
Structured DropConnect for

Convolutional Neural Networks

ECE1512

Sajad Norouzi

Supervisor: Konstantinos N Plataniotis

2 April 2019

University of Toronto

Contents

1 Introduction 2

2 Background 2
2.1 Dropout . 2
2.2 Drop-Connect . 3

3 Related Works 3
3.1 Spatial Dropout . 4
3.2 Cutout . 4
3.3 DropBlock . 4
3.4 DropFilter . 4
3.5 Stochastic Max Pooling . 5
3.6 Scheduled Dropout . 5

4 Structured Drop-Connect 6
4.1 Training . 6
4.2 Inference . 6

5 Experiments 8

6 Conclusion 9

7 Future Work 10

1

1 Introduction

Deep neural networks (DNNs) with a huge number of parameters trained with
a massive amount of regularization show pretty good results on different tasks.
However, due to a huge number of parameters over-fitting is still an important is-
sue. Dropout [9] is one of the well-known stochastic regularization techniques let
giant DNNs converge to a stable point without overfitting. However experimen-
tal results show that the improvements due to adding dropout to convolutional
neural networks (CNNs) are not considerable. The main hypothesis for this
phenomena is the spatial correlation in the activation maps of CNNs. Hence if
we drop a neuron from CNNs activation maps, we are not necessarily blocking a
part of the information to flow into the subsequent layers of the network. Based
on this assumption, some variants of dropout has been proposed that we will
review in next sections.

One of the early extensions of the original dropout is DropConnect [12].
Except for one recent work [8], we are not aware of any work on applying
DropConnect to CNNs. By applying DropConnect to CNNs, we are basically
removing the connection between a particular part of a kernel and the inputs, so
definitely we are changing the flow of information. Besides, instead of dropping
different connections in convolutional kernels randomly we propose to divide
connections into different meaningful groups and drop a group of connections
instead of dropping a single connection.

2 Background

2.1 Dropout

One of the observed problems with trained neural networks is co-adaption. Co-
adaption is happening whenever some neurons depend strongly on the activation
of other neurons. In other words, they have not learned any independent feature.
By changing the information flow randomly during the training, dropout can
avoid the co-adaption problem. Moreover, the final network is more robust
against perturbations and noise.

In [12], it’s been proposed to randomly drop the neurons of a fully con-
nected layer during training based on a Bernoulli distribution with mean equal
to keep prob which is a hyper-parameter we need to tune. At the inference time,
we compute the expected value of each neuron activation. Because the distribu-
tion we used for training is Bernoulli, then the expected output is the original
activation multiplied by keep prob. The mathematical equation for a dropout
layer is:

A = a(Wx)×M

One intuition behind dropout is that at the test time network behaves like
ensemble of networks with different configurations.

2

2.2 Drop-Connect

With the same motivation of Dropout[12], DropConnect has been proposed
to add more noise to the network. The primary difference is that instead of
randomly dropping the output of the neurons we randomly drop the connection
between neurons. The mathematical equation for this method is:

A = a(Wx×M)

The training procedure for DropConnect is exactly the same as Dropout.
However, we know that E[a(Wx ×M)] is not necessarily equal to a(E[Wx ×
M]). Therefore, we cannot use the same procedure we used for the inference of
Dropout. In the original paper, they proposed to use moment matching between
the Bernoulli distribution and a Gaussian distribution. At the inference time,
they take samples from the Gaussian distribution and feed them to the activation
function. Finally, they average the values to obtain expected value. In figure 1
you can find the visualization of Dropout and DropConnect on fully-connected
networks.

(a) (b)
(c)

Figure 1: Comparison of Dropout and DropConnect on a normal fully connected
network. (a) Normal fully connected (b) Dropout (c) DropConnect

One important property of these methods which requires more attention is
that for each training case in a mini-batch, they used a different mask to drop
the neurons or connections. This way most of the weights will be updated after
each mini-batch update.

3 Related Works

There have been some attempts to change the original dropout to match with the
characteristics of convolutional neural networks. The main difference between
fully-connected and convolutional neural networks is the fact that there is a
spatial correlation in CNNs activation maps and these methods tried to improve
Dropout based on this property.

3

3.1 Spatial Dropout

In [11], they have proposed to drop each channel of activation maps randomly
based on a Bernoulli distribution. Dropping a particular channel of an activation
map corresponds to turning off a particular filter in a convolutional layer. Spatial
dropout definitely changes the flow of the information but the amount of noise
they add to the network is limited. Experimental results show that the gain out
of adding spatial dropout for the task of classification which is the focus of this
paper is marginal. We can say that at the inference time the network behaves
similar to an ensemble of different CNNs with various number of filters.

3.2 Cutout

In [1], while they have been trying to make CNNs robust against occlusion for
the task of classification, they have found an interesting augmentation approach.
They have put a block in different positions of an input image and feed that to
the network. Hence a particular spatial part of the network becomes disable.
Basically, with this method, we have changed the information we feed to the
network and consequently, each training case uses a different part of the network
to make a prediction. In the original paper, it has been shown that this method
improves the final accuracy of the CNNs on Cifar10 and Cifar100.

3.3 DropBlock

Following the intuition behind Cutout, in [2] it’s been proposed to drop a con-
tinuous region of activation maps. They have also shown that applying Cutout
on the task of Imagenet classification does not give that much of improvement.
based on their benchmark on the Imagenet, Dropblock outperforms all other
variants of dropout proposed previously. It’s worth to mention that the masks
applied to the activation maps are different for various channels.

From dropping filters point of view, we can say that DropBlock is similar to
disabling convolutional kernels for a defined period of time during the operation
of convolving them with the input. DropBlock also introduced a new hyper-
parameter that is the block-size which is normally set between 3-7. DropBlock
with block size equal to 1 is exactly the same as original Dropout.

In figure 2 you can find geometric visualization of the activation maps after
applying Dropout, SpatialDropout, and DropBlock. Cutout visualization is
exactly the same as DropBlock but it is only applied to the first layer.

3.4 DropFilter

In a Parallel work, [8] proposed to apply DropConnect to the CNNs kernels. [8]
is the first work on applying DropConnect to CNNs. They have also proposed
DropFilterPlus which is a DropConnect applied to filters of CNNs with different
masks during different steps of convolution operation. Unfortunately, there is
no experimental result for their proposed method on DNNs. The only available

4

(a)
(b)

(c)

Figure 2: visualization of CNNs activation maps after applying (a) Dropout (b)
SpatialDropout (c) DropBlock

result of the method is applying DropFilterPlus on a toy network on MNIST
dataset. There is also no available implementation for this technique, so we
could not reproduce their results. Generally, this works look like incomplete
research.

3.5 Stochastic Max Pooling

One of the first stochastic regularization methods proposed to address the prob-
lem of combining Dropout and CNNs is Stochastic Max-Pooling [13]. The intu-
ition behind this method is that by using stochastic Max-pooling we can imitate
the behavior of elastic deformation that has been used as a data augmentation
technique. Moreover, by using stochastic max-pooling the error signal goes
through all parts of the network, so we can use the power of all the network
parameters. While this regularization technique is more effective than an orig-
inal dropout, but in new CNN architecture, there is no Max-pooling layer in
between convolutional layers [5, 4]. Most of the recently proposed networks used
a bigger stride to make the activation maps smaller. Hence we are not able to
use Stochastic MaxPooling for newly proposed networks.

3.6 Scheduled Dropout

All the aforementioned dropout variants have a hyperparameter for the probabil-
ity of keeping a particular unit in the activation maps (keep prob). [7] proposed
to use adaptive probability during the training. The intuition behind this pro-
posal is the fact that at the beginning of the training when the network weights
are initialized randomly, there is no annoying co-adaption between the neurons
of the network. As we process in the training and weights took more meaningful
values, we need to use more dropout to avoid co-adaption. [7] propose to use
exponential decay to set the probability of keeping a particular unit. Clearly,
the starting point of keep prob should be 1 and we can set the threshold to stop

5

the decay after that. The threshold value is mostly between 0.5 and 0.9. In [2]
they have also used this scheduling and scheduled their DropBlock with a linear
decay.

4 Structured Drop-Connect

In this work, we propose to rather than dropping activation maps units randomly
either in continuous manner like DropBlock or in discrete format like Dropout,
drop the filters connections to the input. The first point of this work is that it
definitely change the flow of information since we decide to discard some of the
units from the images or activation maps of the previous layer. However, the
number of connections in CNNs is much more than fully-connected networks,
so dropping connections randomly can make the training of the networks over-
whelming. Using the intuition that one of the decision that neural network
engineers should decide on is kernel size in each layer and knowing the fact that
combination of different kernel size can be beneficial [10], we proposed to divide
the connection into groups corresponding to different kernel sizes. In next two
sections we explain in detail training and inference sections of the algorithm.

4.1 Training

During the training, we randomly select a kernel size which is less than or
equal to the original kernel size that has been set by the architecture designer.
This kernel size can be different for various kernels in a particular layer. If we
wanted to use the same kernel size over different kernels then at the bottleneck
layers with 1x1 convolution the flow of the information would be blocked. After
selecting a kernel size for each kernel of a layer, we convolve kernels with the
inputs and the rest is the same as original convolutional layers. In cases that
kernel size equals to zero, structured DropConnect behaves exactly same as
SpatialDropout. We have used the following probability function:

Pk(i, rate) =

{
(1− rate) i = n

rate/(k − 1) i 6= n

Here k denotes the original kernel size and rate reference to a dropout hyper-
parameter defining the rate of dropping each neuron. It’s possible to use dif-
ferent probability for different kernel sizes less than original kernel size but to
simplify the model we used the same probability. In figure 3 you can find a
visualization of possible kernels that might be selected by the algorithm. Please
note that in figure 3 the 3D cubes show the convolutional kernel while in figure
2 the 3D cubes show the activation map.

4.2 Inference

At the inference time, we need to compute the average of activation maps. We
believe that the network can imitate the behavior of an ensemble of different

6

p = rate/3 p = rate/3
p = rate/3 p = 1-rate

Figure 3: Different convolutional kernels that might be selected by the Struc-
tured DropConnect during the training

kernel sizes. Basically, using multi-scale inputs and taking the average over them
is a common practice to increase the classification accuracy of the networks. We
believe that this structured form of DropConnect can provide the same effect.
To compute the average of different activation maps we need to use the following
formula:

Aj
l =

K∑
i

pk(i)× a(W i
l,j ∗Al−1) (1)

Where Aj
l shows the jth activation map of layer l and Wl,j defines the weights

of jth kernel of layer l. a reference to the activation function which is usually
Relu and pk(i) shows the probability of selecting kernel with size i in a kernel
with original size k. To simplify the equation we dropped the rate from the
inputs of a function p While this is not a valid assumption, but to make the
computations easier we assume that the following equation hold with equality:

K∑
i

pk(i)× a(W i
l,j ∗Al−1) ≈ a(

K∑
i

pk(i)× (W i
l,j ∗Al−1)) (2)

Moreover, because of the linear properties of convolution operation, we can
further simplify the right-hand side of the above equation to:

Aj
l = a(

K∑
i

pk(i)× (W i
l,j ∗Al−1)) = a((

K∑
i

pk(i)×W i
l,j) ∗Al−1) (3)

Therefore, at the inference time, we only need to compute the weighted sum
of different convolutional kernels that we used during training.

Due to the approximation that we have used for the inference, the com-
puted activation map is not necessarily the exact result that we want, but the
experimental result shows we can rely on this simplified model.

7

5 Experiments

To validate the effectiveness of structured DropConnect we took Resnet32[3] im-
plementation from tensorflow repository 1 and trained the network on Cifar10
for 250 epochs. The optimization algorithm we have used was Adam [6] with
learning rate multiplied by a factor of 0.1 at epochs: 100, 150, 200. The official
implementation of DropBlock was not available so we have taken the implemen-
tation from one of available respositories2. We trained all the networks with
Nvidia GTX 1080 Ti. The implementation of Structured DropBlock is available
at: https://github.com/sajadn/Structured-DropConnect

We have divided the convolutional layers into three sections and applied
the regularization on the last two sections. Since Resnet only has 3x3 kernels,
therefore if we show our method gives improvement we can conclude that the
same technique also helps networks with higher kernel sizes.

In [2], block size=7 has been used to achieve the best results, but they only
trained the network on Imagenet dataset with bigger image size (224 instead
of 32). So we have trained Resnet with different block size to generate the best
results of DropBlock. We also used the linear decay of keep prob similar to [2].
In table 1 the results have been reported.

Model Accuracy

Resnet32 + DropBlock (bs = 3) 0.9293
Resnet32 + DropBlock (bs = 5) 0.9308
Resnet32 + DropBlock (bs = 7) 0.9319

Table 1: Accuracy of Resnet32 with DropBlock using different block size (bc)

Therefore we conclude that the hyperparameters proposed for Imagenet clas-
sification in the original dropblock paper, is also the best proposals for Cifar10
classification.

To find the best scheduling for the probability of keeping a unit in activation
maps we have explored two different scheduling. One of them is linear scheduling
and another one is piece-wise scheduling. In piece-wise scheduling, we drop the
keep prob by two percents after epochs: 40, 70, 100, 150, 200. In table 2 you can
see that the linear scheduling proposed by [2] works better for our structured
DropConnect so we use that as the best results of Structured DropConnect.

We have also experimented with other proposed Dropout variations. You
can find the final results in table 3. The results are an average of 4 different
networks trained from random initialization.

You can see that the results of Structured DropConnect are the best. How-
ever, the difference between DropBlock and Structured DropConnect is not that
considerable and it might be due to the noise in the results. In order to validate
the effect of this technique, we need to do experiments over bigger datasets like

1https://github.com/tensorflow/models/tree/master/official/resnet
2https://github.com/DHZS/tf-dropblock

8

Model Accuracy

Resnet32 + Structured DropConnect (linear scheduling) 0.9317
Resnet32 + Structured DropConnect (piece-wise scheduling) 0.9321

Table 2: Accuracy of Resnet32 regularized with Structured DropConnect using
different scheduling techniques

Model Accuracy

Resnet32 0.9259
Resnet32 + Dropout 0.9283
Resnet32 + Spatial Dropout 0.9302
Resnet32 + DropBlock (bs = 7) 0.9319
Resnet32 + Structured DropConnect 0.9321

Table 3: Accuracy of Resnet32 with different dropout techniques

Imagenet. This experiment validates that the idea of Structured DropConnect
make sense and it is at least as good as DropBlock.

We have also explored the idea of combining DropBlock and Structured
DropConnect. In table 4 you can find the results with different block sizes.
Please note that since we have used two regularization technique simultaneously,
the drop probability decrease to half.

Model Accuracy

Resnet32 + Structured DropConnect + DropBlock (bs = 3) 0.9338
Resnet32 + Structured DropConnect + DropBlock (bs = 5) 0.9329
Resnet32 + Structured DropConnect + DropBlock (bs = 7) 0.9347

Table 3: Accuracy of Resnet32 using both DropBlock and Structured DropBlock

6 Conclusion

In this work, we proposed the structured DropConnect which is randomly se-
lecting different kernel sizes during the training. Using experiments on Cifar10
dataset we have shown that the proposed method has a power to regularize
CNNs. We believe this gain is due to the fact that network at the test time
behaves like an ensemble of different networks with different kernel sizes.

9

7 Future Work

• We have used the same sized kernels for different channels, but we can
add more noise using different kernel size in various channels.

• We used the same mask for all the training case in mini-batch, however, in
Dropout and DropConnect this mask for each training sample is different.
One future direction might be making the Structured DropConnect for
data points in a mini-batch differently.

• At the inference time, we have used the equation 3, but with Relu as an
activation function this equation is not exactly equal to the expected value
we want. DropConnect [1] used moment matching to solve this problem.
We can apply the same algorithm to this work.

• Combination of DropBlock and Structured DropConnect make sense since
one of them take advantage of activating different spatial thinned networks
and another one leverage the power of different kernel sizes.

References

[1] Terrance DeVries and Graham W Taylor. Improved regularization of con-
volutional neural networks with cutout. arXiv preprint arXiv:1708.04552,
2017.

[2] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization
method for convolutional networks. In Advances in Neural Information
Processing Systems, pages 10750–10760, 2018.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[4] Michael G Hluchyj and Mark J Karol. Shuffle net: An application of
generalized perfect shuffles to multihop lightwave networks. Journal of
Lightwave Technology, 9(10):1386–1397, 1991.

[5] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[7] Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal, and Vittorio
Murino. Curriculum dropout. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3544–3552, 2017.

10

[8] Hengyue Pan, Hui Jiang, Xin Niu, and Yong Dou. Dropfilter: A novel
regularization method for learning convolutional neural networks. arXiv
preprint arXiv:1811.06783, 2018.

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

[10] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[11] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and
Christoph Bregler. Efficient object localization using convolutional net-
works. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 648–656, 2015.

[12] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Reg-
ularization of neural networks using dropconnect. In International confer-
ence on machine learning, pages 1058–1066, 2013.

[13] Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization of
deep convolutional neural networks. arXiv preprint arXiv:1301.3557, 2013.

11

