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Abstract

Learning a representation which is invariant to changes with respect to some
specified factors are useful for a wide range of problems such as removing bias
in classification. Based on variational information bottleneck [1] we propose
a new framework to minimize the mutual information between a sensitive or
nuisance factor and representation while keeping the required information for the
classification task. We demonstrate the effectiveness of the proposed method both
on a toy problem and Adult dataset. The implementation is available at: https:
//github.com/sajadn/Variational-Fair-Information-Bottleneck

1 Introduction

Data driven solutions are being used for wide range of tasks. They are making influencing conse-
quential decisions such as bank loans, college admissions, and criminal sentences. This recent rise of
applications brings some concerns about the fairness of these models.

In representation learning, one tries to find a lower dimensional manifold of data that makes per-
forming tasks like classification easier. For instance, we can stack multiple convolutional layers with
non-linearity to obtain a good representation for classification of images. However, due to the bias in
training data the classifiers might be unfair to some groups in the data.

In fair representation learning, we try to find a representation of the data that are informative for a
particular task while removing the factors that we have concerns about them. For example, we try
to find a representation that help us for giving loan while there is no information about the race of
individuals in the representation. Mathematically speaking, we want a latent representation z that
is maximally informative about an observed random variable y (e.g., target label) while minimally
informative about a sensitive or nuisance variable s.

In this work, we introduce a novel toy task for evaluation of fair representation methods. Furthermore,
inspired by Variational Information Bottleneck, we introduce a new approach for learning a fair
representation.

2 Background

Representation learning can be done both in unsupervised and supervised manner. Variational
Autonecoder[2] (VAE) is a probabilistic framework tries to find the latent variable z which assign
high probability to the observed data points. Using variational methods, they maximize a lower bound
on log likelihood of the data. The objective of VAE is written below:

max Eqθ(z|x)[log pφ(x|z)−KL(qθ(z|x)||p(z))] ≤ log p(x) (1)

The training procedure is unsupervised and no label is needed, but for evaluation of the learned
representation we mostly use downstream tasks like classification which requires labels.
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Deep Variational Information Bottleneck[1] (DVIB) proposed an information-theoric supervised
representation learning frameworks based on maximizing the mutual information between latent
variable z and label y while minimizing the mutual information between z and observation x. Because
of intractability of mutual information, they have used variational methods to lowerbound their
objective. The final objective of DVIB is shown below:

max Eqθ(z|x)[log pφ(y|z)− βKL(qθ(z|x)||p(z))] ≤ I(Y ;Z)− βI(X;Z) (2)

We can see that the objective of both techniques are pretty similar. DVIB replace the decoder network
in VAE with a classifier to just keep the required information for the discriminative task.

These methods are general purpose representation learning approaches and they might suffer from
unfairness with respect to some groups.

3 Related Works

Variational Fair Autoencoder (VFAE) [3] is a pivotal work trying to make VAE robust with respect to
unfairness. They considered both supervised and semi-supervised circumstances. In unsupervised
case, they lowerbounded log p(x|s) to store no information about the sensitive attribute s:

max Eqθ(z|x,s)[log pφ(x|s, z)−KL(qθ(z|x, s)||p(z))] ≤ log p(x|s) (3)

This objective function also re-derived in [4] from an information theoric point of view. Modeling
the problem in a unsupervised way can however be harmful to the performance of the model on the
discriminative task, so they have suggested a semi-supervised version.

max Eqφ(z1n ,z2n ,yn|xn,sn)[log p(z2n) + log p(yn) + log pθ(z1n |z2n , yn) (4)

+ log pθ(xn|z1n , sn)− log qφ(z1n , z2n , yn|xn, sn)] ≤ log p(x|s) (5)

Therefore using the above objective we can incorporate our knowledge about the label which hopefully
leads to benefits on the performance of the model. Despite that, this loss function is too complex and
we find it hard to use it in practice.

To force the representation to have even less information about the sensitive attribute, a regularization
term added to equation 5. The regularizer is basically a Maximum Mean Discrepancy (MMD) term
which is defined below:

RMMD = || 1
N0

N0∑
i=1

ψ(xi)−
1

N1

N1∑
i=1

ψ(xi)||2 (6)

Where ψ is a feature extractor. We can apply a kernel trick to compute this function more efficiently.
So the final loss of semi-supervised VFAE is the summation of equation 5 and 6.

The effectiveness of MMD is a bit arguable and [5] proposed to use I(Z;S|X) rather than MMD.
They show for a particular task this regularizer works better than MMD. Their final regularizer is:

LMI = Eqφ(z1|x,s)[log
qφ(z1|x, s)∑

s qφ(s|x)qφ(z1|x, s)
] (7)

This introduce a new parametric form qφ(z1|x) to the trainable components.

Both of these regularizers can be added to our proposed method, but in this work we study the
performance of VFAE vs our proposed method without any regularization term and further study of
the regularization term left as a future work.
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4 Method

Similar to [4] we define our objective through information theoric terms. We believe that the
objective of learning a fair representation as we mentioned in the introduction can be learning a
latent representation z which has high mutual information with target label y, but has low mutual
information with s. The objective can be written as:

max I(Y ;Z|S)− βI(Z;S) (8)

Because of possibility of correlation between y and s, in order to make sure that there is no information
about s in the learned representation we condition the first term on sensitive attribute.

However, computing the mutual information is intractable. Following [1] we try to lower bound
equation 10. We can write the first term as:

I(Y ;Z|S) =
∫
p(y, z|s) log p(y, z|s)

p(y|s)p(z|s)
dydzds (9)

I(Y ;Z|S) =
∫
p(y, z|s) log p(y|z, s)

p(y|s)
dydzds (10)

I(Y ;Z|S) =
∫
p(y, z|s) log p(y|z, s)dydzds−

∫
p(y, z|s) log p(y|s)dydzds (11)

Using the fact that 0 ≤ DKL(p(y|z, s), qθ(y|z, s)) we can write:∫
p(y|z, s) log qθ(y|z, s)dy ≤

∫
p(y|z, s) log p(y|z, s)dy (12)

So we can write following lower bound on the first mutual information term:

∫
P (y, z|s) log qθ(y|z, s)

p(y|s)
dydzds ≤ I(Y ;Z|S) (13)∫

P (y, z|s) log qθ(y|z, s)dydzds+Hp(Y |S) ≤ I(Y ;Z|S) (14)∫
P (y, z|s, x) log qθ(y|z, s)dydzdxds+Hp(Y |S) ≤ I(Y ;Z|S) (15)

Notice that the entropy of our labels H(Y | S) is independent of our optimization procedure and so
can be ignored. Now let’s look at the second term:

I(Z;S) < I(Z;S,X) (16)

And this mutual information between Z and joint distribution of S, X can be upper-bounded by
following derivation:

I(Z;S,X) =

∫
dxdsdz p(s, x)p(z|s, x) log p(z, x, s)

p(x, s)p(z)
(17)

I(Z;S,X) =

∫
dxdsdz p(s, x)p(z|s, x) log p(z|x, s)

p(z)
(18)

I(Z;S,X) =

∫
dxdsdz p(s, x)p(z|s, x) log p(z|x, s)−

∫
dzp(z) log p(z) (19)

Computing p(z) =
∫
p(z|s, x)p(x, s)dxds can be difficult, so we again use the non-negtivity of

0 ≤ DKL[p(Z), rθ(Z)], so we can write:
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−
∫
dzp(z) log p(z) ≤ −

∫
dzp(z) log rθ(z) (20)

So the final loss is:

L(xi, si, yi) = Ep(z|xi,si)[log qθ(yi|z, s)− β log
pφ(z|xi, si)
rθ(z)

] (21)

Here we assume rθ(z) to be equal to a standard Gaussian, but one can try to extend this work by using
a parametric rθ(z) to have a better approximation of p(z). Because of similarity of this objective
to Variational Information Bottleneck we call the proposed method Variational Fair Information
Bottleneck (VFIB). The proposed algorithm contains an encoder and a classifier during the training.
The classifier receives both x and sensitive attribute s, but after the training is done we throw away
the classifier and just utilize the trained encoder to obtain the fair representation. Therefore to solve
a downstream classification task we need to train a classifier as a post processing. We also train
a classifier to predict the sensitive attribute in order to understand how much information about
sensitive attribute is kept in the learned representation.

We want to emphasize that our proposed method doesn’t have any adversary or decoder. The main
difference of our method is feeding the sensitive attribute to the classifier which enforce having less
information in learned latent. This connection is shown in figure 2 with a pink color.

Figure 1: Diagram of fair representation learning framework, gray components are inactive in our
method

Finally you can see a comparison between objective of VFAE, VIB, and VFIB in figure below:

5 Experiment

We believe that Toy problems are important for evaluating new techniques, but we’re not aware of any
toy problem for fairness. We first propose a toy problem based on MNIST and show the effectiveness
of the proposed method on that. We further extend our experimental section by evaluating the method
on Adult dataset.

5.1 Toy Problem

We first selected images belong to digits two and three from MNIST dataset. We define an operation
called inversion which is changing the pixel values from black to white and white to black. We
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Figure 2: Objective of the proposed method vs related works

inverted 70% of digits two and 30% of digits three. You can find the samples from the new dataset
below:

Figure 3: Samples from toy problem data

In this toy problem the sensitive attribute is the color and the target label is the label of the digit in the
image. We apply our proposed method and also VFAE on this dataset and you can find the results in
table 2.

For the architectures of the networks we followed VFAE paper. The latent size is 50 and both encoder
and decoder (just for VFAE) is a two layer fully-connected network with 100 hidden neurons. The
classifier is a logistic regression on top of latent space. We trained both models with Adam for 200
epochs with learning rate equals 0.0001. We trained a classifier supervisedly without any fairness
constraints. As mentioned in section 4, we need to train our classifier in a post processing manner, so
to be fair we did the same for VFAE.

We trained the VFIB model on this dataset and changed the β see if our method can effectively
remove the information of the sensitive attribute from latent, in figure below you can find the results
for different values of β.

Method
Label Y S Discrimination

VFIB-β = 1 98.31± 0.1 70.16± 0.61 0.39± 0.006
VFIB-β = 2 97.17± 0.41 69.42± 1.1 0.38± 0.01
VFIB-β = 5 94.37± 0.26 67.18± 0.29 0.31± 0.01
VFIB-β = 10 88.25± 0.12 62.33± 0.4 0.21± 0.007
VFIB-β = 50 50.03± 1.01 50.56± 0.5 0.00± 0.0002

Table 1: Numerical results of VFIB for different values of β

Method
Label Y S Discrimination

VFAE 99.20± 0.1 70.96± 0.2 0.39± 0.007
VFIB-β = 1 98.31± 0.2 70.16± 0.5 0.39± 0.006
Supervised 99.44± 0.07 99.92± 0.08 0.40± 0.006

Table 2: Black White MNIST classification accuracies

Moreover we visualized the latent space of both models in figure 4. The points are colored based on
the sensitive attribute and as you can see they are blended and separating them based on the sensitive
attribute it not easy to achieve.
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(a) VFIB (b) VFAE

Figure 4: t-SNE visualization of learned representation for 2000 randomly selected test data points
(colored based on sensitive attribute)

Furthermore, we trained a decoder to reconstruct the data as a post-processing. You can find the
results in figure 5.

(a) Random Data (b) VFIB Reconst (c) Random Data (d) VFAE Reconst

(e) Random Data (f) supervised Re-
const

Figure 5: Results of a reconstruction network trained on top of learned representations

5.2 Adult Dataset

One of the famous datasets for fair classification is an Adult dataset. The Adult income dataset
contains 45, 222 entries and describes whether an account holder has over $50, 000 dollars in
their account. The sensitive variable is age. This dataset obtained from the UCI machine learning
repository. We binarized the continuous attributes of the dataset based on the mean and selected 30k
randomly selected data points for training. We used the same set up of architecture and optimization
as section 5.1 which is based on Variational Fair autoencoder paper.

Method
Label Y S Discrimination

VFAE 84.05± 0.07 66.27± 0.2 0.2024
VFIB-β = 1 84.06± 0.08 65.15± 0.5 0.1956
supervised 84.35± 0.08 93.16± 0.5 0.2109
Table 3: Adult dataset evaluation for prediction of income

From table 3 we can see that the proposed VFIB can keep the accuracy as high as VFAE, but remove
more information about age from the latent which is our goal.

t-SNE visualization of the latent shows that both models could effectively separate the data points
based on the label, but the sensitive attribute doesn’t cluster the datapoints.
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(a) VFIB (b) VFAE

Figure 6: t-SNE visualization of learned representation colored based on the target label

(a) VFIB (b) VFAE

Figure 7: t-SNE visualization of learned representation colored based on sensitive attribute

6 conclusion

We proposed a new fair representation learning framework based on information bottleneck. We
created a new toy problem for fair classification and demonstrated competitive performance on both
real and synthetic data. The simplicity of our objective can be a primary benefit over similar methods.

7 Future Works

The proposed method is supervised but someone can extend it to semi-supervised cases. Besides, we
also used a simple gaussian for modeling the prior but more complex parametric forms can improve
the performance of the model.
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