implemented here for estimating the
correlation dimension is outlined in the first ap-
pendix. In all calculations, 8,192 points were used.
The results are presented in Fig. 1.

The estimated correlation dimension of the
random numbers is seen to increase with the em-
bedding dimension. (The embedding dimension
is defined in Appendix A.) This behavior is con-
sistent with random systems. In the case of the
Lorenz data set the correlation dimension, approx-
imately 2.03, is stable with increasing embedding
dimension. This is often taken as being a definitive
identifying characteristic of determinist systems.
However, in the case of the filtered random numbers
the function of correlation dimension versus embed-
ding dimension is also nearly constant once the em-
bedding dimension is sufficiently large. Historically,
it was this type of observation that motivated the
construction of random phase surrogates.

The results obtained with fifty random phase
surrogates for these three systems are shown in
Fig. 2. Examined visually, it seems that in the case
of the Lorenz data, the values obtained with the
original signal and with its surrogates are clearly
separated. This indicates that the surrogate null
hypothesis can be rejected. That is, under this mea-
sure, the signal can be distinguished from linearly
filtered random numbers. Figure 2 also shows the
results obtained with random data. As expected,
the values of the correlation dimension for the orig-
inal time series and its surrogates are essentially
indistinguishable. This is as it should be; random
numbers should fail to reject the surrogate null hy-
pothesis. The results obtained with filtered random
numbers and its random phase surrogates are also
similar to each other, suggesting that the null hy-
pothesis cannot be rejected. Thus, the procedure
correctly identified the underlying random nature
of the dynamical process that generated the filtered
time series.

Rather than relying on a visual examination,
a systematic statistical procedure should be used
to justify rejection of the surrogate null hypothe-
sis. Three candidate criteria for doing this have
been outlined in a previous publication [Rapp et al.,
1994]. In summary they are as follows. Under
the nonparametric criterion [Barnard, 1963; Hope,
1968], the null hypothesis is rejected only if MOrig >
MSurr or MOrig < MSurr for all surrogates. This
is a very demanding criterion. A single aberrant
value of MSurr can result in the failure to reject
the null hypothesis. As an alternative, one can
calculate PM , the Monte Carlo probability of the
surrogate null hypothesis. In the case where the dis-
criminating measure is dimension, the value of di-
mension obtained with the original time series will,
in the case of a deterministic system, be less than
that obtained with random phase surrogates. In
that case

PM =
(Number of Cases D ≤ DOrig)

(Number of Cases)
,

because the value in the numerator includes the
contribution of the original time series, PM > 0.
The number in the denominator is the number of
surrogates computed plus one. PM is particularly
appropriate if the number of surrogates is small.
(The question of an appropriate choice of NSurr, the
number of surrogates, is addressed presently.)

If the values of the discriminating measure ob-
tained with surrogates form a normal distribution,
then a more sophisticated analysis is possible. The
Z value is defined as

Z =
|MOrig − 〈MSurr〉|

σSurr

where σSurr is the standard deviation of 〈MSurr〉.
Given the assumption of a normal distribution, for
a dynamical measure such as dimension where there
is a priori expectation that the value obtained with
a deterministic signal is less than the value obtained
with its surrogates, the probability of the null hy-
pothesis, PZ , is given by

PZ =
1

2

(
1− erf

(
Z√
2

))
For the one-tailed test, the null hypothesis is re-
jected at the 5% confidence level if Z ≤ 1.65 and at
the 1% level if Z ≤ 2.33

An additional question must be addressed: for
any given time series and dynamical measure, how
many surrogates should be used? There is no uni-
versally applicable answer to this question. The
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(a)

(b)

(c)

Fig. 2. Estimated correlation dimension for the original time series compared with the average correlation dimension estimate
obtained with 50 random phase surrogates. (a) In the case of the Lorenz data the divergence of dimension estimates obtained
with the original data (lower function) and its surrogates (upper function) results in a rejection of the null hypothesis. (b) In
the cases of uniformly distributed random numbers and (c) linearly filtered, uniformly distributed random numbers, the
superposition or near superposition of estimates obtained with the original data and its surrogates results in the expected
failure to reject the surrogate null hypothesis.
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number of surrogates required will depend on the
quality of the original signal and on the numerical
stability of the applied dynamical measure. An em-
pirical assessment can be made by calculating PM or
Z as a function of the number of surrogates. NSurr

should be increased until a stable value is obtained.
As described in the discussion of the results pre-
sented in Table 1, a comparison was made using 10
and 50 surrogates. Six different data sets were ex-
amined. The applied measure was the correlation
dimension. On average, the value of Z obtained
with 10 surrogates was within 13.9% of the Z value
obtained with 50 surrogates. All results reported in
this paper are based on 50 surrogate calculations.

The three statistical criteria described above
were applied to the three example systems of Fig. 2
(Lorenz data, uniformly distributed random num-
bers, and linearly filtered random numbers). In
each case embedding dimensions 4, 5, . . . , 14 were
calculated with 50 surrogates. In the case of Lorenz
data, the null hypothesis was rejected using the non-
parametric criterion for all embedding dimension
except m = 5 and m = 8. In the case of m = 5
two of the 50 surrogates gave values of dimension
less than DOrig. In the case of m = 8, one sur-
rogate of 50 gave a value of dimension less than
DOrig. This argues against the unconsidered use of
the nonparametric criterion.

For the Lorenz data, the value of PM , the
Monte Carlo probability of the null hypothesis,
averaged over the eleven embeddings was PM =
0.025. Recall that the lowest possible value of
PM is determined by the number of surrogates. If
NSurr = 50, then the lowest possible value of PM
is PM = 0.020. Averaged over eleven embeddings,
the average value of Z was found to be Z = 2.61,
which corresponds to a probability of the null hy-
pothesis of less that 1%. This is seen in Fig 2. The
values of dimension obtained with the original sig-
nal and with its surrogates diverge. In aggregate,
the calculations provide, as they should, a convinc-
ing rejection of the surrogate null hypothesis. We
can conclude that the Lorenz system can be distin-
guished from linearly filtered noise.

The results obtained with uniformly distributed
random numbers and random phase surrogates also
coincide with expectations. Under the nonparamet-
ric criterion, there was a failure to reject the null
hypothesis in all eleven embeddings. The Monte
Carlo criterion also failed to reject the null hypoth-
esis with an average value of PM = 0.315. Sim-
ilarly, the average value of Z was Z = 1.04. As
seen in Fig. 2, the values of dimension obtained
with the original data set and its surrogates coin-
cide. The random nature of the signal was correctly
identified.

Table 1. Average Z scores and corresponding one-tailed probabilities obtained with
50 surrogates.

Random Phase Gaussian Scaled Iterative
Surrogates Surrogates Surrogates

Hénon 32.29 33.33 30.16

p < 10−6 p < 10−6 p < 10−6

Gaussian Distributed 1.01 0.79 0.87

Random p = 0.16 p = 0.21 p = 0.19

Linearly Filtered 1.27 0.97 1.86

Gaussian Distributed p = 0.10 p = 0.17 p = 0.03

Uniformly Distributed 0.94 0.98 0.88

Random p = 0.17 p = 0.16 p = 0.19

Linearly Filtered Uniformly 0.50 0.96 0.71

Distributed Random p = 0.31 p = 0.17 p = 0.24

Nonlinearly Transformed, 6.25 0.85 2.17

Linearly Filtered, Uniformly p < 10−6 p = 0.20 p = 0.02

Distributed Random
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The analysis of the filtered random signal
using random phase surrogates also correctly iden-
tified the underlying random structure of the pro-
cess. Based on the nonparametric criterion, there
was a failure to reject the null hypothesis for all
embeddings except m = 4. The average value of
the Monte Carlo probability of the null hypothesis
was PM = 0.280, and the value of Z averaged over
the eleven embeddings was Z = 0.896. The values
of dimension obtained with the original signal and
with its surrogates very nearly coincide (Fig. 2).

At this stage of the investigation it might seem
that the algorithm used to generate random phase
surrogates has been successfully validated. The null
hypothesis is rejected when a deterministic signal is
examined, and there is a failure to reject the null
hypothesis when random signals, including filtered
random numbers, are evaluated. However, an ex-
ample constructed in the next section indicates that
this is not the case.

2. False-Positive Rejection of the
Surrogate Null Hypothesis:
An Example

Pradhan and his colleagues [Pradhan et al., 1997]
have published a computational example of the
false-positive rejection of the random phase surro-
gate null hypothesis. Based on this example, they
have questioned the value of surrogate data in the
examination of biological time series. In this sec-
tion we present a similar example that follows their
presentation.

We began with 16,384 normally distributed
random numbers with a mean of zero and a vari-
ance of one. The Fourier transform of this data
set was calculated. The coefficients of the jth har-
monic were multiplied by one for j = 1, . . . , 192
and by zero for j = 193, . . . , 8,192. The inverse
transform was then calculated. A filtered noise data
set was constructed by extracting the middle 8,192

Fig. 3. Estimated correlation dimension for two time series as a function of embedding dimension. The two time series are
normally distributed random numbers (the upper function) and a time series produced by linearly filtering this random data
(lower function). The stability of the estimated correlation dimension as a function of embedding dimension in the case of
filtered noise indicates that this cannot be used as a criterion for low dimensional, deterministic structure.
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points from the inverse transform. The first 8,192
normally distributed points of the original data set
were used as an unfiltered comparison set. This fil-
tered data set differs from the filtered data set of
the previous section in the degree of filtering ap-
plied to the random numbers. In the previous case,

the first 1,643 coefficients made nonzero contribu-
tions to the inverse transform. In the second case,
only 192 coefficients were retained.

The values of the correlation dimension as a
function of embedding dimension are shown in
Fig. 3. The value of dimension obtained with

(a)

(b)

Fig. 4. Estimated correlation dimension for the original time series and the average correlation dimension estimates obtained
with 50 random phase surrogates as a function of embedding dimension. (a) In the case of normally distributed random numbers
superposition of dimension estimates obtained with the original data and with its surrogates results in the anticipated failure
to reject the surrogate null hypothesis. (b) In the case of filtered random numbers the divergence of values obtained with the
filtered signal and its surrogates produces a false-positive rejection of the surrogate null hypothesis.
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normally distributed random numbers increases
with embedding dimension. In the case of the fil-
tered random numbers, a stable value of dimension
versus embedding dimension is obtained.

The comparison of these dimension estimates
with 50 random phase surrogates is shown in Fig. 4.
In the case of the unfiltered, normally distributed
numbers there is a failure to reject the surrogate
null hypothesis in all embeddings when the non-
parametric criterion is applied. The average Monte
Carlo probability is PM = 0.777, and the average
value of Z is 1.02. As shown in Fig. 4, the values of
dimension obtained with the original data set and
its surrogates coincide. Thus the unfiltered, nor-
mally distributed random numbers fail to reject the
null hypothesis. This is as it should be.

This contrasts with the results obtained with
the heavily filtered random signal and its random
phase surrogates. When the very demanding non-
parametric criterion as used, the null hypothesis
was rejected only when m = 4. The average Monte
Carlo probability was PM = 0.144. However, when
Z scores were computed, it was found that the aver-
age Z score was Z = 2.81. This is reflected in Fig. 4.
In the case of filtered random numbers, there is a
separation of the dimension values obtained with
the filtered signal and with its surrogates. That is,
there is a false-positive rejection of surrogate null
hypothesis for this time series. When the correla-
tion dimension is used as the discriminating metric,
the method suggests the presence of an underlying
deterministic structure in a signal produced by lin-
early filtering random numbers. The resolution of
the problem, at least for this time series and dynam-
ical measure, is constructed in the next section.

3. Resolution of the Example of the
False-Positive Rejection of the
Surrogate Null Hypothesis

Calculation of the Fourier transform is the central
step in the construction of a random phase surro-
gate. If a pathological surrogate result is obtained,
an examination of the calculation of the transform
is indicated. A crude but often successful procedure
for improving the robustness of a Fourier transform
calculation is to introduce zero pads. Zero pads
are strings of zeros introduced at the beginning and
end of the time series before the Fourier transform
is calculated. They suppress wrap-around effects.
The reader is referred to [Press et al., 1992] for a

more systematic presentation. In this implementa-
tion, the first and last 200 points of the 8,192 point
time series were set equal to zero before random
phase surrogates were constructed. Though this is
a very primitive implementation of zero padding,
it was nonetheless effective in eliminating the false-
positive rejection of the surrogate null hypothesis.
These results are shown in Fig. 5. Using the non-
parametric criterion, the null hypothesis is rejected
for embedding dimension m = 4. The hypothe-
sis is not rejected for dimensions m = 5, 6, . . . , 14.
The average value of the Monte Carlo probability is
PM = 0.513, and the average value of Z is Z = 1.17.
The introduction of minimal zero pads thus elimi-
nated the previously observed false-positive rejec-
tion of the random phase null hypothesis.

A more systematic and mathematically satisfy-
ing approach to improve the quality of a computed
Fourier transform is to introduce windowing. Let
{xj , j = 1, . . . , N} denote the original time series.
A window is introduced by multiplying xj by wj ,
where wj is zero, or close to it, at j = 1 and N , and
equal to 1 at j = N/2. Several alternative windows
have been introduced [Press et al., 1992]. We have
followed the Press et al. recommendation and used
the Welch window.

wj = 1−

j −
N

2
N

2


2

The results are shown in Fig. 5. With the Welch
window in place, there is a nonparametric failure to
reject the null hypothesis in all embeddings. The
average value of PM is PM = 0.415, and the av-
erage value of Z is Z = 1.27. As seen in Fig. 5,
the introduction of the Welch window in the con-
struction of surrogates results in surrogate dimen-
sion values that coincide with the values obtained
with the original data set.

A comparison of random phase surrogates con-
structed without the Welch window (this is called
a square window in the spectral analysis literature)
and with a Welch window using the same seed to
the random number generator is given in Fig. 6.
This comparison makes it possible to identify the
cause of the false-positive result obtained with the
square window. In the calculation using the square
window, numerical errors in the calculated trans-
form introduce high frequency artifacts into the
inverse transform. The artifacts resulted in aber-
rantly high value of surrogate dimension estimates,
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(a)

(b)

(c)

Fig. 5. Dimension estimates obtained from linearly filtered, normally distributed random numbers compared against the
average dimension estimates obtained with 50 random phase surrogates. The surrogates were calculated with three implemen-
tations of the algorithm. (a) A square window was used. (b) A square window and zero pads were used. (c) A Welch window
was used.
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(a)

(b)

Fig. 6. Comparison of random phase surrogates calculated using different implementations of the algorithm. (a) A square
window was used. (b) A Welch window was used.

which produced the fallacious rejection of the surro-
gate null hypothesis. In all subsequent calculations,
the Welch window is used when random phase sur-
rogates are constructed.

4. Nonlinear Transformations of
Linearly Filtered Noise

The limitations of the random phase surrogate null
hypothesis should be recognized explicitly. The null
hypothesis states that under the applied metric, the
original signal is indistinguishable from linearly fil-
tered noise. It is sometimes supposed that rejec-
tion of this null hypothesis indicates that the signal
has an underlying deterministic structure. This is
not the case. We consider here in greater detail
an example considered in an earlier contribution
[Rapp et al., 1993]. Consider the following possi-
bility. Suppose that the signal examined in Fig. 1
that was constructed by linearly filtering uniformly
distributed random numbers is transformed by a

static, monotonic nonlinear function h(x).

h(x) =

[
x− xmin − 0.0001

xmax − x+ 0.0001

]ρ
1 +

[
x− xmin − 0.0001

xmax − x+ 0.0001

]ρ
where xmin and xmax are the minimum and max-
imum value of x in the original time series, and
ρ = 3. As before, the applied measure is the corre-
lation dimension.

Random phase surrogates were constructed us-
ing a Welch window, and the corresponding values
of dimension were calculated. As shown in Fig. 7,
a definitive rejection of the null hypothesis was ob-
tained. The null hypothesis is rejected with the
nonparametric criterion in all embeddings. The av-
erage value of PM is PM = 0.02, which is the lowest
value that can be obtained when 50 surrogates are
calculated. The average value of Z is Z = 6.24.
However, the procedure has not failed. This does
not constitute a false-positive rejection of the null
hypothesis. The random phase null hypothesis
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(a)

(b)

Fig. 7. Estimated correlation dimension for nonlinearly transformed, linearly filtered, uniformly distributed random numbers
compared against the average dimension estimate obtained with 50 surrogates. (a) Random phase surrogates calculated with
a Welch window were used. The null hypothesis was rejected. (b) Gaussian scaled surrogates calculated with a Welch window
were used. The null hypothesis was not rejected.

supposes that the signal was generated by linearly
filtering random numbers. The application of the
nonlinear transformation h(x) violates that null
hypothesis.

Amplitude adjusted or Gaussian scaled sur-
rogates address a more demanding null hypothe-

sis: under the applied measure, the signal is in-
distinguishable from linearly filtered noise that has
been transformed by a static, monotone nonlinear-
ity. The procedure for constructing surrogates of
this class [Theiler et al., 1992] is outlined in the
second appendix. With this class of surrogate, the
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underlying random structure of the signal was cor-
rectly identified. Using the nonparametric criterion,
there was a failure to reject the null hypothesis in all
eleven embeddings. The average value of PM was
PM = 0.71 and the average value of Z was Z = 0.85.
The dimension values obtained with surrogates co-
incide with the dimension values obtained with the
original time series (Fig. 7).

5. Comparison Tests of Random
Phase, Gaussian Scaled and
Iterative Surrogates

Schreiber and Schmitz [1996] have proposed an it-
erative algorithm for constructing surrogates that
have the same power spectrum and the same distri-
bution as the original time series. As in the preced-
ing sections of this paper, the objective is to avoid
false-positive identification of nonlinear determin-
istic structure in the data. A specification of the
algorithm is given in Appendix C.

Three surrogate algorithms were compared and
tested against six test signals. The algorithms were
random phase surrogates, Gaussian scaled surro-
gates, and an independent implementation of the
Schreiber–Schmitz iterative surrogates. The six
test signals included a time series generated by the
Hénon map (xn+1 = 1−ax2

n+yn, yn+1bxn, a = 1.4,
b = 0.3) and the time series described in earlier
sections of this paper. Each time series contained
8,192 points. Fifty surrogates of each type were
constructed. The discriminating measure was the
correlation dimension. Calculations were performed
for embedding dimensions m = 4 to m = 14. The
results are shown in Table 1. A Z score is calculated
for each embedding dimension. In the table, the av-
erage Z score (m = 4 to m = 14) is displayed along
with the corresponding single-tailed probability of
the null hypothesis.

Expected results were obtained in the case of
the Hénon map. The surrogate null hypothesis was
rejected using all three classes of surrogate. In the
case of normally distributed random numbers, all
three classes of surrogate failed to reject the null
hypothesis. This is also as it should be.

More interested results were obtained with the
signal produced by heavily filtering the normally
distributed random numbers using the filter de-
scribed in Sec. 2. Based on an examination of the
average Z score, there is a false-positive rejection
of the null hypothesis when iterative surrogates are

used. However, this result should be examined with
care. The average Monte Carlo probability of the
null hypothesis is PM = 0.160. The high average Z
score is due to high scores obtained with lower em-
bedding dimensions. The average Z score for m = 7
to m = 14 is Z = 1.23. A convincing rejection of the
null hypothesis is, therefore, not obtained, which is
consistent with the stochastic origin of the signal.

The results obtained with uniformly distributed
random numbers are consistent with expectations.
A failure to reject the null hypothesis is observed.
This is also the case when linearly filtered, uni-
formly distributed random numbers were tested.
(In this case, the filter is the filter described in
Sec. 1.)

The final entries in Table 1 present the results
obtained when the nonlinear transformation of the
linearly filtered random numbers were examined.
As previously discussed, the rejection of the ran-
dom phase null hypothesis is expected and does
not constitute a surrogate failure since, by construc-
tion, the signal violates the random-phase null hy-
pothesis. The failure to reject the null hypothesis
when Gaussian scaled surrogates are used is also the
expected result. Using this type of surrogate, the
stochastic origin of the signal was correctly identi-
fied. On first examination, the iterative surrogates
would seem to produce a false-positive rejection of
the null hypothesis, but as in the previous case, this
only occurs in lower embedding dimension when the
estimated value of dimension is nearly equal to the
embedding dimension. Under these circumstances,
the calculation of the correlation dimension is of
uncertain reliability. The average Z score of em-
beddings m = 7 to m = 14 is Z = 1.60.

6. Conclusions

A number of conclusions can be drawn from the
calculations. First, it was found that it is essen-
tial to validate surrogate software with examples
where the null hypothesis should not be rejected as
well as with examples that result in a legitimate
rejection of the surrogate null hypothesis. Second,
care must be exercised when estimating a Fourier
transform. Numerical errors that can be tolerated
in some applications can have unacceptable con-
sequences when they are incorporated into surro-
gates. Third, it is advisable to use more than one
type of surrogate. If results obtained with different
classes of surrogate are inconsistent, a more detailed
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examination, for example an assessment of the
calculation’s dependence on embedding dimension,
should be made. Fourth, as addressed in a previous
publication [Rapp et al., 1994], a sufficiently large
number of surrogates should be used. If anomalous
results are obtained, the number of surrogates used
should be increased.

Finally, we wish to emphasize the limitations
of the conclusions that can be supported even by
carefully validated surrogate calculations. Invalid
generalizations are sometimes made when there is a
failure to reject the surrogate null hypothesis. Let
us suppose that a systematic calculation results in a
well-documented failure to reject the random phase
surrogate null hypothesis. This does not mean that
a deterministic nonlinear structure is not present
in the signal. Rather, it can only be concluded
that the discriminating measure used failed to de-
tect such a structure. It always remains possible
that calculations using the same data, the same
surrogates but a different measure could result in
a convincing rejection of the null hypothesis.
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Appendix A
Estimation of the Correlation
Dimension

The mathematical basis for this procedure is given
in [Grassberger & Procaccia, 1983a, 1983b]. Let
{xj , j = 1, . . . , N} denote a single channel time se-
ries. These values are embedded in <m to produce
points Zj , where

Zj = (xj , xj+L, . . . , xj+(m−1)L)

K denotes the number of points in the embedded
set; K = N − (m− 1)L. The correlation integral is
then calculated.

Cm(r) =
1

Np

K−B∑
i=1

K∑
j=i+B

Θ(r − |Zi − Zj |)

Θ is the Heaviside function. In our implementa-
tion the Euclidean metric is used. Correlations be-
tween consecutively measured points can give false
indications of low dimensional structure [Theiler,
1986; Theiler & Rapp, 1996]. It is possible to elim-
inate these correlations by incorporating parameter
B into the expression for the correlation integral
[Theiler, 1986]. In these calculations, B is at least
twice the autocorrelation time of the time series.
Np is the number of distinct pairs of points used in
the calculation of the correlation integral.

Np = (K −B + 1)(K −B)/2
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The logarithm lnCm(r) is examined as a function
of ln(r). An attempt is made to find a linear scal-
ing region. The slope of lnCm(r) versus ln(r) in the
scaling region is the correlation dimension [Grass-
berger & Procaccia, 1983a, 1983b]. The upper and
lower bounds of the scaling region were determined
numerically. The derivative dCm(r)/d(ln(r)) was
calculated. The longest interval on the ln(r) axis
such that the variation of the derivative is ±0.35
was found. The slope of lnCm(r) in that interval
became one of the estimates of the correlation di-
mension. This process was repeated for scaling re-
gions where the variation of the derivative is ±0.30,
±0.25, ±0.20, ±0.15, ±0.10 and ±0.05. The final
estimate of the correlation dimension is the mean
of these seven estimates. The standard deviation
of that mean is a measure of the uncertainty of the
reported value of the correlation dimension.

In the calculations presented here L = 1 and
m = 4, . . . , 14. A stable value of dimension as a
function of embedding dimension m is an impor-
tant, but, as demonstrated, not definitive indication
of low dimensional, deterministic structure in the
time series.

Appendix B
Gaussian Scaled Surrogates

Again let {xj , j = 1, . . . , N} denote the original
time series. The object is to produce {x′j , j =
1, . . . , N} a Gaussian scaled surrogate of {x}.

1. {yj, j = 1, . . . , N} is produced by taking a nor-
mally distributed set of random numbers and ar-
ranging the elements in the same order as the
elements of {x}; that is if xj is the kth largest
value of {x}, then yj is the kth largest value
of {y}.

2. A random phase surrogate of {y} is constructed.
Calculate the Fourier series of {y}. In our im-
plementation of the algorithm, a Welch window
is used. Superscript Y is used to denote the
resulting Fourier coefficients: aY0 , aY1 , . . . , a

Y
N/2,

bY1 , . . . , b
Y
N/2. A temporary Fourier series that

has the same amplitude but random phase is
constructed.

aTj = [(aYj )2 + (bYj )2]1/2 cos φ

bTj = [(aYj )2 + (bYj )2]1/2 sin φ

where φ is drawn from a uniformly distributed

set of random numbers on [0, 2π]. {y′} is the
corresponding inverse transform.

3. {x′}, the Gaussian scaled surrogate of {x}, is
constructed by reordering the elements of {x} so
that it has the same rank structure as {y′}. A
justification of the algorithm is given in [Theiler
et al., 1992] and in [Rapp et al., 1993].

Appendix C
Schreiber–Schmitz Iterative
Surrogates

Let {x} denote the original time series of N ele-
ments. The procedure for constructing {xU}, the
first iterate of the surrogate, is presented.

1. As an implementation detail, construct {xSort}
which is the data vector {x} ordered from the
smallest to the largest element. This is done here
so that is not unnecessarily incorporated into the
iterative process.

2. Calculate the Fourier series of the original data.
Superscript D is used to denote this Fourier
series: aD0 , aD1 , aD2 , . . . a

D
N/2, bD1 , bD2 , . . . b

D
N/2.

(Note that throughout, aj denotes the real co-
sine coefficient. This is in contrast with Krantz
and Schreiber who use aj to denote the ampli-
tude of the jth harmonic.)

3. Construct {xS} a random shuffle of {x}. Dif-
ferent surrogates are constructed using different
initial random shuffles.

4. Calculate the Fourier series of the shuffled
time series, denoted aS0 , aS1 , aS2 , . . . aSN/2, bS1 ,

bS2 , . . . b
S
N/2.

5. Construct a temporary Fourier series that has
the amplitude of the Fourier series of {x} and
the phase of the Fourier series of {xS}, denoted
as follows aT0 , aT1 , aT2 , . . . a

T
N/2, bT1 , bT2 , . . . b

T
N/2.

aTj = [(aDj )2 + (bDj )2]1/2
{

aSj

[(aSj )2 + (bSj )2]1/2

}

bTj = [(aDj )2 + (bDj )2]1/2
{

bSj

[(aSj )2 + (bSj )2]1/2

}

6. Construct temporary time series {xT } by calcu-
lating the inverse transform of the Fourier series,
denoted aT0 , aT1 , aT2 , . . . a

T
N/2, bT1 , bT2 , . . . b

T
N/2.

7. Construct the first iterate of the surrogate,
denoted {xU}, by re-ordering {x} the original
data so that it has the same rank structure as
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the temporary time series {xT }. The previously
constructed vector {xSort} is used in this step.

The next iterate is produced by setting {xS} =
{xU} and returning to Step 4. The process is contin-

ued until a convergence criterion is satisfied. In our
implementation of the procedure, it was found that
the convergence criterion proposed by Schreiber and
Schmitz was satisfied in all cases when 30 iterations
were performed.




