
Pre-Execution Prefetching Efficiency

MASTER’S THESIS

by

SAHIL SUNEJA

under the supervision of

PROF. SANJEEV K. AGGARWAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

2010

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor, Prof. Sanjeev K. Aggarwal,

for his role in the successful completion of this thesis work. His constant guidance,

evaluation, motivation, advice and suggestions encouraged me to put forth my sincere

efforts throughout the course of this work.

I would also like to thank the faculty members of the Computer Science and En-

gineering (CSE) Department at IIT Kanpur for imparting their invaluable subject

knowledge to me.

I also wish to thank the CSE Department and its staff, especially Mr. Brajesh

Mishra, Mr. Narendra Singh Yadav and Mr. Santosh Kumar Yadav, for facilitating a

smoothly functioning work enviroment.

A special note of thanks to my special friend, Jitesh Jain, for his constant motivation

and encouragement throughout the course of this work.

Finally, I wish to express my sincere gratitude to my parents, Mr. S.K. Suneja and

Mrs. Vandna Suneja, for their love, affection and emotional support, encouraging me

to put in my sincere efforts.

Sahil Suneja

ii

ABSTRACT

With immense computational power available today, the limiting factor to the per-

formance of parallel applications is the performance of modern IO subsystems. For

efficient parallel computing of IO bound applications, alongwith computation paralleliza-

tion, the job of parallel disk IO should also be handled effectively.

Prefetching, as an optimization technique, aids to overcome the IO Wall problem

and mitigate the effects the disk access bottleneck on the performance of IO intensive

parallel applications. It has the potential of effectively reducing an application’s IO

latency by masking its disk IO stalls while overlapping the disk IO with computation.

In this work, by augmenting the pre-execution prefetching framework with different

prefetching schemes, we analyze its effectiveness in reducing the disk IO latency of IO

bound parallel applications. The prefetching schemes differ in their decisions regarding

the time at which to prefetch (when to prefetch) and the cache share ratio (how much to

prefetch) between (i) the prefetched but not yet accessed blocks (pure prefetch content),

and (ii) the accessed & cached blocks.

We investigate the behavior of pre-execution prefetching as the characteristics (ag-

gressiveness) of prefetching are varied, and observe that a pre-emptive prefetching ap-

proach (named as p adapt win in the text), which is able to control and adapt its aggres-

siveness as per the demands or characteristics of an application, extracts the maximum

prefetching benefits for the application.

iii

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Organization of Report . 3

2 Knowledge Base 5

2.1 MPI . 5

2.2 MPI-IO . 7

3 Past Work and Own Contribution 13

3.1 Previous Work . 13

3.2 Our Contribution . 16

3.2.1 Defining the Prefetching Schemes 17

3.2.2 Discussion . 21

4 Design and Implementation 23

4.1 Caching Library . 24

iv

4.2 Prefetching Thread Construction . 29

4.3 Modified MPI-IO Library and Prefetching Library 33

5 Experiments and Observations 36

5.1 Experimental Setup . 36

5.2 Test Cases . 36

5.2.1 Parkbench (written in Fortran) 36

5.2.2 PIO-Bench (written in C) . 37

5.3 Rationale behind parameters . 39

5.3.1 Workloads . 39

5.3.2 pf delay . 40

5.4 Comparison of Prefetching Schemes . 41

5.4.1 PIO-Bench nested strided read 43

5.4.2 PIO-Bench nested strided re-read 45

5.4.3 PIO-Bench simple strided read-modify-write 47

5.4.4 Parkbench nonseq read . 49

5.4.5 PIO-Bench random strided re-read 51

5.5 Observations and Explanations . 53

5.5.1 The effect of pf delay . 53

5.5.2 High vs. low workload . 54

5.5.3 Poor performance of nonseq test case 54

5.5.4 p adapt win outperforms the rest 55

5.5.5 adapt win vs. fix thresh and the effects of their non-preemptive

nature . 55

6 Conclusion and Future Work 59

7 References 61

v

List of Figures

2.1 Data Sieving applied to a process’ non-contiguous read requests 9

2.2 Collective IO applied to read requests from 4 processes 10

3.1 An example illustrating p adapt win prefetching scheme’s behaviour . . 20

4.1 Overlapping computation with IO using a prefetching thread in parallel

with the main computation thread . 24

4.2 Pre-execution Prefetching Design . 25

4.3 High level view of a collective cache . 26

4.4 High level view of parallel existence of main, caching and prefetching

thread per process . 35

5.1 The PIO-Bench simple strided access pattern for 4 processes 38

5.2 The PIO-Bench nested strided access pattern for 4 processes 38

5.3 The PIO-Bench random strided access pattern for 4 processes 39

5.4 Behaviour of prefetching schemes for different values of pf delay for PIO-

Bench nested strided read access pattern 41

vi

List of Tables

2.1 Basic MPI Functions . 6

4.1 Messages exchanged by sibling caching threads 30

5.1 Experiment and result parameters . 42

vii

Chapter 1

Introduction

1.1 Motivation

With the increasing CPU frequencies of modern day processors, parallel applications

have been able to achieve high performances. However, for efficient parallel comput-

ing, alongwith computation parallelization, the job of parallel disk IO should also be

handled effectively. Computation parallelization involves various cooperating processes

performing the computation task in parallel, while in parallel disk IO multiple processes

access the same disk resident file concurrently.

There are many orders of magnitude of difference between the performance of mod-

ern IO subsystems and the modern computational power. Although, the data storage

densities have increased, but the improvement in the disk rotation speeds and other

mechanical factors has not kept upto the advancement in the modern processor fre-

quencies. Thus, if the IO portion of a parallel application is not effectively handled,

the gains from computation parallelization can be severely diminished especially in

the cases of large scientific applications with considerable disk IO (physics simula-

tions, databases, satellite imaging, meteorological computations, seismic imaging etc.),

1.2 Problem Statement 2

graphics and multimedia applications, etc [1][2][3].

To overcome this modern day processor-disk performance gap (the IO Wall prob-

lem), prefetching, as an optimization technique, exhibits great potential[4]. A large

section of scientific applications exhibit a large number of small, non-contiguous and

irregular IO accesses[5]. This results in frequent application stalling while waiting for

disk resident data to be fetched. These stalls hinder an application’s performance

severely because of their huge latencies. The prefetching technique has the potential

of effectively reducing the IO latency by masking these IO stalls while overlapping the

disk IO with computation.

The effectiveness of prefetching techniques which predict future accesses based on

the history of past data accesses is limited when the application’s data access pattern

is not regular. Speculative execution techniques, which do not rely on the application’s

data access pattern, do not suffer from this limitation and thus have the potential of

predicting future data references with better accuracy [6].

1.2 Problem Statement

This work compares different prefetching schemes for pre-execution prefetching in IO

intensive parallel applications. The focus is particularly on those applications that deal

with reading and writing large data files to disk as checkpoints, or in cases where the

data itself is large enough so as not to be accommodated in the memory all at once.

Examples include scientific applications which use techniques like multi-dimensional

FFT, manipulation of large matrices (like block tri-diagonal matrices for solving Navier-

Stokes equations), volume visualization applications (to make 2D projections of mul-

tidimensional data for understanding the structure contained within the data), etc.

Although, the work aims to complement the high performance parallel computing of

data intensive applications, it is relevant for standard sequential applications as well.

1.3 Organization of Report 3

The pre-execution prefetching approach proposed by Chen et. al.[7] has the benefits

of the existing speculative prefetching techniques (as discussed in Chapter 3), and

is targeted for parallel applications. Their framework is augmented with different

prefetching schemes to analyze its effectiveness in reducing the IO latency of IO bound

applications. The prefetching schemes differ in their decisions regarding the time at

which to prefetch (when to prefetch) and the cache share ratio (how much to prefetch)

between (i) the prefetched but not yet accessed blocks (pure prefetch content), and

(ii) the accessed & cached blocks. The intention is to investigate the behavior of pre-

execution prefetching as the characteristics (aggressiveness) of prefetching are varied,

and to propose an adaptive scheme which tries to extract the maximum prefetching

benefits possible for an application.

The underlying concept is the utilization of multithreading/multiprocessing capa-

bilities of modern day processors, by scheduling a prefetching thread to run in parallel

with the main computation thread for each parallel process. By doing so, the required

data is fetched from the disk to a ‘collective cache’, in time, before the main process

needs to access it. The assumption is that the time lost (if any) in utilizing cycles

for the additional prefetching thread is compensated by the time saved when the main

thread does not have to stall for reading its disk resident data.

Along with the sequential read access patterns, this kind of prefetching methodology

works perfectly for irregular access patterns as well. To avoid any changes to the OS

or file system, the prefetching and caching system resides in the user space. However,

the model can be embedded in the kernel or file system as well.

1.3 Organization of Report

Chapter 2 briefly introduces the MPI Message Passing Library specifications for imple-

menting parallel applications, especially its MPI-IO part which makes possible efficient

1.3 Organization of Report 4

parallel IO (intended to be improved via prefetching). The past work in the area of

utilizing prefetching for optimizing IO performance of an application is discussed in

Chapter 3 alongwith this work’s contributions to the area’s present state. Chapter

4 explains the design and implementation of the pre-execution prefetching framework

used in this study. The results of test cases, observations and their explanations fea-

ture in Chapter 5 of this report. The report concludes with Chapter 6 discussing the

possible directions for future work on this topic.

Chapter 2

Knowledge Base

2.1 MPI

MPI- Message Passing Interface Standard- is a message passing library specification

[8]. It follows a distributed memory parallel programming model, wherein all processes

operating in parallel have separate address spaces. Using a MPI compliant library, an

application can be parallelized to run on a cluster of computers (multi-core machines,

SMP clusters, workstation clusters), with an intention of improving its efficiency by

reducing its execution time. MPI is primarily for SPMD (same program, different data)

and MIMD (different programs, different data) types of parallel computing.

The inter-process communication mechanism involves exchanges of suitably tagged

messages between cooperating processes. The cooperating parallel processes are mem-

bers of communicators and are ranked from 0 to n-1 where n represents the total

number of processes. A communicator acts as an identifier for a group of processes

having the same communication context. Processes belonging to the same communica-

tor can exchange messages in order to communicate. Table 2.1 lists the six most basic

functions of MPI.

2.1 MPI 6

MPI Init Initialize MPI
MPI Comm size Obtain number of partici-

pating processes
MPI Comm rank Obtain process ids
MPI Send Send a message
MPI Recv Receive a message
MPI Finalize Terminate MPI

Table 2.1: Basic MPI Functions

MPI provides two flavors of inter-process communication- point-to-point and col-

lective. In point-to-point communication, messages are exchanged between exactly two

different MPI processes. This type of communication comes in both blocking and non-

blocking flavors. A blocking send (MPI Send etc.) returns only after ensuring that

the send buffer can safely be modified. A blocking receive (MPI Recv etc.) returns

only after the expected data has been copied to the receive buffer. Non-blocking sends

(MPI I send etc.) and receives (MPI Irecv etc.) return immediately without waiting

for the completion of the actual operation. MPI provides routines such as MPI Wait

and MPI Probe etc to test for their completion. These can be used for overlapping

communication with computation to improve application performance.

In collective communication, all processes in the scope of a communicator partici-

pate. It is always blocking in nature. Collective communication is of three types:

1. Synchronization- all processes meet at a point in execution before proceeding

(MPI Barrier etc.)

2. Data movement- simultaneous exchange of similar type of data amongst all pro-

cesses (MPI Bcast (broadcast), MPI Scatter (distribution), MPI Gather (collec-

tion), etc.)

3. Collective computation- simultaneous collection of data from all processes fol-

lowed by computation operation on the collected data (MPI Reduce- the maxi-

2.2 MPI-IO 7

mum, minimum, sum, etc. of the collected values)

In a majority of MPI routines, there is a ‘datatype’ argument representing the

type of the data being operated, sent or received. MPI provides a rich set of ba-

sic datatypes such as MPI CHAR, MPI DOUBLE, MPI INT etc., alongwith routines

(MPI Type vector, MPI Type struct etc.) for creating user-defined derived datatypes

for custom data structures. The basic datatypes are contiguous in nature while the

derived datatypes allow non-contiguous data to be represented easily and be treated

as contiguous datatypes. As we will see in the next section, these derived datatypes

empower MPI-IO to provide an efficient parallel IO interface.

Of the many available implementations of MPI, this work uses the MPICH2 [9]

library.

2.2 MPI-IO

For effective parallel computing, alongwith computation parallelization, the job of par-

allel disk IO should also be handled effectively. Computation parallelization involves

various cooperating processes performing the computation task in parallel, while in par-

allel disk IO multiple processes access the same disk resident file concurrently. There

are many orders of magnitude of difference between the performance of modern IO sub-

systems and the modern computational power. Although, the data storage densities

have increased, but the improvement in the disk rotation speeds and other mechan-

ical factors has not kept upto the advancement in the modern processor frequencies.

Thus, if the IO portion of a parallel application is not effectively handled, the gains

from computation parallelization can be severely diminished especially in the cases of

large scientific applications with considerable disk IO (physics simulations, databases,

satellite imaging, meteorological computations, seismic imaging etc.), graphics and

2.2 MPI-IO 8

multimedia applications, etc.

The traditional approaches of parallel IO are not very efficient and act as hurdles

to effective parallelism that can be extracted. One approach requires each process to

write to separate files followed by an additional step of compiling all the files together.

Without the additional step, any restart of the application execution requires using

exactly the same number of processes as the ones which originally created the various

files. Another approach is to send the required data to be written to a single process

which then writes it out to disk, while it may not be possible for the other processes

to proceed if their next instructions depend on the data in the file being written. Yet

another approach is for each process to calculate its position in a common file and

write individually. This might lead to poorly ordered non-contiguous disk accesses.

Whatever the case be, it is clear that the actual possible parallelism is not being

extracted effectively.

The MPI programming model is a good fit for parallel IO [10]. Writing to disk

is analogous to sending a message and reading from the disk is like receiving a mes-

sage (a data block). Any effective parallel IO system would need collective operations

for ordered contiguous disk accesses, non-blocking operations, separation of IO related

messages with application level messages (communicators), etc. This clearly fits with

the MPI kind of framework. Amongst other features, MPI provides routines for collec-

tive data transfer operations and datatypes (esp. derived) for an application to describe

its file data partitioning amongst the cooperating processes (MPI File set view). A file

view defines what parts of a file are visible / accessible to a process. This provides a

simple way in which to perform non-contiguous file accesses. Each process can have a

different view of the same file which can change during execution.

Owing to the high IO latency, it is usually a good practice to obtain the disk

resident data with minimum number of IO calls. For good I/O performance, the size

2.2 MPI-IO 9

Figure 2.1: Data Sieving applied to a process’ non-contiguous read requests

of an I/O request should be large to justify the high I/O latency. MPI-IO allows users

to specify the entire non-contiguous access pattern and read or write the entire data

with a single I/O function call. These and other features allow for many performance

optimizations like ROMIO’s Data Sieving (for non-contiguous requests from a single

process) and Collective IO (for requests from multiple processes) which improve parallel

IO efficiency. ROMIO [11] is an MPI-IO implementation developed in the Argonne

National Laboratory and incorporated in the MPICH2 implementation of MPI used in

this study.

Data Sieving: When a process makes a request for a non-contiguous data,

ROMIO does not access each non-contiguous portion of the data separately. Instead of

reading each piece separately, ROMIO reads a single contiguous chunk of data starting

from the first requested byte upto the last requested byte into a temporary buffer in

memory. It then extracts the requested portions from the buffer and places them in

the user buffer. This technique of data sieving has a limitation in that the tempo-

rary buffer must be as large as the extent of users’ request. Thus there can be large

holes between the requested data segments. However, the advantage of accessing large

chunks usually outweighs the cost of reading extra data.

2.2 MPI-IO 10

Figure 2.2: Collective IO applied to read requests from 4 processes

Collective I/O: It might be possible that although a single process individ-

ually accesses non-contiguous portions of data, but a group of processes together

can span large contiguous portions of the file. If the access information is known,

the requests from different processes can be merged and then serviced at once (ex.

MPI File write all, MPI File read all etc.). ROMIO uses the Two-Phase I/O tech-

nique [12] to perform Collective I/O. In the first phase, processes access data assuming

a distribution in memory that results in each process making a single large contigu-

ous access. In the second phase, the processes redistribute data among themselves to

the desired distribution. The added cost of inter-process communication is small as

compared to the savings in I/O time obtained by making all file accesses large and

contiguous.

There is a provision in MPI-IO (MPI File set info) wherein a process can provide

hints to the MPI-IO implementation for direct optimization by exploiting any features

provided by the filesystem, etc. These hints may provide increased IO performance if

the implementation supports them. However, an implementation is free to ignore all

2.2 MPI-IO 11

hints. Few examples of ROMIO supported hints are:

1. file-layout specification

(a) striping factor : number of IO devices involved in file-striping.

(b) striping unit : chunk size to stripe file into.

(c) start iodevice: index of the IO device containing the file’s first stripe.

2. file-access styles

(a) data-sieving

i. ind rd buffer size: size of ROMIO’s intermediate buffer while perform-

ing data-sieving on file reads.

ii. ind wr buffer size- the write counterpart

iii. romio ds read : whether to allow data-sieving on file reads. Values can

be enable, disable or automatic (decision made by ROMIO based on

heuristics)

iv. romio ds write: the write counterpart

(b) collective-IO

i. cb buffer size: size of intermediate buffer used in collective buffering

ii. cb nodes : number of processes participating in collective buffering

iii. romio cb read : enable, disable collective buffering or leave decision to

ROMIO (automatic)

iv. romio cb write: the write counterpart

This study makes modification in the ADIO abstract IO device layer [13] of MPI.

ADIO enables portability between any parallel IO API (ex. MPI-IO, Intel PFS, IBM

2.2 MPI-IO 12

PIOFS) with any underlying file system (ex. PFS, PIOFS, NFS). All that needs to be

done is to implement the API on top of ADIO while the ADIO interface is implemented

for each file system. ADIO is referred to as ‘MPI-IO internal’ in chapters that follow.

MPI-IO offers significant performance improvements in parallel IO requiring min-

imal effort on the part of the user. With a rich library of routines available, the user

needs to follow certain simple guidelines like using multiple processes for IO and not just

a single process, making large requests, using file views effectively for non-contiguous

requests, etc., for realizing efficient parallel IO.

Chapter 3

Past Work and Own Contribution

A large section of scientific applications exhibit a large number of small, non-contiguous

and irregular IO accesses [5]. This results in frequent application stalling while waiting

for disk resident data to be fetched. Prefetching, as an optimization technique, has

the potential of effectively reducing the IO latency by masking the IO stalls while

overlapping the disk IO with computation. The effectiveness of prefetching techniques

which predict future accesses based on the history of past data accesses is limited when

the application’s data access pattern is not regular. Speculative execution techniques,

which do not rely on the application’s data access pattern, do not suffer from this

limitation and thus have the potential of predicting future data references with better

accuracy [6].

3.1 Previous Work

1. Patterson et. al.’s work on Informed Prefetching and Caching [14] uses

application generated hints about its future IO accesses. An underlying TIP

system- an informed prefetching and caching manager- makes optimal decisions

of what and when to prefetch and what to evict from the memory to make space

3.1 Previous Work 14

for the prefetched data. TIP does a cost-benefit analysis, wherein it estimates

the benefit of prefetching a hinted data block against the cost of evicting a block

from the cache, plus the cost of using the IO system.

This TIP system replaces the buffer cache of a UNIX kernel requiring an OS

level modification. This scheme also requires manual modification of application

to generate hints, thereby requiring significant code restructuring to generate

timely hints.

2. Chang et. al.’s SpecHint [15] technique transforms application binaries to

perform speculative execution and issue hints automatically, which are handled

by a TIP manager as above. It uses the idle processor cycles, when an application

stalls on IO, to speculatively pre-execute application code to discover future read

accesses. Binary modification is chosen as it is language and compiler indepen-

dent. The prefetching thread is given a lower priority than the original application

thread. Software enforced copy-on-write is used to prevent the prefetching thread

from modifying any data in the original application thread. It uses the concept of

‘hint-logs’ to detect if the prefetching thread is lagging behind or is executing on

a wrong path (erroneous hinting). When such a case is detected by the original

thread, it resets the prefetch thread to resume prefetching following the read call

that detected the inconsistency (the register and stack contents of the original

thread are saved by the main thread and later copied by the prefetching thread).

This scheme requires OS level modifications by virtue of employing the TIP

system. Also, enough computation capability is available today in the form of

tremendously fast processors. Thus, using only idle cycles limits speculation po-

tential. Plus, their system design is not targeted for multiprocessor environments.

3. Yang et. al.’s work on Automatic Application Specific File Prefetch-

3.1 Previous Work 15

ing (AAFSP) [16] involves automatic generation of prefetch thread from original

program using compiler analysis. Unlike SpecHint, AASFP’s prefetching thread

only executes disk IO related code, whereas SpecHint executes original applica-

tion (shadow code) speculatively to identify future disk access patterns. Their

design includes a source-to-source translator, a run time prefetch library and

Linux kernel modification. The kernel maintains a prefetch depth of N based

on the average disk service time and the average application computation time

between two consecutive IO calls.

The technique too lacks support for parallel applications and requires kernel

modifications which include adding system calls, allocating prefetch queue for

the application in the kernel space, making the prefetch thread active/passive

depending on queue state, dynamic decision making (to prefetch or not) so as to

prevent buffer cache pollution.

4. Chen et. al.’s work on pre-execution prefetching [7] aims to reduce IO

latency for parallel IO intensive applications. It has the benefits of the exist-

ing techniques (the ones discussed above), and is targeted for parallel applica-

tions. The pre-execution prefetching technique employs one prefetching thread

per parallel process and uses ‘program slicing’ technique to automatically gener-

ate prefetch thread from the main process. The design includes source-to-source

pre-compiler, prefetching library, collective-caching library, software-controlled

client-side buffer cache, and a modified MPI-IO library (to take advantages of

the prefetched data residing in the buffer cache). To prevent prefetching thread

from modifying the memory state of the computation thread, ‘variable renam-

ing’ is performed in the prefetching thread. The prefetching thread does write

directly to any variable it shares with the main thread, however it is allowed to

write to a separate variable instead. This ensures that main thread’s memory

3.2 Our Contribution 16

state is untouched while allowing prefetching thread to run accurately.

A delayed synchronization approach is used to tackle the read-after-write de-

pendency. The prefetching thread is made to wait for a file read which overlaps

with the region modified by a previous write call, until the main thread completes

the write. The prefetching library tracks function call identifiers (fid) to synchro-

nize prefetching thread and computation thread IO calls. When the prefetch

thread fid lags behind the main thread fid, the prefetch library skips over the

prefetch request. Delayed synchronization and additional synchronizations on

file open etc., prevent the prefetch thread from taking a wrong execution path.

3.2 Our Contribution

Our work augments Chen et. al’s pre-execution prefetching approach with different

prefetching schemes to analyze their effectiveness in reducing the IO latency of the

applications. These prefetching schemes differ in their decisions regarding the time at

which to prefetch and the cache share ratio between (i) the prefetched but not yet

accessed blocks (pure prefetch content), and (ii) the accessed & cached blocks. The in-

tention is to investigate the behavior of pre-execution prefetching as the characteristics

(aggressiveness) of prefetching are varied, and to propose an adaptive scheme which

tries to extract the maximum prefetching benefits possible for an application.

An overly aggressive prefetching thread may cause prefetch wastage and cache pol-

lution thereby diminishing prefetching benefits and may even lower the performance

to below that of a normal execution (without prefetching). Prefetch wastage occurs

when a data block brought into the cache by the prefetching thread (prefetch block),

gets evicted from the cache without being accessed by the main thread. The main

thread then has to fetch this block again from the disk thereby incurring the IO stall

3.2 Our Contribution 17

cost which could have been avoided if the prefetching thread had not kicked out the

unused prefetch block from the cache. On the other hand, cache pollution occurs when

a prefetch block evicts a more ‘useful’ cached block (whose access is earlier than that

of the prefetched block), which then has to be fetched again by the main thread before

accessing the prefetch block which caused its eviction. The IO stall cost on the evicted

useful block has to be incurred again as in prefetch wastage.

Both, in prefetch wastage and cache pollution, a greater number of disk accesses

are being made than what is optimal, causing a hindrance to the goal of reducing IO

latency. If the aggressiveness of prefetching can be controlled (and made to adapt

as per application’s requirement), then prefetch wastage and cache pollution can be

reduced, thereby improving the application performance. The next section discusses

the details about the various prefetching schemes employed in this study.

3.2.1 Defining the Prefetching Schemes

1. Adapt win:

This prefetching scheme fills the cache with prefetch blocks to a certain degree

(adaptive thresh max) and suspends prefetching until the prefetch content falls

below a fixed thresh min. When this thresh min is reached, the prefetching is

resumed to fill the cache with prefetch blocks to the current thresh max. The

thresh max is doubled everytime there is a cache miss (to a maximum limit of

16% of the total cache size). Whenever, the prefetch content in cache reaches

the thresh min and no cache miss is observed during that time period, then

the thresh max is halved from its current value if different from the original

thresh max value (4% of the total cache size). This scheme attempts to adaptively

change the cache share ratio according to the demands of the application’s data

access behaviour.

3.2 Our Contribution 18

2. Fix thresh:

This scheme attempts to maintain a fixed cache share ratio by maintaining a

fixed degree of pure prefetch content while leaving the remainder of the cache as

a storehouse for already accessed blocks. The amount of cache to be kept filled

with pure prefetch content is empirically chosen to be 16% of the total cache size

for the test cases under consideration (see section 5.5.5 point 3).

3. Excl cache:

This scheme attempts to keep the cache always full with pure prefetch content.

In other words, the cache is solely meant for keeping prefetched data without

any regards to caching already accessed data for future use. The prefetching is

suspended if the cache is found to be full with just pure prefetch content so as to

avoid prefetch wastage (kicking out prefetched but not yet accessed blocks from

the cache). This scheme is expected to show poor performance in re-read kind of

scenarios.

4. No holds:

This scheme is a bit unrealistic in the sense that it does not care about the present

state of the cache before servicing a prefetch request. If a prefetch request is

picked up by the caching thread because there wasn’t any main request to be

serviced, then this prefetch request would be serviced without any delay, even if

the cache is already full with pure prefetch content, thereby leading to prefetch

wastage. This scheme is expected to be the least efficient of all.

5. P adapt win:

The above schemes are non-pre-emptive in nature. That is, once a prefetch

request has been picked up by the main thread, it will be serviced atomically,

beginning from the first file block requested to the last one. A main read request

3.2 Our Contribution 19

posted during this period would be serviced only after the caching thread has

completed reading the file blocks as requested by the previously picked prefetch

request. The p adapt win scheme, as the name suggests, allows suspending the

servicing of the prefetch request by the caching thread, in favour of the more

recently posted main request.

Just like the (non pre-emptive) adapt win scheme, two thresholds are maintained-

the thresh low and the thresh high. The thresh low indicates ‘how early to prefetch’

and the thresh high stands for ‘how much to prefetch’. The cache is filled with

prefetch blocks to a certain degree (thresh high) and prefetching is suspended un-

til the prefetch content falls below the thresh low. When the current thresh low

is reached, the prefetching is resumed to fill the cache with prefetch blocks to

the current thresh high. This scheme, much like non-pre-emptive adapt win, also

attempts to adaptively change the cache share ratio according to the demands of

the application’s data access behaviour.

A cache-miss, or the absence of the required file block in cache, is followed

by an IO stall as the main thread has to wait for the block to be fetched from

disk. If, perhaps, the block could have been prefetched earlier (if possible), then

the cache-miss would not have occurred. To counter this effect, the thresh low

is increased everytime there is a cache-miss. If, however, when the cache-miss

occurred, the prefetch thread was suspended as the thresh high had already been

reached, then it is not the fault of a low thresh low value but a low thresh high

value. If the thresh high value was larger, then perhaps the block could have been

prefetched in time so as to prevent the cache miss. Thus, in this case, thresh high

is increased rather than increasing the thresh low.

If at the time of cache eviction, a prefetch block reaches the least recently

used end, it indicates a possible error in adapting the threshold values. Thus,

3.2 Our Contribution 20

Figure 3.1: An example illustrating p adapt win prefetching scheme’s behaviour

in this case, the value of the current pure prefetch content in cache is checked

against the current thresh low value. If the former is found to be greater, then

it is a question of ‘how much to prefetch’- thresh high, which is lowered, or else

the future prefetch blocks might be kicked out without them being used by the

main thread. If, however, the current pure prefetch content value is found to be

lower than the current thresh low value, the presence of (unused) prefetch block

at queue head indicates the current thresh low value (which was earlier increased

due to a cache-miss) is higher than required, and is thus decreased. A previously

cached block is returned in either case in favour of the unused prefetch bock at

the head of the least recently used queue, which is moved to the back of the

queue to give it another chance to be accessed by the main thread. Figure 3.1

illustrates an example of p adapt win’s behaviour.

3.2 Our Contribution 21

3.2.2 Discussion

1. Prefetch requests are posted only when it is certain that the prefetched blocks

would indeed be used by the main thread. The prefetch thread contains all

necessary computations so as to make a correct decision on branching. If it is

unable to make a decision, it is because of the dependence of the test condition on

either a user-input or a previous write to disk. In these cases, the prefetch thread

synchronizes with the main thread, essentially waiting for the above actions to

occur, and only then does it proceed. Thus, all the requests posted by the prefetch

request are for ‘useful’ blocks only.

2. In case of the adapt win prefetching scheme, by increasing the window on a cache

miss (when the main thread does not find its data block in the collective cache),

the intent is to fast-fill the cache so that the prefetch thread can catch upto the

main thread. A miss, in case of this scheme, signifies that the main thread has

used up all the prefetch blocks as the prefetch thread never posts requests out

of order. So, the reason that the miss occurred was that the prefetch thread was

either slow in posting the request or waiting for a synchronization operation with

the main thread (write, user-input, mpi file sync, etc.).

3. The problem with allowing the prefetch thread to run unrestrained (overly aggres-

sive prefetching) can be explained by the following example. Consider the case

when the prefetch thread finds the next prefetch block to exist in the recently-

used-blocks queue. If the prefetch thread is allowed to proceed uncontrollably,

there is a chance that before the main thread can access this block it gets kicked

out by another prefetch request. Also, the more aggressive the prefetch thread

is, the more active it would be in posting its requests. So, the chances that the

caching thread is busy servicing the prefetch request, when the main request is

3.2 Our Contribution 22

posted, increases and so does the main request waiting time to be serviced. This

decreases the effectiveness of prefetching as an IO latency hiding optimization.

Chapter 4

Design and Implementation

The underlying principle in prefetching is to bring in those data blocks into the cache in

advance, which would be immediately required by the application. This would reduce

the processor stall time as it would have had to wait often for the relatively slower

disk IO to complete if no data were fetched beforehand. The pre-execution prefetching

technique runs a prefetching thread in parallel with the main thread to perform this

task. The prefetching thread contains only a subset of the actual source code- only

those statements necessary for correct execution of the disk IO related operations and

not all the other computation related code. As a result, it is expected to run faster

and ahead of the main thread. Figure 4.1 shows how ideal prefetching can eliminate

IO stall time by overlapping of computation with disk IO.

Figure 4.2 shows the logical flow of the pre-execution prefetching technique. First,

the code for the prefetching thread is extracted from the original program’s source code

using the prefetch thread creation technique described in section 4.2. After we have

the prefetching thread and the main thread in existence, the prefetching thread starts

fetching the disk resident data into a cache using the prefetching library (section 4.3)

and with the help of a caching thread which manages the collective cache. The main

4.1 Caching Library 24

Figure 4.1: Overlapping computation with IO using a prefetching thread in parallel
with the main computation thread

thread executes in parallel, doing the actual application intended computation while

its disk data needs are serviced from the collective cache using the modified MPI-IO

library (section 4.3). The actual file reads are performed by the caching library (section

4.1) and the file writes are handled by the regular MPI-IO library.

4.1 Caching Library

This work implements the client-side collective cache proposed by Liao et. al. [17] as

a storehouse of data brought in by the prefetching thread to be used by the main com-

putation thread. All the participating processes collectively act as a single client and

manage cached data fetched from the IO servers. File data, read from the disk servers,

is cached locally by different processes, which cooperate together to form a global cache

pool. It is the responsibility of all the participating processes to collectively maintain

cache coherence. For realizing this, the concept of cache metadata is employed. All

processes first obtain the cache metadata before accessing the cached data or fetching

4.1 Caching Library 25

Figure 4.2: Pre-execution Prefetching Design

4.1 Caching Library 26

Figure 4.3: High level view of a collective cache

the data block from the disk if not already cached. Figure 4.3 shows a high level view

of the collective cache.

Collective caching uses distributed cache metadata management for reducing com-

munication messages for metadata requests and distributing the workload for meta-

data management. Each file is logically divided into blocks (pages) of a fixed size

(FILE BLOCK SIZE) which act as the smallest units of data transfer amongst the

processes and between the a process and the disk. Then, each participating process

is given the responsibility of managing the metadata of the pages in a round robin

fashion. That is, the metadata of page i is handled by the process of rank i mod nproc,

where nproc represents the number of processes within the same communicator which

opened the file together. Thus, the position of cache metadata is fixed but the actual

page can be cached in any of the cooperating processes. At any time, at most one copy

of a file page exists in the entire global cache pool.

Cache metadata includes the following:

4.1 Caching Library 27

1. Caching status: whether the page is cached already

2. Block owner: process rank which owns this file page in a particular communicator

3. Associated mutex lock: which must be obtained before accessing the actual file

page.

After acquiring the block lock at the process owning the block’s metadata (though

a sequence of send / recv operations), if the caching status of the block indicates that

the block has not been cached locally in any of the processes, then the requesting

process will obtain the block from disk and cache it locally, updating the metadata at

the block’s metadata owner. Otherwise, if the caching status indicates the presence of

a cached copy of the block in the process’ local cache, a simple memcpy satisfies the

request. Else, a message for page migration is sent to the process currently owning the

block to bring the desired block into the local cache (single copy of any page for cache

coherence control), followed by a memcpy to the user buffer and a metadata update

request at the block’s metadata owner. After the request for the block is fulfilled, the

process releases the lock at the metadata owner.

When the processes in the scope of a communicator open a file collectively, a caching

thread is started at each parallel process. POSIX pthread library is used for managing

the caching thread. This allows the main computation thread to proceed uninterrupted

while the caching thread handles the collective caching of disk resident files. The actual

disk reads are performed by the caching thread. The thread is destroyed when MPI is

terminated (MPI Finalize). Until then, it proceeds in an infinite loop servicing local

and remote requests from the main computation thread, the prefetching thread, and

sibling caching threads running at other participating processes, for actual data blocks

cached locally and cache metadata of the file pages under its jurisdiction.

The main thread (and the prefetching thread) posts its requests for file blocks in a

4.1 Caching Library 28

main request queue (similarly prefetch request queue). When the caching thread detects

the presence of a read request in the request queues, it starts servicing the request

following the above mechanism. When done, it copies the requested data to the user

buffer (only in case of the main thread’s requests) and signals the main thread to inform

about request completion via pthread’s condition variable in conjunction with a mutex

lock. The communication between the main thread (and the prefetching thread) for

request posting and the caching thread for request servicing are accomplished through

shared memory variables such as request offset, request size, (Boolean) request serviced,

request id, request buffer, etc.

The design maintains two different request queues- the main request queue and

the prefetch request queue. The caching thread picks up requests from these queues

and services them atomically. It gives a higher priority to the main request queue.

While alternating between its job of servicing the local and the remote requests, the

caching thread picks up a prefetch request only when it finds an empty main request

queue. After a prefetch request has been selected, the request id is compared against

the last main request serviced id. If the prefetch request id is smaller than this, it

indicates that the prefetch thread is lagging behind the main thread. This request

is simply ignored and the caching thread selects the next request to service. This

allows the prefetch thread to catch up to the main thread and take a possible lead.

The decision of whether or not to service a prefetch request (when the main request

queue is empty) is taken depending upon the current prefetching scheme being followed.

Section 3.2.1 discusses these schemes in detail.

As for remote requests from sibling caching threads, the local caching thread pe-

riodically probes for them using the non-blocking MPI routine- MPI Iprobe- with

MPI ANY SOURCE as the source process’ rank and MPI ANY TAG as the tag of

the expected message. On receiving a message, its tag is obtained from the status

4.2 Prefetching Thread Construction 29

argument, appropriate actions are performed accordingly, and the corresponding mes-

sages (with the file block data or the block cache metadata) are sent to the requesting

process by obtaining its rank (source) from the status argument. Table 4.1 shows the

various tags of the messages which the caching threads exchange.

When the cache is full, least-recently-used cache eviction policy is employed to evict

a cached block to make place for the incoming block. For this purpose, a history queue

and a free queue are maintained to record the access histories of cached blocks and

keep a track of free cache blocks, respectively. When a block is chosen for eviction

as per its LRU history, an update message is sent to the metadata owner to clear the

block’s caching status.

Write caching is disabled so that a file write call leads to cache invalidation. It

follows the same procedure of obtaining cache metadata first before proceeding with a

file block removal. If the block exists in the local cache, it is removed from the cache

and an update message is sent to the metadata owner. If the block is cached remotely

as indicated by its metadata, an invalidation message is sent to the remote process.

Cache invalidation is followed by a block lock release request to the metadata owner.

4.2 Prefetching Thread Construction

Extracting the prefetching thread from the original program involves extracting all

instructions from the original source code directly related to disk IO, and other in-

structions upon whose computation the correct execution of the IO related statements

depends. This is followed by converting the MPI IO function calls to their prefetch

versions using the prefetching library and the modified MPI-IO library. To make

the execution thread-safe, MPI initialization in the original program is changed from

MPI Init to MPI Init thread, if it is not already so. The inter-process communica-

tion in the prefetching processes (threads) takes place under the scope of a different

4.2 Prefetching Thread Construction 30

ACQUIRE BLOCK LOCK Obtaining the lock to access a file page
BLOCK CACHE STATUS cache metadata sent in response to

ACQUIRE BLOCK LOCK.
LOCK BUSY Sent in response to AC-

QUIRE BLOCK LOCK when the
page lock is in possession of another
process

REQUEST BLOCK Obtaining a block cached at a remote
process.

REQUEST BLOCK COPY ONLY Obtaining a copy of a block cached at
remote process

CACHED DATA Cached data sent in response
to REQUEST BLOCK or RE-
QUEST BLOCK COPY ONLY

CACHED DATA NOT AVAILABLE Sent in response to RE-
QUEST BLOCK or RE-
QUEST BLOCK COPY ONLY
when the block is not cached locally

RELEASE BLOCK LOCK Releasing the lock associated with a
file page

UPDATE METADATA AND RELEASE
BLOCK LOCK

Updating metadata information at
metadata owner, followed by release of
page lock

UPDATE METADATA ONLY Updating metadata information at
metadata owner

INVALIDATE BLOCK Remove a block from the local cache
due to write invalidation

ACK General Acknowledgement message

Table 4.1: Messages exchanged by sibling caching threads

4.2 Prefetching Thread Construction 31

communicator so as not to interfere with the main processes’ communications.

Necessary synchronizations may need to be added explicitly or may be handled

directly inside the prefetching library and the modified MPI-IO library when following

cases arise (explicit synchronization involves waiting and signaling using POSIX pthread

library’s condition variables in conjunction with mutex locks):

1. MPI File sync [explicit synchronization]:

Forced completion / transfer of all previous writes to the disk.

2. MPI File open [implicit synchronization]

3. MPI File close [implicit synchronization]

4. Dependence on user input [explicit synchronization]:

The prefetching thread is kept on hold until the main thread has obtained the

user supplied values, which are then transferred to the prefetching thread before

signaling it to resume execution.

5. Dependence on a prior file write [implicit synchronization]:

File writes can conflict (main thread vs. prefetching thread) with concurrent

reads to the same file region. To preserve consistency and atomicity of the IO

calls, writes can be made to act as synchronization operations while creating the

prefetching thread. This limits the prefetching thread’s capability to overlap IO

with computation. Thus, to maximize the scope of prefetching, the concepts of

delayed synchronization as proposed by Chen et. al. [18] is implemented. When

the prefetching thread encounters a file write call, it records the extent of the

file write (file offset, write size) and proceeds. This is termed as a dirty range

signifying a pending main write to the recorded region. If a future read does not

overlap with the recorded dirty ranges, then the prefetching thread safely posts

4.2 Prefetching Thread Construction 32

the read request in the prefetch request queue for the caching thread to service.

Otherwise, it waits (delayed synchronization) for the main write to occur. This

synchronization is handled inside the modified MPI-IO library.

To prevent the prefetching thread from interfering with the main thread memory

state, writes to shared variables need to be effectively handled. One way is to perform

store removal inside the prefetching thread preventing it from writing to any shared

variable [19]. This, however, reduces the accuracy of prefetching. Instead, a variable

renaming technique is employed allowing the prefetch thread to proceed by writing to

its own private copy of the original shared variable thereby leaving the memory state

of the main thread untouched.

Creation and termination of the prefetching and the caching threads are handled

by the main process. The main process, after initializing the caching and prefetching

sub-systems, forks the prefetching and the caching threads. Before terminating the

MPI environment, the main thread destroys the prefetching and the caching threads.

Prefetch thread creation is done manually in this study. Chen et. al. use a program

slicing approach [20] to automate this process using the Unravel open source toolkit

[21][22]. Program slicing uses Program Dependence Graph analysis [23] for computing

subsets of original program (slices) based on the slice criteria- variables and state-

ments of interest. Relating this to the prefetch thread construction problem, the IO

variables and statements form the slice criteria, yielding the subset of the original pro-

gram containing statements directly related to disk IO, and other instructions upon

whose computation the correct execution of the IO related statements depends. This

set of statements, after prefetch conversions, variable renaming, and insertion of neces-

sary synchronizations as above, constitutes the source code of the prefetching thread.

Details on automatic construction of the prefetching thread can be found in [24].

4.3 Modified MPI-IO Library and Prefetching Library 33

4.3 Modified MPI-IO Library and Prefetching Li-

brary

The regular MPI-IO library is modified so as to enable the use of the collective cache.

The actual file reads are performed by the caching thread and not the MPI-IO internal

file read. Management of dirty-ranges is performed alongside the MPI-IO internal

file write. File open and close are modified to introduce synchronizations necessary for

managing implementation internal structures and variables. The details of the modified

MPI-IO routines and their prefetch counterparts are as follows:

1. Open:

prefetch open is called instead which populates various fields in the modified MPI

internal File handle structure (ADIOI FileD) such as

• Setting is prefetch call to TRUE inside the file handle thereby marking it

to be a prefetch file handle for future read/write calls.

• Incorporating the information regarding the main file handle’s file descriptor

and communicator fields into the prefetching thread’s MPI File handle.

These are used in the MPI-IO internal read / write calls for matching a prefetch

call with its main thread’s counterpart (for ex. in dirty range adding, checking

and clearing etc.), and accessing internal implementation variables and struc-

tures shared between the caching, prefetching and the main threads. Since the

prefetching thread maintains its own separate file handle, it does not interfere

with the main thread’s file accesses, thereby maintaining correctness.

2. Close:

prefetch close is called instead, so that the prefetch thread waits for the main

4.3 Modified MPI-IO Library and Prefetching Library 34

thread to update internal structures and variables- clearing the information as-

sociated with the file about to be closed.

3. Read:

MPI-IO internal read is called (ADIOI ReadContig, ADIOI ReadStrided) where

the prefetch call is identified by the is prefetch call field set in the file handle

during the prefetch open call. After testing for any dirty ranges that might exist

owing to pending main write calls, the prefetch read call posts its request to

the low priority prefetch request queue with the current read call id (which gets

incremented thereafter) and without a user supplied buffer. This is because the

prefetch read calls are meant to just cache in the data required by the main thread

in the immediate future. There is no need for them to incur an unwanted overhead

of copying the data to an extra buffer. Extra memcpys would unnecessarily slow

down the prefetching thread. The read call proceeds without waiting for the

caching thread to service it.

4. Write:

MPI-IO internal write is called (ADIOI WriteContig, ADIOI WriteStrided)

with the prefetch call being identified as above. Since the actual file writes are

performed by the main thread, so the prefetch write call simply records its extent

(file offset, write size) as a dirty range indicating a pending future main write

call, and proceeds. The main thread’s write call, on the other hand, first posts

a cache invalidation request in the main request queue (as write caching is not

enabled in the design), and after its request is serviced by the caching thread,

it goes ahead with clearing the dirty range and signaling a waiting prefetching

thread, if so is the case.

4.3 Modified MPI-IO Library and Prefetching Library 35

Figure 4.4: High level view of parallel existence of main, caching and prefetching thread
per process

Chapter 5

Experiments and Observations

5.1 Experimental Setup

The efficiency of the various prefetching schemes was tested on an SMP machine sport-

ing 16 Intel Xeon 2.4 GHz processors. The system memory size is 32 GB with 3 MB

L1 cache. The underlying filesystem is NFS version 3. The collective cache size for the

tests was set to 32 MB per client. The file page size was set to 8 KB.

5.2 Test Cases

The prefetching schemes are tested on the PIO-Bench [25][26] and the Parkbench [27]

parallel IO benchmark test suites.

5.2.1 Parkbench (written in Fortran)

We use the ‘nonseq’ kernel class test which emulates non-sequential access to files.

The original program is modified to remove the ‘modification and replacement’ task

on the data read. As a result, the test case essentially reads data from a file in parallel

5.2 Test Cases 37

in pseudo random order with interleaving computation in the form of certain fixed

iterations of a doubly nested for loop performing matrix vector multiplication.

5.2.2 PIO-Bench (written in C)

This benchmark emulates various file access patterns. Figures 5.1,5.2 and 5.3 show the

different access patterns used in the PIO-Bench test suite. Tests were conducted on

following access patterns:

1. Simple strided read-modify-write:

A simple strided access pattern divides a file into a sequence of stripes, with

each processor’s access within a stripe occuring at a fixed displacement from the

stripe beginning boundary. An example of a simple strided pattern is the cyclic

access to the rows of a matrix stored in row-major order. The read-modify-write

involves reading data, operating on it, and finally writing it back to the original

file location. This kind of access pattern occurs in out-of-core computation where

memory is not sufficient to hold the entire data at once.

2. Nested strided read :

The nested strided access pattern consists of multiple simple strided accesses of

one stripe inside a single simple strided access of another stripe and so on. It can

be used for accessing multi-dimensional arrays. An example of a doubly nested

pattern is the cyclic access to the columns of a matrix stored in row-major order.

The benchmark uses blocking file reads. That is, all the data requested by a

single read call must be in the memory before the read call returns.

3. Nested strided re-read :

In the re-read scenario, data read from the file is computed upon and read again

later, thereby exhibiting temporal locality.

5.2 Test Cases 38

Figure 5.1: The PIO-Bench simple strided access pattern for 4 processes

Figure 5.2: The PIO-Bench nested strided access pattern for 4 processes

4. Random strided re-read :

In random strided access pattern, the file is divided amongst the participating

processes in a round-robin fashion. Within its section, a process reads its data

contiguously in stripes of random sizes. This kind of access pattern occurs in

media encoding where each frame size of an image is variable.

The original program is modified to introduce interleaving computation between

the read calls and between the read and the write calls (in simple strided read-modify-

write). The original PIO-Bench code is suitable for testing for peak IO performance,

while the modified version is suitable for testing the performance of optimizations like

5.3 Rationale behind parameters 39

Figure 5.3: The PIO-Bench random strided access pattern for 4 processes

prefetching in our case.

3 sets of tests for each of the 5 prefetching schemes and for each of the 5 test cases

above, are conducted for 2, 4 and 8 parallel processes and for 2 values of the interleaving

computation portion- 10 million and 20 million iterations of floating point matrix

vector multiplication (work=10 or work=20). Two different scenarios are emulated-

when the prefetch thread has complete information to proceed on its own without any

external synchronization (section 4.2) with the main thread (pf delay = 0), and when

the prefetch thread has to wait for synchronization with the main thread in 10% of the

file accesses (pf delay = 0.1). Total size of the file accessed was 1.6 GB per test case.

5.3 Rationale behind parameters

5.3.1 Workloads

For prefetching to be effective in reducing disk IO latency, sufficient amount of com-

putation region must exist to enable overlapping of IO with computation. Hence, the

results provided are for test cases with sufficient computation part. The experiments

employ two types of workloads signifying computation portion between successive file

accesses. The high and low work loads stand for 20 million and 10 million iterations of

5.3 Rationale behind parameters 40

floating point matrix vector multiplication, respectively. Apart from providing a fair

chance for the prefetching schemes to exhibit their true characteristics, the high work

versions overcome the implementation and synchronization overheads which manifest

themselves more strongly in the low work versions. Alongwith the implementation

constraints, these overheads include the scenario where the main thread waits for its

read request to be serviced while the caching thread is busy servicing a previously

selected prefetch request (except in the p adapt win scheme). A higher work load in

between read requests should mitigate these overheads and is expected to show better

throughput.

The values for high (20) and low (10) workloads are chosen depending upon this

work’s implementation characteristics and do not reflect any global/general values. An

implementation with lower overheads could possibly use lower values than chosen.

5.3.2 pf delay

pf delay signifies the degree of external synchronization between the prefetching thread

and the main thread. It emulates the scenario when the prefetching thread lacks

complete information to proceed on its own, which may occur when a future file access

depends on a user input or a previous file write (Section 4.2). In these cases, the

prefetching thread has to wait for these specific events to occur during normal (main

thread) execution. Experiments are done for two different values of pf delay, pf delay =

0 indicating complete information with prefetch thread to proceed on its own without

any external synchronization with the main thread, and pf delay = 0.1 indicating

synchronization in 10% of file accesses.

The value 0.1 is chosen as a general non-zero representative value for main thread

- prefetch thread synchronization. Figure 5.4 shows the performance of different

prefetching schemes for PIO-Bench nested strided read access pattern (employing 4

5.4 Comparison of Prefetching Schemes 41

Figure 5.4: Behaviour of prefetching schemes for different values of pf delay for PIO-
Bench nested strided read access pattern

processors) as the pf delay value is varied. It indicates that the relative performance of

the prefetching schemes does not depend on the particular non-zero value of pf delay

chosen. The absolute values of aggregate read bandwidth decrease with increasing

values of pf delay. This is a result of a decrease in the number of actual prefetches oc-

curing, owing to an increase in the number of file accesses wherein the prefetch thread

is forced to wait for the main thread’s execution.

5.4 Comparison of Prefetching Schemes

Following graphs compare the performance of the various prefetching schemes on the

test cases. Shown is the aggregate read bandwidth in MB/s (averaged over 3 sets

of readings) for different number of processes involved in parallel IO (The read band-

widths corresponding to no pf in the graphs below represent the baseline reading when

prefetching is turned off). Table 5.1 summarizes the experiment and result parameters.

5.4 Comparison of Prefetching Schemes 42

Test cases 1. PIO-Bench nested strided read
2. PIO-Bench nested strided re-read
3. PIO-Bench simple strided read-
modify-write
4. Parkbench non-sequential read (non-
seq)
5. PIO-Bench random strided re-read

Work loads
(Computation por-
tion between succes-
sive file accesses)

1. 20 million iterations of matrix vector
multiplication
2. 10 million iterations of matrix vector
multiplication

Prefetching thread –
main thread synchro-
nization

1. No synchronization (pf delay=0)
2. Synchronization in 10% file accesses
(pf delay=0.1)

Number of graphs 4 per test case: 2 x 2 (workloads and
pf delay)

Graph’s X axis Number of participating processes (2,4
or 8)

Graph’s Y axis Aggregate read bandwidth in MB/s

Nature of graphs One bar for each prefetching scheme in-
dicating aggregate read bandwidth av-
eraged over 3 runs

Size of file accessed 1.6 GB per run

Table 5.1: Experiment and result parameters

5.4 Comparison of Prefetching Schemes 43

5.4.1 PIO-Bench nested strided read

1. Computation = 20 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

2. Computation = 10 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

5.4 Comparison of Prefetching Schemes 44

3. Computation = 20 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

4. Computation = 10 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

5.4 Comparison of Prefetching Schemes 45

5.4.2 PIO-Bench nested strided re-read

1. Computation = 20 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

2. Computation = 10 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

5.4 Comparison of Prefetching Schemes 46

3. Computation = 20 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

4. Computation = 10 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

5.4 Comparison of Prefetching Schemes 47

5.4.3 PIO-Bench simple strided read-modify-write

1. Computation = 20 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

2. Computation = 10 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

5.4 Comparison of Prefetching Schemes 48

3. Computation = 20 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

4. Computation = 10 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

5.4 Comparison of Prefetching Schemes 49

5.4.4 Parkbench nonseq read

1. Computation = 20 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

2. Computation = 10 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

5.4 Comparison of Prefetching Schemes 50

3. Computation = 20 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

4. Computation = 10 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

5.4 Comparison of Prefetching Schemes 51

5.4.5 PIO-Bench random strided re-read

1. Computation = 20 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

2. Computation = 10 million iterations of matrix vector computation; external

prefetching thread – main thread synchronization in 10% of file accesses.

5.4 Comparison of Prefetching Schemes 52

3. Computation = 20 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

4. Computation = 10 million iterations of matrix vector computation; No external

prefetching thread – main thread synchronization.

5.5 Observations and Explanations 53

5.5 Observations and Explanations

5.5.1 The effect of pf delay

1. In case of pf delay=0.1, the prefetching thread is forced to wait in 10% of file ac-

cesses (read requests) to emulate synchronization between the main thread and

the prefetching thread as explained in section 4.2. Since the prefetching thread

is not allowed to run freely, the no holds and the excl cache prefetching schemes

are prevented from exhibiting the true magnitude of their less effective prefetch-

ing characteristics. Thus, their performance is comparable to the fix thresh and

adapt win cases in the low work cases (10 million iterations of matrix vector

multiplication).

2. The true characteristics of the excl cache prefetching scheme are reflected during

pf delay=0 for the re-read access patterns. In the graph for PIO-Bench nested

strided read access pattern for pf delay=0 and work load = 20 million iterations,

the excl cache scheme’s performance is not as worse compared to the fix thresh

and the adapt win schemes, as it is in the nested strided re-read access pattern

with same configuration of pf delay and work load. In this scheme, the cache

is solely meant for keeping prefetched data without any regards to caching al-

ready accessed data for future use. Re-read scenario exposes this shortcoming.

Although the prefetching thread may find a block to be already present in the

cache (at the re-read following the original read), by the time the main thread

needs to access the file block, it may have been removed from the cache (section

3.2.2 point 3).

5.5 Observations and Explanations 54

5.5.2 High vs. low workload

In most of the cases, throughput is observed to be better for the high work scenario (20

million iterations over 10 million iterations). If the computation part is low, prefetch-

ing may not have the fair chance of exhibiting its effectiveness in overlapping IO with

computation. Apart from providing a fair chance for the prefetching schemes to ex-

hibit their true characteristics, the high work versions overcome the implementation

and synchronization overheads which manifest themselves more strongly in the low

work versions. Alongwith the implementation constraints, these overheads include the

scenario where the main thread waits for its read request to be serviced while the

caching thread is busy servicing a previously selected prefetch request (except in the

p adapt win scheme). A higher work load in between read requests should mitigate

these overheads.

5.5.3 Poor performance of nonseq test case

Poor performance is observed for in the Parkbench nonseq test case for number of

participating processes = 8. This is attributed to implementation limitations. In this

test case, all processes make pseudo-random file accesses. The probability that multiple

processes request the same block thus increases. This leads to a probable increase in the

inter-process communication for increased inter-process block migration owing to the

collective caching semantics for guaranteeing cache coherence. As per these semantics,

only one copy of a file block can exist in the global pool. The implementation migrates

blocks whenever a sibling prefetching thread requests blocks cached in the local cache.

In the other test cases (simple strided, nested strided, random strided), all processes

access mutually exclusive file regions (with only minimal overlap in cases where the

same block is requested by two or more processes, when the request extent is not an

exact multiple of the file block size). So, the issue of inter-process block migration does

5.5 Observations and Explanations 55

not get reflected with great magnitude. This shortcoming gets aggravated when more

processes execute in parallel, and can be controlled by an efficient implementation.

5.5.4 p adapt win outperforms the rest

The pre-emptive p adapt win scheme performs the best in almost all of the access

patterns and work scenarios. By suspending the servicing of prefetch requests by

caching thread in favour of the recently added higher priority main thread request, it

eliminates any wait time for a main request to be serviced, unlike the adapt win and

the fix thresh prefetching schemes. However, in cases when the work part is high, there

may not be a significant wait time for the main requests, as the caching thread would

get sufficient time in between main requests to service the prefetch requests for future

file blocks. Thus, the fix thresh and the adapt win schemes may perform comparable

to, or even better than, the p adapt win prefetching scheme in high work load cases,

as can be seen in some of the graphs.

5.5.5 adapt win vs. fix thresh and the effects of their non-

preemptive nature

1. In almost all the file access patterns with no pf delay (indicating almost complete

information with prefetching thread to proceed with its execution and minimal

synchronization with the main thread), the fix thresh prefetching scheme per-

forms the second best (after p adapt win scheme) especially for larger number of

processes (4 or 8).

The only exception is the PIO-Bench simple strided read-modify-write access

pattern. In this case, each file read is followed by work portion and thereafter

by a file write to the same location. So, when the caching thread picks up the

5.5 Observations and Explanations 56

main file write request, the prefetch request for the next read is entered into the

prefetch request queue. Now, as soon as the caching thread is done with servicing

the main write request, it finds a waiting prefetch request while the next main

read request is yet to arrive. So, it starts servicing this prefetch request, and thus

the next main read request has to wait for its turn.

The results suggest the occurrence of this phenomenon more strongly in the

fix thresh case than in the adapt win prefetching scheme. This is perhaps because

as soon as the file write is done, the fix thresh scheme, in its endeavour to keep

a fixed portion of cache full with pure prefetch content (prefetched but not yet

accessed blocks), kicks in with its prefetch request whereas the adapt win scheme

waits for the thresh min to be reached before resuming its action. This com-

petition between prefetch and main requests is not exposed in the other access

patterns at high workloads.

2. In almost all the file access patterns with pf delay=0.1, the adapt win scheme

performs the second best of all the prefetching schemes, after the pre-emptive

p adapt win scheme. Unlike others, it is able to adapt to the changing needs of the

application by adaptively increasing the prefetch window when faced with cache

misses and reverting back to smaller windows so that the cache can accommodate

more of the accessed blocks for possible future use.

The reason that the adapt win prefetching scheme performs better than the

fix thresh scheme in the pf delay=0.1 cases can be attributed to the non-pre-

emptive nature of these schemes. In these cases, after a cache miss, as the

prefetching thread attempts to fill the cache again with pure prefetch content,

the fix thresh scheme is busy for a majority of time. This is because, after a

cache miss, to fill the cache and maintain it at 16% prefetch content (as required

by the fix thresh scheme), the caching thread would need to service many prefetch

5.5 Observations and Explanations 57

requests. This is because as per its semantics, after a pf delay=0.1 cache-miss,

there is no prefetch content in the cache. And, the main thread would alongside

be constantly reading the cached prefetched data and decreasing the prefetch

content. Also, by the time the threshold is reached, another cache miss might oc-

cur. All these events, keep the prefetch thread always busy, eventually increasing

the wait time for servicing the main by the caching thread (which remains busy

servicing the previously picked prefetch requests). This issue is relaxed (main

thread waiting time is reduced) when no prefetch requests are serviced until the

pure prefetch content in cache falls from the thresh max to thresh min in the

adapt win scheme, which thereby performs better in the pf delay=0.1 cases.

However, in the pf delay=0 cases, the prefetching thread, while behaving as

per the fix thresh scheme semantics, is not always busy (rather less busy) unlike

the pf delay=0.1 case. It is able to maintain the prefetch content in cache at

the fixed threshold level (16%). After a main read request gets serviced by the

caching thread, the ratio might fall to below the threshold. At this time, the

prefetching thread kicks in and restores (increases) the prefetch content back to

its fixed threshold value. The read request waiting time is much less here than in

the pf delay=0.1 case as the cache isn’t completely devoid of its prefetch content

and thus servicing fewer prefetch requests by the caching thread can fulfil the

cache prefetch content requirements.

3. The non-pre-emptive nature is also the reason for a higher thresholds exhibiting

poorer performance in the case of adapt win and fix thresh schemes. This is

because maintaining pure prefetch content in cache at higher thresholds would

mean an even busier prefetch thread. This would increase the chances of the

main request having to wait to be serviced by the caching thread which might be

busy servicing an earlier chosen prefetch request. As a result, the main request

5.5 Observations and Explanations 58

waiting time is increased thereby decreasing the effectiveness of prefetching in

reducing the IO stall time. This is why, a threshold of 16% pure prefetch content

is chosen for the fix thresh prefetching scheme, and the MAX THRESH of the

adapt win scheme is fixed at 16% as well.

Chapter 6

Conclusion and Future Work

Prefetching, as an optimization technique, aids to overcome the IO Wall problem and

mitigate the effects the disk access bottleneck on the performance of IO intensive

parallel applications. It has the potential of effectively reducing an application’s IO

latency by masking its disk IO stalls while overlapping the disk IO with computation.

The effectiveness of prefetching techniques which predict future accesses based on the

history of past data accesses is limited when the application’s data access pattern is

not regular. Speculative execution techniques, which do not rely on the application’s

data access pattern have the potential of predicting future data references with better

accuracy.

Chen et. al.’s technique of speculative pre-execution prefetching [7] has the ben-

efits of all existing speculative execution techniques, as discussed in chapter 3. In

this work, we have analyzed the effectiveness of their approach in reducing the disk

IO latency of IO intensive parallel applications, by augmenting their framework with

various prefetching schemes. These prefetching schemes differ in their decisions regard-

ing the time at which to prefetch (when to prefetch) and the cache share ratio (how

much to prefetch) between (i) the prefetched but not yet accessed blocks (pure prefetch

60

content), and (ii) the accessed & cached blocks.

We observe that overly aggressive prefetching (no holds, excl cache) may not be the

best possible option and may even lead to a performance worse than the original exe-

cution without prefetching due to prefetch wastage and cache pollution. A pre-emptive

prefetching (p adapt win), which is able to adapt and control its aggressiveness as per

the demands or characteristics of the application, extracts the maximum prefetching

benefits possible for the application. However, if the computation portion of the appli-

cation is not sufficient (very low work load), there is nothing much that base prefetching

approach can do in its attempt to benefit the application from overlapping IO with

computation. Hence, the results provided are for test cases with sufficient computation

part.

As further research on this topic, to address and counter the issue of harmful

IO prefetching (prefetch wastage) due to inter-client misses in shared collective cache,

prefetch throttling and data pinning approaches [28] can be extended to the speculative

pre-execution prefetching framework. Ozturk et. al.’s work [28] uses compiler directed

prefetching involving (hard) inter-procedural static analysis by compilers, which re-

quires detailed understanding of control and data flow of the application. How these

techniques perform in a speculative prefetching environment is yet to be tested. Also,

machine learning techniques can be employed to decide upon whether prefetching would

be beneficial to an application, and to adapt the aggressiveness of prefetching as per

the changing characteristics of the application’s execution.

Chapter 7

References

1. David E. Womble, David S. Greenberg, ”Parallel I/O: An introduction ”, Parallel

Computing, Volume 23, Issues 4-5, Parallel I/O, 1 June 1997, Pages 403-417

2. D. Reed, Scalable Input/Output: Achieving System Balance, The MIT Press,

2003.

3. C Greenough, RF Fowler, RJ Allan. Parallel IO for High Performance Computing

(RAL-TR-2001-020) Rutherford Appleton Laboratory Technical Report, (March

2001)

4. Papathanasiou, A. E. and Scott, M. L. 2005. Aggressive prefetching: an idea

whose time has come. In Proceedings of the 10th Conference on Hot Topics in

Operating Systems - Volume 10 (Santa Fe, NM, June 12 - 15, 2005). USENIX

Association, Berkeley, CA, 6-6.

5. T.M. Madhyastha and D.A. Reed, Learning to Classify Parallel Input/ Output

Access Patterns, IEEE Transactions on Parallel and Distributed Systems, Vol.

13, No. 8, 2002.

62

6. Byna S, Chen Y, Sun XH. Taxonomy of data prefetching for multicore processors.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 24(3): 405-417

May 2009.

7. Yong Chen; Byna, S.; Xian-He Sun; Thakur, R.; Gropp, W., ”Exploring Parallel

I/O Concurrency with Speculative Prefetching,” Parallel Processing, 2008. ICPP

’08. 37th International Conference on , vol., no., pp.422-429, 9-12 Sept. 2008

8. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming

with the Message-Passing Interface, MIT Press, 1999.

9. MPICH2 web link: http://www.mcs.anl.gov/research/projects/mpich2/

10. W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the

Message-Passing Interface, MIT Press, 1999.

11. Rajeev Thakur, William Gropp, Ewing Lusk, ”Data Sieving and Collective I/O

in ROMIO,” frontiers, pp.182, The 7th Symposium on the Frontiers of Massively

Parallel Computation, 1999.

12. Del Rosario, J. M., Bordawekar, R., and Choudhary, A. 1993. Improved parallel

I/O via a two-phase run-time access strategy. SIGARCH Comput. Archit. News

21, 5 (Dec. 1993), 31-38.

13. Thakur, R., Gropp, W., and Lusk, E. 1996. An Abstract-Device Interface for

Implementing Portable Parallel-I/O Interfaces. In Proceedings of the 6th Sympo-

sium on the Frontiers of Massively Parallel Computation (March 27 - 31, 1996).

FRONTIERS. IEEE Computer Society, Washington, DC, 180.

14. Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka, J.

1995. ”Informed prefetching and caching”. SIGOPS Oper. Syst. Rev. 29, 5

(Dec. 1995), 79-95.

63

15. Chang, F. and Gibson, G. A. 1999. ”Automatic I/O hint generation through

speculative execution”. In Proceedings of the Third Symposium on Operating

Systems Design and Implementation (New Orleans, Louisiana, United States).

Operating Systems Design and Implementation. USENIX Association, Berkeley,

CA, 1-14.

16. Yang, C., Mitra, T., and Chiueh, T. 2002. ”A Decoupled Architecture for

Application-Specific File Prefetching”. In Proceedings of the FREENIX Track:

2002 USENIX Annual Technical Conference (June 10 - 15, 2002). C. G. Demetriou,

Ed. USENIX Association, Berkeley, CA, 157-170

17. W.K. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russel and S. Tideman, “Col-

lective Caching: Application-Aware Client-Side File Caching”, in Proceedings of

the 14th Symposium on High Performance Distributed Computing, 2005.

18. Y. Chen, S. Byna, X.-H. Sun, R. Thakur, W. Gropp. ”Hiding I/O Latency with

Pre-execution Prefetching for Parallel Applications”, in Proc. of the ACM/IEEE

SuperComputing Conference (SC’08), Austin, Texas, USA, Nov. 2008.

19. D. Kim and D. Yeung, “A Study of Source-Level Compiler Algorithms for Au-

tomatic Construction of Pre-execution Code”, ACM Transactions on Computer

Systems, Vol. 22, No. 3, 2004.

20. M. Weiser, “Program slicing”, IEEE Trans. on Software Engineering, SE-10, 4,

1984.

21. J.R. Lyle, D. R. Wallace, J.R. Graham, K.B. Gallagher, J.P. Poole and D. W.

Binkley, “Unravel: A CASE Tool to Assist Evaluation of High Integrity Soft-

ware”, NISTIR 5691, National Institute of Standards and Technology, 1995.

22. Unravel program slicing toolkit- web link: http://hissa.nist.gov/unravel/

64

23. J. Ferrante, K. J. Ottenstein, and J.D. Warren, “The Program Dependence Graph

and Its Use in Optimization”, ACM Transactions on Programming Languages

and Systems, Vol. 9, No. 3, 1987.

24. Y. Chen, S. Byna, X.H. Sun, R. Thakur and W. Gropp, “Automatic Construction

of Pre-execution Prefetching Thread for Parallel Applications”, Illinois Institute

of Technology Technical Report (IIT-CS-2007-22), 2007.

25. F. Shorter, “Design and Analysis of a Performance Evaluation Standard for Par-

allel File Systems”, Master Thesis, Clemson University. 2003.

26. PIO-Bench test suite web link: ftp://ftp.parl.clemson.edu/pub/pio-bench

27. Parkbench IO Benchmarks web link: http://www.performance.ecs.soton.ac.uk/

projects.html

28. Ozturk, O., Son, S. W., Kandemir, M., and Karakoy, M. 2008. ”Prefetch throt-

tling and data pinning for improving performance of shared caches”. In Pro-

ceedings of the 2008 ACM/IEEE Conference on Supercomputing (Austin, Texas,

November 15 - 21, 2008). Conference on High Performance Networking and

Computing. IEEE Press, Piscataway, NJ, 1-12.

