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Abstract—Training neural networks, especially deep neural
networks, has been a long-lasting challenge in the machine
learning community. Fundamentally, training a neural network
is a non-convex optimization problem and therefore, leveraging
Stochastic Gradient Descent (SGD) is a natural choice. How-
ever, training deep architectures using SGD is extremely time-
consuming. Currently, the most commonly used method for train-
ing deep networks is Adam [1]. However, recent theoretical works
suggest that despite its attractive convergence rate, Adam could
generalize worse than SGD, especially for very deep networks
[2]. As a result, we are witnessing a considerable interest in
improving established optimization methods (like Adam and
momentum assisted SGD) both in terms of convergence speed
and generalization.
In this project, we want to shed some light on the following
question: Is this the time to replace conventional Adam with one
of its proposed variants?

Index Terms—deep neural network, deep learning, non-convex
optimization, Stochastic Gradient Descent, Adam, AdamW, co-
sine annealing

I. INTRODUCTION

There is a subtle correspondence between each machine
learning method and an optimization technique. Among all
of the many optimization problems imaginable in machine
learning, perhaps the most difficult one is training (deep)
neural networks [3]. Therefore, one of the main barriers in
the progress of deep neural architectures is overcoming the
many challenges involved in the optimization aspect of the
problem. These days, it is not a surprise to spend many days on
numerous machines to find the best set of practical strategies
for training a single neural network model. As a result,
due to the expensive and time-consuming nature of training,
developing a specialized set of optimization techniques have
become a dominant research stream.

A. Challenges in Training Neural Networks

The main challenges in training neural networks stem from
the non-convexity of the problem. The very first implication
of this property is that we have to deal with local minima.
Indeed, nearly any deep model is essentially guaranteed to
have an extremely large number of local minima [3], however,
the overall belief is that for sufficiently large networks, most
local minima have a small cost function value [4]. However,
having the same loss function value doesn’t mean that the
peroformance of the networks on test data is similar. Sharp
local minimas are points that the network overfitted trainning
data and it’s obvisouly undesirable. In fact, by adopting careful

momentum methods, the optimization algorithm can avoid
falling into sharp minima and prevent overfitting. On the
other hand, plateaus and saddle points are more common
and problematic [4], especially in high dimensional settings.
Vanishing or exploding gradient problem arises when the
neural network architecture becomes very deep, which can
make learning impossible or unstable respectively. The reason
for this problem lies in consecutive multiplication of weights
of different layers in the gradient toward the backward path
in the backpropagation algorithm.

It is worth mentioning that, noisy or inexact gradient estima-
tions, sensitivity to parameter initialization, and loss function
cliffs (extremely steep regions in the loss function) are other
challenges in solving the neural network training problem.
Various optimization algorithms are designed to overcome
imperfections in the gradient estimate [3], like choosing a
surrogate loss function. Batch normalization [5] is a technique
to dramatically reduce sensitivity to initialization as well as
speeding up the training process. Furthermore, loss function
cliffs can be avoided using gradient clipping [6].

B. Adaptive Gradient Methods

Stochastic gradient descent (SGD) is the most basic yet
one of the most dominant approaches for training deep neural
networks [3], and has been empirically shown to be efficient
on large datasets [7]. However, SGD in its vanilla form suffers
from slow convergence rate due to its static learning rate across
dimensions and time. Therefore, adaptive variants of SGD
have been proposed in recent years to cope with this issue.

Adagrad [8] is among the first generation of such adaptive
algorithms to surpass vanilla SGD in terms of optimization
time. It started a long chain of adaptive gradient methods.
Despite the theoretical convergence guarantee for convex
objectives, it does not perform well in the non-convex settings
due to the rapid decaying of learning rate. A variant to Ada-
grad, RMS-prop [9], tackles this issue by using an exponential
moving average on second-order momentums. In addition to
this, Adam [1] combines momentum with RMS-prop to create
one of the most popular optimization algorithms in training
deep neural networks. A detailed discussion of these methods
will be presented in section II.

However, research like [2] suggest that for highly over-
parameterized neural networks (e.g. convolutional neural net-
works like ResNet [10]), training with Adam or its variants
could generalize worse than SGD. In fact, carefully-tuned



SGD, with proper momentum, weight decay, and learning rate
decay strategies, can outperform adaptive gradient algorithms
eventually ( [2], [7]). This has risen the interest in developing
methods to address Adam’s deficiencies.

As an example, with intricate modification, Amsgrad [11]
tries to solves the short memory problem of exponential mov-
ing average in Adam. In addition, the following variations of
Adam algorithm has been proposed over the last year: Quasi-
hyperbolic Adam (QHAdam) [12], Partial Adam (Padam) [7],
Normalized Direction Adam (ND-Adam) [13], Accelerated
Adam (AAdam) [14], Switches from Adam to SGD (SWAS)
[15], and Adam with weight decay (AdamW) [16].

The number of recent publications in this area offers an
incentive for this project to compare some of the most inter-
esting variants of Adam and bring some insight to help decide
if we should surrogate vanilla Adam with its fancier versions.

In section II, we will present a review of related adaptive
gradient methods. Section III quickly reviews some of the
most important ideas for learning rate adjustments. Section IV
provides results of numerical experiments on selected methods
along with detailed experiment settings. Finally, section V
summarizes the main findings of this project.

II. REVIEW OF RELATED GRADIENT METHODS

Stochastic gradient descent (SGD) and its numerous variants
are the most commonly used optimization methods in machine
learning and more specifically, in deep learning [3]. SGD
obtains an unbiased estimate of the gradient using a minibatch
of training samples. By moving in the direction of an exponen-
tially decaying moving average of past gradients, momentum
method [17] tries to speed up the convergence, especially in
cases where the Hessian matrix is poorly conditioned (i.e. the
objective function is much more sensitive in some dimensions,
e.g. has a canyon shape with steep sides [3]). Momentum tries
to cancel out the zig-zag-shaped traverse path in the landscape
of loss function, at a cost of bearing degrees of overshoot. On
the other hand, momentum method helps to avoid sharp local
minima and saddle points in the objective function.

vt = αvt−1 +∇f(xt)
xt+1 = xt − εvt (1)

where ε is the learning rate or step size, and α is the
moving average exponent factor. Note that using α = 0, (3)
downgrades to the vanilla SGD.

One of the popular choices for improving the convergence
speed of momentum assited SGD is Nesterov accelerated
gradient, where the gradient is evaluated after the momentum
direction is added to the current point:

vt = αvt−1 +∇f(xt + vt)

xt+1 = xt − εvt (2)

this algorithm has a intuition that with looking one step ahead,
we can fix the current momentum direction.

With simple changing the variables (xt = xt+vt) Equation
(2) can also be written as followig:

vt = αvt−1 +∇f(xt)
v̂t = αvt +∇f(xt)
xt+1 = xt − εv̂t (3)

Forcing the learning rate to be the same for each dimension
is restrictive. Adagrad [8] is one of the first methods to propose
adaptive learning rate across dimensions. The update rule for
Adagrad is as follows:

ct = ct−1 +∇f(xt)⊗∇f(xt) (4)

xt+1 = xt − ε∇f(xt)⊗
1
√
ct

(5)

where we show element-wise multiplication by ⊗ symbol.
Note that, while in (3) vt represents the first order momentum,
in (5) ct is called the second-order momentum. Despite the
theoretical convergence guarantee for convex objectives, from
(4), accumulation of second order momentums in each itera-
tion, makes the update term very small. RMS-prop solves this
issue by exploiting an exponential decaying moving average
on second-order momentum:

ct = αct−1 + (1− α)∇f(xt)⊗∇f(xt)

xt+1 = xt − ε∇f(xt)⊗
1
√
ct

(6)

Although supported by no theoretical guarantee, RMS-
prop’s superior empirical performance raised attention to ex-
ponential moving average versions of Adagrad [7]. Among the
proposed variants, Adam is the most popular one. Fusing the
exponential moving average on second-order momentum with
the first-order momentum, Adam implements both adaptive
learning rate and momentum acceleration:

vt = β1vt−1 + (1− β1)∇f(xt)
ct = β2ct−1 + (1− β2)∇f(xt)⊗∇f(xt)

xt+1 = xt − εtvt ⊗
1
√
ct

(7)

where learning rate is updated using εt = ε/
√
t in each

iteration. Note that by choosing β1 = 0, Adam reduces to
RMSprop. Basically Adam is a combination of RMSProp
and Momentum. One of the first variants of Adam is adding
Nesterov to Adam (Nadam). It is shown that Nadam can help
the optimization in some applications.

vt = β1vt−1 + (1− β1)∇f(xt)
ct = β2ct−1 + (1− β2)∇f(xt)⊗∇f(xt)
v̂t = β1vt + (1− β1)∇f(xt)

xt+1 = xt − εtv̂t ⊗
1
√
ct

(8)

In [11], some problems in the convergence of Adam are
mentioned. More specifically, because of the short memory
imposed by the exponentially decaying moving average, it is
shown that in some cases gradient information vanishes. The



update rule for Amsgrad, shows an intricate modification to
Adam in order to introduce a long-term memory:

vt = β1vt−1 + (1− β1)∇f(xt)
ct = β2ct−1 + (1− β2)∇f(xt)⊗∇f(xt)
ĉt = max(ĉt−1, ct) (9)

xt+1 = xt − εtvt ⊗
1√
ĉt

(10)

By introducing step (9), an extra long-term memory is
preserved and ensures the decay of the effective learning rate.
This implies an O(1/

√
T ) convergence rate in the convex

settings.
Generally, recent advances in deep learning show that

making models more adaptive in a meaningful way can help
the models to achieve better results while it might become
harder to explain their behavior. Following two algorithms
propose some hyper-parameters to make the update rule more
adaptive in order to achieve better results.

It is shown [2] that Adam suffers from generalization issue,
specifically over highly over-parameterized architectures (like
very deep convolutional neural networks) in comparison to
momentum assisted SGD. One explanation for this is that the
trade-off between momentum acceleration and learning rate
adaptation needs to be tuned more precisely.

Padam introduces a variant to Adam which enables interpo-
lating between momentum assisted SGD and Amsgrad, using
a single hyperparameter p:

vt = β1vt−1 + (1− β1)∇f(xt)
ct = β2ct−1 + (1− β2)∇f(xt)⊗∇f(xt)
ĉt = max(ĉt−1, ct)

xt+1 = xt − εtvt ⊗
1

ĉpt
(11)

where p ∈ (0, 0.5] is called the partially adaptive parame-
ter. In one end, by letting p→ 0, Padam reduces to momentum
assisted SGD, and at the other end, p = 0.5 resembles
Amsgrad. Therefore, by tuning parameter p, Padam seeks the
best trade-off between the effect of momentum and learning
rate adaptation. Results in [16] support that by carefully tuning
p, Padam achieves a convergence speed as fast as that of
Adam, while generalizing as well as SGD.

Quasi Hyperbolic Adam (QHAdam) [12] is another variant
which tries to tune the contribution of the current state gradient
to the update rule more adaptively. The Update rule is:

vt = β1vt−1 + (1− β1)∇f(xt)
ct = β2ct−1 + (1− β2)∇f(xt)⊗∇f(xt)

xt+1 = xt − εt
∇f(xt)(1− ν1) + vtν1√
(1− ν2)(∇f(xt))2 + ν2ct

(12)

While the formula may seem a bit complex at the first
glance, it is only decoupling the contribution of the gradient
at the current point to the final update rule from the first and
the second momentum. setting ν1 = 1 and ν2 = 1 recovers
adam, ν1 = 0 and ν2 = 1 recovers RMSprop, and ν1 = β1 and

ν2 = 1 recovers Nadam. So as we discussed, it’s a step toward
making update rule more flexible to obtain hybrid update rules.

AdamW [16] is another algorithm which discusses that
complex update rule of the Adam defeat the purpose of the
regularization. They change the update rule to decouple the
weight decay update from the original error signal of the loss
function. So the algorithm is:

vt = β1vt−1 + (1− β1)∇f(xt)
ct = β2ct−1 + (1− β2)∇f(xt)⊗∇f(xt)

xt+1 = xt − εtvt ⊗
1
√
ct
− λxt (13)

λ is L2 regularization parameter. Using this update rule we
should omit the L2 regularization part from the loss function.
We should also mention that because the λ is not multiplied by
the learning rate anymore, we need to decay λ. The suggestion
of the original paper is to decay the λ similar to learning rate
decay schedule. Without this decoupling, due to the second
momentum division, original Adam decay the weights which
are larger much less, that is totally in contrast with the original
purpose of L2 regularization. So, the idea totally makes sense
and the results are promising. Moreover learning rate and
regularization hyper-parameters are not correlated anymore so
we can use grid search instead of random search on learning
rate and regularization to find the best combination of hyper-
parameters.

III. LEARNING RATE ANNEALING

One of the most challenging aspects of optimizing high-
dimensional and non-convex objectives is determining the best
learning rate. Among many proposed methods for system-
atically scheduling the learning rate, we focus on learning
rate annealing. In this technique, optimization starts with a
relatively high learning rate but it is gradually decreased during
the training. The simple intuition behind this approach is that
by starting with a relatively large learning rate we can quickly
traverse from the initial parameter values to a region with a
lower loss function, and by gradually lowering the learning
rate we can explore the deeper, but narrower parts of the
loss function [18]. Perhaps, the most commonly used form
of learning rate annealing is a step learning rate decay. In this
approach, the learning rate is reduced by a constant factor after
a certain number of epochs.

While step learning decay is still the most common decay
approach, some other learning rate schedulers have been
proposed recently. Cosine annealing [19] is periodically in-
creasing and decreasing the learning rate following a cosine
function. The search algorithm tries to explore different local
minima and expand the search space of the objective land-
scape.

the formal definition of cosine annealing scheduler is:

ηt = ηimin +
1

2
(ηimax − ηimin)

(
1 + cos

(
Tcur

Ti
π

))
(14)



Fig. 1. Test accuracy as a function of iteratiions

Fig. 2. Test accuracy as a function of iteratiions

where ηimin and ηimax are ranges for the multiplier, and Tcur
accounts for how many epochs have been performed since the
last period restart.

In practice, a more simple version of the scheduler is used:

ηt = 0.5 + 0.5

(
1 + cos

(
Tcur

Ti
π

))
(15)

One attractive advantage of such method is that by saving
the weights at the end of each cycle, one can build an “en-
semble of models” at the cost of training a single model [20].
Also, [16] reports a 15% relative improvement in test errors
compared to Adam both on CIFAR-10 and ImageNet32x32 by
utilizing cosine annealing.

Cyclical Learning [21] rate is another variant of periodically
increasing and decreasing the learning rate which instead of
using Cosine function uses a linear function. [21] justifies
increasing the learning rate by arguing that, although the
increase might have a short-term negative effect on the loss,
it can achieve a longer-term beneficial effect by converging

to the best local optima in sense of generalization. [21] also
showed that decaying the range of the learning rate scheduler
can be helpful. It makes sense because at the beginning of
the learning you might want to escape from local minima and
explore a wide range of loss landscape, but after some cycles,
it’s clear that we want to reduce the amount of exploration.

IV. NUMERICAL EXPERIMENTS

For numerical experiment part, we focused on the image
classification task which has been one of the main tasks
in deep learning. we selected ResNet [10], and adapted the
TensorFlow implementation of the model from 1. We trained
all the networks on cifar10 dataset using Nvidia-Titan X.
Because of the number of proposed methods and long time
of training, we couldn’t explore all the models in this time,
so we limited our project to more promising modifications of
the Adam. We selected AdamW and compared the results with
Adam, Nadam, momentum assisted SGD. The total number of

1https://github.com/tensorflow/models/tree/master/official/resnet



training epochs is 182 and the learning rate scheduler is based
on the original ResNet paper that is multiplying by 0.1 at the
epochs 91, 136, and 182. The original paper used momentum
assisted SGD with base learning rate equals to 0.1 and L2
regularization hyper-parameter equals to 5e-4. We replaced the
optimizer with Adam and because of this change, we had to
optimize the learning rate again. Based on our experiments
base learning rate equals to 0.001 is the best and selecting
different epochs to decay learning rate does not affect the final
accuracy. We also tuned the L2 regularization parameter. With
base learning rate equals 0.001, L2 regularization equals, 5e-
4 we trained Adam, Nadam, AdamW, NadamW. The results
proved that AdamW can achieve better results than Adam in
image classification. One might valid argument is that we need
to tune regularization parameters per optimization algorithms
to make sure which one better, but we can say that AdamW can
get so close to the accuracy of SGD momentum without any
extra regularization re-tuning which is definitely a benefit. We
have explored NadamW that we are not aware of any previous
exploration on that. The final results for this task is shown in
the Table I.

TABLE I
TEST ACCURACY ON CIFAR10

Optimizer Accuracy

SGD+Momentum 0.9168
Adam 0.9035

AdamW 0.9155
Nadam 0.9068

NadamW 0.9126

In Fig. 1 you can see the curve of test accuracy im-
provement. We also replaced the original learning rate decay
scheduler with cosine annealing scheduler explained in section
III to first check if this scheduler improves the final accuracy
and next to compare the compatibility of Adam, AdamW,
and NadamW with cosine annealing. Fig. 2 shows that this
annealing improves the speed of convergence to a good point.
Table II summarizes the final results.

TABLE II
TEST ACCURACY ON CIFAR10 WITH COSINE ANNEALING

Optimizer Accuracy

Adam 0.9052
AdamW 0.9187
NadamW 0.9160

V. CONCLUSION

In this project, we gathered various modifications of Adam
optimization and explained their difference in variables update
rules. Then as the first step of verifying and comparing the
proposed methods, we selected AdamW which seems one of
the most promising ones with a clear theoretical explanation.
We applied this algorithm on image classification task over
Cifar10 using ResNet. As our result shows, the final accuracy

is better than vanilla Adam without retuning the regularization
parameter (which is required for Adam). We then utilized
cosine annealing for Adam, AdamW, and NadamW. The
results show that the cosine annealing improves the accuracy
of all the algorithms. Moreover, there is no difference between
their compatibility with cosine annealing. After applying co-
sine annealing, AdamW surpasses SGD momentum with step
learning rate decay which shows the power of AdamW plus
cosine annealing.

To sum up, we verified that AdamW helps the accuracy of
image classification task and the reason behind this is that the
second momentum used in Adam is in contradiction with the
purpose of weight decay.
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