
Safe Inspection of Live Virtual Machines

Sahil Suneja
IBM T.J. Watson Research

suneja@us.ibm.com

Ricardo Koller
IBM T.J. Watson Research

kollerr@us.ibm.com

Canturk Isci
IBM T.J. Watson Research

canturk@us.ibm.com

Eyal de Lara
University of Toronto
delara@cs.toronto.edu

Ali Hashemi
University of Toronto

ali.b.hashemi@gmail.com

Arnamoy Bhattacharyya
University of Toronto

arnamoyb@ece.utoronto.ca

Cristiana Amza
University of Toronto
amza@ece.utoronto.ca

Abstract
With DevOps automation and an everything-as-code ap-
proach to lifecycle management for cloud-native applica-
tions, challenges emerge from an operational visibility and
control perspective. Once a VM is deployed in production it
typically becomes a hands-off entity in terms of restrictions
towards inspecting or tuning it, for the fear of negatively
impacting its operation. We present CIVIC (Cloning and
Injection based VM Inspection for Cloud), a new mecha-
nism that enables safe inspection of unmodified production
VMs on-the-fly. CIVIC restricts all impact and side-effects
of inspection or analysis operations inside a live clone of
the production VM. New functionality over the replicated
VM state is introduced using code injection. In this paper,
we describe the design and implementation of our solution
over KVM/QEMU. We demonstrate four of its use-cases-
(i) safe reuse of system monitoring agents, (ii) impact-heavy
problem diagnostics and troubleshooting, (iii) attaching an
intrusive anomaly detector to a live service, and (iv) live
tuning of a webserver’s configuration parameters. Our eval-
uation shows CIVIC is nimble and lightweight in terms of
memory footprint as well as clone activation time (6.5s),
and has a low impact on the original VM (< 10%).

Categories and Subject Descriptors K.6.4 [Management
of Computing and Information Systems]: System Management—
Centralization/ decentralization; D.4.7 [Operating Systems]:
Organization and Design—Distributed systems; C.5.0 [Com-
puter System Implementation]: General; C.4 [Performance

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

VEE ’17, April 08 - 09, 2017, Xi’an, China
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4948-2/17/04 . . . $15.00
DOI: http://dx.doi.org/10.1145/3050748.3050766

of Systems]: Design studies; D.2.8 [Metrics]: Performance
measures; D.4.2 [Storage Management]: Virtual memory

Keywords Virtualization; Virtual Machine; Cloud; Data
Center; DevOps; Monitoring; Inspection; Sandboxing; Live
Cloning; Code Injection

1. Introduction
Emerging DevOps methodologies are increasingly automat-
ing the entire development, deployment and operations
lifecycle of cloud-native applications [88; 43]. However,
with this end-to-end automation and an everything-as-code
approach to lifecycle management, additional challenges
emerge from an operational visibility and control perspec-
tive. Once a VM is deployed in production it typically be-
comes a hands-off entity in terms of restrictions towards
inspecting it or adding new functionality to it. This stems
from the risk associated with causing an intrusion or failure
with an otherwise functional system that is running produc-
tion workloads. If this risk can be mitigated, deep inspection
of production VMs can lead to valuable insights that de-
pend upon runtime state, and thus cannot be easily gathered
during testing or staging of these systems.

Take the example of troubleshooting an application’s run-
time issues. In an ideal world, all bugs and issues would
be ironed out in dev and staging environments. However,
real-world application behavior is a function of both the un-
derlying system and software, as well as runtime system
state. Such state is impacted by incoming load, interaction
with other running components, system configuration, and
administrative policies, which introduces variability in live
systems as opposed to pre-production environments. Despite
best efforts, issues still arise in production VMs, where ac-
cess is restricted. When that happens, the only resources
available to fix the issue are logs, or, if the developer is really
lucky, bug reports or stack traces. Operating in such con-
strained environment, without access to the actual systems
containing the faulty runtime state, makes for an extremely

difficult and slow debugging and troubleshooting process.
Similarly, there are other scenarios where operational visi-
bility and control is desirable. For example, to catch anoma-
lies proactively, to add on-the-fly new capabilities and mon-
itoring hooks to a running system, or to simply understand
how an application would perform under different configu-
rations for a live workload.

Such live VM inspection presents significant challenges.
The risk associated with making changes to live VMs is not
unfounded, owing to unforeseen side-effects. On the other
hand, recreating a given condition in a separate environment
is both time consuming and challenging, due to it’s signifi-
cant dependence on runtime system state. These constraints
thus necessitate an inspection environment that contains or
operates on the live VM state, while safeguarding the VM
from the impact and side-effects of its analysis operations.

In this paper, we present CIVIC (Cloning and Injection
based VM Inspection for Cloud), a new mechanism that en-
ables safe inspection of production VMs on-the-fly. CIVIC
achieves this in two steps. First, it creates a live replica of the
production VM (the source), including its runtime state, in
a separate isolated sandbox environment (the clone). This
liberates the source from the resource overheads, runtime
interference and even installation of inspection utilities and
their associated dependencies (‘safe inspection’). Second, it
uses runtime code injection to introduce new userspace-level
functionality over the replicated VM state. This avoids en-
forcing any guest cooperation or modification (‘on-the-fly’
operation).

CIVIC differs with existing alternatives that can provide
such execution-inspection decoupling in the following ways.
It enables efficient reuse of the vast stock software code-
base, overcoming the software incompatibility and function-
ality duplication effort with virtual machine introspection
(VMI) based monitoring and inspection solutions [37; 42;
76]. Unlike most redirection-based solutions [73; 40; 89;
35; 34] that inject in-guest handler components (and are
slow), CIVIC restricts all inspection/analysis operations to
clones, and does not cause any guest intrusion and inter-
ference which would be unacceptable in a production VM.
CIVIC enables introducing new post-hoc operations unlike
other VM replication solutions, which do not support intro-
ducing new functionality [23; 49] or analysis at an OS or
application-level semantics [30; 17] (more details in Section
6).

CIVIC employs code injection to achieve (clone) VM ac-
cess, otherwise restricted in production environments. One
alternative could be to enforce guest cooperation by shar-
ing credentials, or granting login access. But this aggravates
manageability concerns at cloud scale [35], as well as audit-
ing [36] concerns by essentially giving direct control over
even the source VM. Another access alternative could be via
vendor-specific in-VM software components [85; 82; 84; 55]
installed inside the guest. Even assuming that this would

be acceptable for a production system, such guest special-
ization still defeats cloud portability [69; 48; 76]. Depen-
dence on shell access may also complicate inspecting or
troubleshooting dysfunctional systems. For example, in a
recent Google outage [19], several production systems be-
came unresponsive due to a dynamic loader misconfigura-
tion. This prevented diagnosis using both: (i) the in-system
agents now unable to emit data to backend, as well as (ii)
login (SSH) not possible due to the inability to exec a shell.
Such dysfunctional-userspace situations can potentially be
tackled using CIVICs ability to inject code and troubleshoot
from within the kernel itself.

CIVIC limits its inspection operations to within the clone,
and does not target merging the clone’s state back to the
source. Propagating a validated procedure to the source is
application-specific. One possibility is to push the analysis
outcome (such as leak fix, validated patch, or tuned configu-
ration settings) to the source using the same injection mech-
anism as in clone. Another alternative is making the clone
the new source, or an interim source while the original gets
updated with the validated procedure.

CIVIC’s execution-inspection decoupling approach en-
ables experimentation with possibly intrusive, heavyweight,
or speculative post-hoc operations without the fear of nega-
tively impacting the original guest system. We demonstrate
four such use-cases in this paper. The first use-case is that
of injecting and running monitoring agents inside the clone
on behalf of the source, that are not desirable to install
or run in the source VM itself. An example is the buggy
agents in the Amazon Elastic Block Store (EBS) Service
that caused severe EBS performance degradation [7]. The
second example enables a risk-free exploratory diagnosis
for a webserver memory leak. Instead of further degrad-
ing source webserver capacity by troubleshooting the leak
within it, the problematic runtime cache state gets replicated,
and debugging tools introduced, in a webserver clone. The
third example attaches an anomaly detector to a live Cas-
sandra [50] service on-the-fly, instead of baking it directly
into the base service. The latter gets spared from the analy-
sis’ intrusion and interference, while the detector is allowed
more aggressive analysis for improved accuracy. And finally,
the fourth use-case shows how CIVIC clones can be em-
ployed to perform faster, risk-free and on-the-fly webserver
configuration-parameter autotuning. Our evaluation shows
CIVIC is nimble and lightweight in terms of clone activa-
tion time (6.5s) as well as memory footprint (30MB transfer
size, 80MB resident set size (RSS)), and has a low impact
on the source/guest VM (<10%).

This paper makes four contributions. First, an approach to
use clones as inspection-enabling proxy systems. Second, an
end-to-end implementation of CIVIC on the KVM/QEMU
hypervisor, that combines the principles of post-copy live
migration [41], disk and memory copy-on-write (COW),
peripheral hotplugging, and code injection. Third, a novel

VM	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 OS	
	
	

Mem	 Disk	 	 N/W	

Kernel	

U
ser	

CLONE	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 OS	
	
	
	
	
	

Mem	
On-‐demand	

	

Kernel	

U
ser	

	
Persistent	 	
Store	 w/	 	

	 	 	 App	 So<ware	

Frozen	
Original	

Userspace	

New	 	
N/W	 	

COW	
Disk	

COW	 Snapshots	

App
	

.	

5.	

1.	

3.	

2.	

6.	

4.	 4.	

Figure 1: CIVIC’s architecture; step-by-step description in Design Section.

mechanism for running userspace code inside the clone
through kernel code injection from the hypervisor, which
is useful for troubleshooting VMs with a dysfunctional
userspace environment such as a non-responsive SSH. Fourth,
porting stock software atop CIVIC. and demonstrating with
four use-cases its ability to monitor, inspect, troubleshoot
and tune unmodified VMs.

2. CIVIC’s Design
CIVIC builds on top of whole-system replication and live
cloning constructs [23; 49] to swiftly create a low-overhead
clone of the guest VM, that acts as an inspection enabling
proxy system containing the original guest’s runtime state.
The desired application functionality is then added to the
clone through runtime code injection from the hypervisor
into the clone’s kernel. This hotplugged functionality can
range from realtime operations such as periodic system
health check by injecting monitoring agents in the clone
(Section 5.1), to deep inspection such as diagnosing root
cause of memory leaks by introducing debugging tools into
the clone (Section 5.2).

CIVIC’s emphasis on not interfering and impacting the
guest system operation, not requiring any sort of guest mod-
ifications or cooperation to access the target systems, trans-
lates to the following set of challenges:

• Consistency: Since the clone is independent in its func-
tioning and can deviate from the source, ensuring consis-
tency requires: (i) preventing possible IP/MAC network
conflicts, (ii) preventing clone’s modification to the disk
state from being reflected on the source and vice-versa,
and (iii) (optionally) preserving process state on clone so
that its inspected state refers to the source’s runtime state
at the time of clone creation.

• Performance: The performance requirements include: (i)
minimal impact on the source’s workload while forking a
live clone, (ii) low clone initiation latency especially for
realtime applications such as monitoring, and (iii) con-

trolled memory consumption by the clone, limited to only
what’s required for a particular analysis application, as op-
posed to a full blown copy.

• State Persistence: A clone is a point-in-time image of
the guest VM, and there may be several cloning rounds
depending upon the inspection periodicity. In many cases,
successive iterations may require intermediate state from
previous ones, such as configuration settings, log files,
and licenses, which presents the challenge of persisting
injected application’s state across cloning rounds.

• Application Entry and Initiation: Yet another challenge
is introducing the desired application software into the
clone. Depending upon the use-case, this could refer to
a stock monitoring agent, some debugging tool, or sim-
ply a root shell capable of accessing files, listing pro-
cesses and connections. However, we cannot expect or
enforce all corresponding software components–binaries,
libraries, helper packages, etc.–to be resident inside the
guest. Even if new application software was to somehow
find its way inside the clone, since we assume no guest co-
operation as well as no artifacts in guest, this poses a chal-
lenge in initiating the application without the existence of
any helper scripts inside the guest, or the login credentials
for clone shell access in the first place.

To address these challenges, CIVIC employs the follow-
ing sequence of operations, as illustrated in Figure 1:

1. Disk COW: A snapshot of the source’s disk image is
preserved at the time of cloning, and a COW slice is created
for the clone, to ensure consistent disk access for both VMs.

2. Live Migration: The clone in CIVIC is created by live
migrating a snapshot of the source VM. A postcopy migra-
tion technique [41] is employed which allows fetching mem-
ory on demand (pull-based approach) instead of transferring
the full source VM memory at once (push-based approach).
CIVIC does not enforce any restriction on the placement of
clones– either locally on the same host as the guest-VM or
on a separate host, the choice dependent on user preference,
host resource constraints, as well as the target use-case.

3. Memory COW: Since in CIVIC’s adoption of postcopy
migration the source remains active, we also need COW
memory on source. This is to ensure that the clone’s on-
demand memory accesses remain consistent to the source’s
memory state at the time of cloning.

4. Disk and NIC Hotplugging: In CIVIC, clone’s mod-
ification to its COW slice are not preserved on its exit.
This also circumvents the consistency and management con-
cerns of preserving, merging and updating a previous clone’s
disk state modifications to a future clone. This is because a
clone’s disk view is based upon the source’s disk state at
the time of cloning, which might be different from when a
previous clone was created. To enable state persistence for
inspection applications, all clones of a particular source are

hotplugged with the same additional disk referred to as a
persistent store.

For network consistency in terms of preventing IP/MAC
conflicts, the source configured networking is disabled on
the clone. However, there are cases where the clone requires
network access such as for communication exchange (e.g.
monitored data) between an application and its backend, and
when traffic is partially or fully duplicated to the clone for
tasks such as network filtering, runtime diagnostics and per-
formance tuning. For such cases, the clone is hotplugged
with its own NIC. Section 2.1 discusses network manage-
ment further.

5. Code Injection: With the clone VM set up, the next step
is to introduce the inspection application into its runtime.
To enable this, the hotplugged persistent store from the pre-
vious step also acts as a storehouse of all application soft-
ware components- binaries, related libraries, helper pack-
ages, config files, and an application loader script. Then,
code injection from the hypervisor into the clone’s kernel
transfers control to the loader (shell) script, which runs in-
side the clone’s userspace, thereby enabling the usual OS-
exported functionality to be leveraged by the application
software. It sets up the clone OS’ operational environment,
and initiates the desired application. Section 3.6 details the
script’s operations such as optionally freezing the replicated
userspace in the clone to preserve its state for inspection.

2.1 Discussion

Usage Scope: CIVIC’s execution-inspection decoupling ap-
proach enables hotplugging analysis to a live system, but
without the associated cooperation, intrusion and interfer-
ence hassles. Isolating inspection impact in the clone allows
for a wide range of potentially heavyweight, intrusive or
speculative operations like: (i) systems monitoring such as
compliance scans and virusscanning, (ii) sandboxing: exper-
imenting with different procedures and applying the optimal
configuration on to the original system. For example, patch
validation [81], live diagnostics and remediation [71], (iii)
deep inspection such as application debugging, analysis and
optimization [17; 21], etc., (iv) proactive analytics such as
network filtering [15], malware detection [40], and fault in-
jection [51; 47].

Network Management: Production environments typically
have frontend networking nodes, like load balancers, for-
warding proxies or SDN controllers, that filter and redirect
incoming packets to backend systems. This is the registra-
tion point of a CIVIC clone (hotplugged with its own NIC),
so that incoming packets to the source VM can be mirrored
to the clone. Network spoofing may also be employed to let
the OS or applications inside the clone keep believing they’re
using the same network configuration as before.

Privacy: Cloning a user’s runtime environment can raise pri-
vacy concerns, but it provides the same kind of visibility and

access as do VMI-based [37; 76] and redirection-based solu-
tions [34; 35], or others that operate inside the original guest
context itself. We argue in favor of the same kind of trust
with the added advantage of guest operations remaining free
of any intrusion and interference from inspection and tun-
ing workflows, similar to VMI. Also, trusting the hypervisor
is a fundamental assumption common to all such hypervi-
sor facilitated solutions. This trust can be established using a
self-serving cloud model [11], as well as cloud auditing [36].

Generality: While we implement CIVIC for Linux guests, it
is equally applicable to Windows as well as Mac OSes. The
only in-guest (clone-side) component to CIVIC’s design is
code injection, which has been shown to work for other OSes
as well [16; 9; 58; 74].

Although we use GDB to aid with code injection, it is not
a necessary dependency for CIVIC. Employing GDB simpli-
fies the (static) code injection procedure such as modifying
clone’s memory directly, setting runtime break-points and
corresponding commands to execute automatically, as well
as locating addresses of the relevant kernel functions (al-
ternatively can be read from System.map symbol table file).
An alternative to GDB is to inject code through QEMU’s
dynamic binary translation engine 1 together with its Tiny
Code Generation API [96] . Other hypervisor-based injec-
tion techniques also exist as employed by redirection-based
solutions [40; 89; 35].

Also, CIVIC’s injection mechanism is independent of the
VM’s OS version, using only standard kernel functional-
ity, like the schedule() function as the clone interception
point.

Limitations: Since CIVIC depends on access to the clone’s
memory from the hypervisor, it is not applicable for en-
crypted VMs, or those protected from hypervisor access [54].

Even with the appropriate access, CIVIC may not be
suitable for all types of analysis due to the clone’s devia-
tion from the source. For example, any compliance scans or
healthchecks are only good at the point of cloning, and not
thereafter. Complete coverage may not be guaranteed during
application debugging since not all external inputs (e.g., in-
terrupts) are replicated, unlike record-and-replay solutions.
A hardware fault on the source VM’s host may not be present
at the clone’s end, which may change the behaviour of the
in-VM application under inspection.

Another side-effect of the clone’s independent existence
could be when the source communicates with an external en-
tity, say, a database backend. In this case, replicated requests
from the clone may corrupt the backend. Depending upon
the use-case these side-effects may be handled by: (i) drop-
ping the clone’s packets [29], (ii) freezing the corresponding
process in the clone, or (iii) identifying the duplicates at the

1 The injected code is static and does not need compilation at runtime;
QEMU TCG serves only as another option to avoid any GDB-dependency.
It might be possible to use QEMU directly to put breakpoints and redirect
execution, without going through its gdb-stub.

backend by assigning a unique IP to the clone, or (iv) syn-
chronously cloning all components of the system (e.g., the
webserver and the database) together [45; 22; 70; 75], as-
suming the side-effect observer isn’t the external world.

3. Implementation
CIVIC’s prototype pieces together existing implementa-
tions (with slight modifications) of post-copy live migra-
tion, copy-on-write disk and memory, and device hotplug-
ging. In addition to these building blocks, CIVIC incor-
porates a novel mechanism to run userspace code into the
clone through kernel code injection from the hypervisor.
The rationale behind these operations is already covered in
the Design Section. These operations are orchestrated by
a userspace bash script running on the host machine. Al-
though our implementation is on the KVM/QEMU platform,
these underlying constructs exist for the Xen hypervisor as
well [93; 92; 61; 91; 94].

3.1 Disk COW
In order to ensure consistent disk access, on the clone side
we use QEMU’s redirect-on-write [2] feature to create a
COW slice on top of the committed state so that clone’s
writes are redirected to a separate location than the original
image file. On the source side, we use a simplistic approach
of running the source VM in a QEMU snapshot mode,
and enforce a write back (commit) of its disk state before
cloning. A better alternative perhaps is to employ copy-on-
first-write approach [31] on source wherein the source con-
tinues to write to the same disk image as before, but before
a block gets overwritten, its original contents are saved to a
separate location. Still, the explicit commit step above en-
sures that the proper impact on the source is incorporated in
CIVIC’s evaluation.

3.2 Live Migration
CIVIC achieves source VM cloning by employing post-
copy migration [41], that fetches memory on demand sim-
ilar to the VM Fork abstraction [49] in Xen. We use the
latest QEMU post-copy implementation [24], which builds
on top of Linux’ userfault kernel feature [5] which en-
ables handling memory page faults in userspace. QEMU
uses this functionality to trap the clone’s accesses to re-
mote memory pages, fetch them from the source, and move
them into the clone VM process’ address space using the
remap anon pages 2 system call [5].

We make two modifications to default implementation.
First, while in a typical postcopy setting the original VM
is paused while the migrated VM fetches memory from it,
in CIVIC the source is allowed to resume operations as the
primary/production VM (COW enabled for consistency, see
next subsection), while the secondary migrated instance op-

2 remap anon pages syscall is now replaced by ioctls: https://lkml.
org/lkml/2015/3/5/576.

erates as the proxy clone. Second, the default implementa-
tion also has simultaneous pre-copy iterations that makes
the clone’s memory footprint similar to the source. Thus,
to make CIVIC clones lightweight, we minimize these pre-
copy transfers by only allowing the initial state fetch during
clone initiation via pre-copy, and thereafter switching to pure
post-copy i.e. memory-on-demand based fetches.

3.3 COW Memory
The source memory COW implementation follows the com-
mon approach of saving the original memory pages to a
holding area inside QEMU on source writes, and servic-
ing clone’s page-fetch requests based upon dirty flags, either
from the source’s memory directly for an unset flag or from
the holding area otherwise. We use HotSnap’s [22] approach
to enable COW snapshotting in KVM/QEMU. This involves
trapping different sources of writes to guest memory- write
faults by guest, DMA accesses from QEMU, direct writes
by KVM, and QEMU-internal writes. Depending upon the
source of writes, we modify KVM to either inform QEMU
to directly save the existing memory page contents before
being dirtied, or save the original page contents locally and
send them to QEMU via Linux’ copy to user().

3.4 Hotplugging
To enable IO communication on the clone with the outside
world, as discussed in Section 2, the clone is hotplugged with
its own NIC by using QEMU’s host net add functionality,
as well as a persistent store disk using QEMU’s drive add

functionality.

3.5 Code Injection
We use code injection as a means to initiate inspection op-
erations inside the clone, to avoid requiring (i) guest modifi-
cations in terms of installing helper scripts inside the guest,
as well as (ii) guest cooperation in terms of login credentials
to access clone’s shell. The basic goal with code injection is
to run an application loader script residing in the persistent
store, inside the clone OS’ userspace from the hypervisor.
We achieve this with the following sequence of operations:

1. Attach to the clone’s kernel using QEMUs GDB stub [64].
2. Inject machine code into an empty memory buffer. The

code performs the following operations:
(a) Save registers
(b) mount hotplugged disk
(c) exec application loader script
(d) Restore registers
(e) Return to caller

3. Break at clone kernel’s schedule() function.
4. Redirect flow to injected code (replace instruction by

jmpq)
5. Restore control flow (restore original instruction)
6. Detach GDB from clone.

https://lkml.org/lkml/2015/3/5/576
https://lkml.org/lkml/2015/3/5/576

We now detail the technical specifics required for some
of the above-mentioned steps.

Memory buffer (Step 2): An empty buffer can be ob-
tained by trapping or redirecting control to kmalloc() [16],
or hotplugging extra memory to the clone [40; 95; 80].
For convenience, in our current implementation, we use an
empty memory buffer at 16MB + 1 page from the begin-
ning of physical memory. Across different kernel versions,
we found this empty space to be sufficient for the 290 bytes
we need to inject code.

Mount and Exec (Steps 2b, 2c) : In order to use the
filesystem hosted inside the persistent store, the hotplugged
disk device must first be mounted inside the clone OS.
Achieving this from kernelspace boils down to calling the
do mount() kernel function with the appropriate device,
mountpoint and filesystem-type arguments set. Next, to run
the application loader shell script from the mounted disk in-
side the clone OS’ userspace, we invoke the kernel function
call usermodehelper setup() with path to the loader
script as an argument, followed by call usermodehelper

exec(). The script can be run with real-time priority [53]
for immediate execution.

Schedule() (Steps 3, 4, 5) : To preserve state consis-
tency in the clone, we use the kernel’s schedule() func-
tion as the control interception point, instead of hijacking
the system call handler as in [63]. Typical control redi-
rection flow involves saving and replacing an instruction
with a jumpq to the injected code, and restoring it thereafter.
Although any instruction can be selected for replacement,
we were simply able to leverage a NOP instruction (xchg
%ax,%ax) in schedule().

The injected code also includes instructions to disable/
enable interrupts appropriately as needed by the different
injected operations.

3.6 Application Loader Script
The previous stage results in an application loader script
running inside the clone OS’ userspace. Controlling the
clone now, as an inspection enabling proxy for the source,
is straightforward by utilizing OS-exported functionality.
Specifically, the loader script performs the following tasks
(‘once’ below refers to operations performed only for the
first clone):

1. [Optional:] Pause userspace processes (kill -STOP -1).
2. Disable source configured networking (ifdown).
3. Enable networking on hotplugged NIC (ifup).
4. Setup clone runtime environment

(a) [Once:] Mirror root partition (‘/’) on hotplugged
persistent store disk: automatically, via chroot (yum
--installroot).

(b) Update executable paths: prepend mirrored /bin to
$PATH.

(c) Update dynamic linker’s run-time bindings: prepend
mirrored /lib to ldconfig.

5. [Once:] Install application software and redirect paths in
config files to the persistent store’s ‘/’ sub-tree.

6. Run application, either directly from the persistent store’s
/bin or via symbolic links in ‘/’ pointing to persistent
store’s ‘/’.

The optional freezing of userspace processes enables pre-
serving the source’s runtime state for inspection inside clone.
In Section 4 we show how we use this feature to track
source’s process-level resource utilization via clone as a
proxy. The need for network reconfiguration is described in
Section 2.

Mirroring the root partition inside the hotplugged disk
enables state persistence, as well as dependency resolution
along the lines of chroot jails [52]. Application software in-
stallation typically involves downloading dependency pack-
ages, and if the installation process is allowed to run as is,
these helper binaries and/or libraries will be installed inside
the standard ‘/’ directory (/bin, /lib). Due to CIVIC’s de-
sign, these changes will not persist across cloning rounds.
One way of avoiding this is to require all dependency pack-
ages to exist (or be installed) in the source. But this enforces
guest cooperation and modification which is against CIVIC’s
design principles. A better alternative is to instead redirect
installation of all software components inside the clone to a
mirrored root partition inside the hotplugged persistent store,
and to update the linker/loader bindings and executable paths
correspondingly. A positive side-effect with such chroot-
like approach is that the source is spared from package pol-
lution and potential dependency conflicts. The end product
of this last CIVIC stage is a proxy clone completely set up
for analysis and inspection on behalf of the source without
any source intrusion and enforced cooperation.

4. Performance Evaluation
We evaluate CIVIC’s performance by answering the follow-
ing:

1. What is CIVIC’s memory footprint in terms of clone’s
memory usage, memory transferred and COW-ed?

2. How much time does it take to get the clone ready, includ-
ing time spent during migration, hotplugging, and code
injection?

3. What is the impact on the source VM in terms of down-
time and workload performance degradation?

Along with CIVIC clones we also create precopy clones,
just to observe and quantify the savings that postcopy offers
CIVIC in our setup.

Setup: The host is a 4 core Intel i5 @ 2.8GHz machine, with
16GB memory and Intel VT-x and EPT hardware virtualiza-
tion support. The software stack includes Linux-3.19 host
OS with KVM and userfault [8] support, QEMU 2.1.50

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

30.03 29.91 31.01

Precopy | malloc_static

Precopy | fresh_idle

CIVIC-postcopy | malloc_static & fresh_idle

VM Size (GB)

M
em

o
ry

 T
ra

n
sf

er
re

d
 (

M
B

)

Figure 2: Measuring memory footprint of CIVIC’s postcopy+COW clones and
precopy clones, for different source VM sizes and memory use configurations.

with postcopy migration support [25]. Guest VMs are con-
figured with 1 CPU core, {1G, 2G, 4G} RAM, and Linux
OS {3.2/Ubuntu, 3.4.4/Fedora}. The reported metrics in ex-
periments below (and in Section 5) are averaged across at
least 3 runs. The same host runs both source and clone VMs
(full copy, no page sharing), with QEMU migration trans-
fer rate set to 1Gbps. The host is assumed to have suffi-
cient resources to run the clone VM. For high consolida-
tion/contention scenarios, the clone can be run on a sepa-
rate lightly-loaded host; the CIVIC orchestration script (Sec-
tion 3) itself has negligible resource cost.

4.1 Memory Cost
We vary the memory load on the source while cloning it,
and measure the clone’s memory usage, memory trans-
ferred and memory COW-ed. The measurements are made
across three different source memory load configurations:
fresh idle, malloc static, and dirty dynamic. The first con-
figuration refers to a freshly booted idle VM, while the static
and dynamic memory-use configurations touch about 75%
of VM’s memory with the latter continuously redirtying it.
We use the stress utility [1] to achieve target memory us-
age in source.

For the first two source configurations, CIVIC clone’s
memory consumption (measured as resident set size (RSS))
is <=80MB, amount of memory COWed <=2.7MB, and
amount of memory transferred during migration is around
30MB, irrespective of the source VM size. Whereas for
dirty dynamic configuration, all metrics are equivalent to the
working set size i.e. ∼75% of the source VM size. This
is when the memory dirtying workload is run as-is inside
the clone VM as well, whereas in an alternate scenario the
process would optionally be frozen in the clone leading to
lean clones as in the other two configurations. Further re-
duction in the memory footprint for host-local clones can be
achieved by augmenting CIVIC with a page sharing opti-
mization.

On the other hand, as is to be expected, precopy clone’s
RSS and transfer size increases linearly with the source VM
size as shown in Figure 2. Note that for the dirty dynamic

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00
Precopy | malloc_static

Precopy | fresh_idle

CIVIC-postcopy | malloc_static & fresh_idle

VM Size (GB)

 C
lo

n
e

In
st

an
ti

at
io

n
 T

im
e

(s
)

Figure 3: Measuring clone instantiation time for precopy and CIVIC’s post-
copy+COW clones, for different source VM sizes and memory use configs.

configuration, precopy migration over network can only
complete when source’s memory dirty rate is less than the
network bandwidth (completed only for working set size
<=35MB, in experiments).

Summary: CIVIC’s footprint depends upon source’s work-
ing set size; for scenarios (such as monitoring) that aren’t
heavily dependent on full system state, the clones are light
weight with 30MB transfer size and 80MB RSS.

4.2 Clone Instantiation Time
Figure 3 shows how the clone instantiation time varies with
the source VM size for the different source’s memory-use
configurations as described in Section 4.1. Compared are
the end-to-end times including disk snapshotting, migration,
hotplugging, and code injection costs, up until the applica-
tion loader script execution inside the clone.

CIVIC’s instantiation time is independent of the source
VM size as well as its memory-use configuration, whereas
the VM size affects precopy cloning time linearly. The re-
sults remain the same when the memory load on the source
VM is replaced with a CPU intensive workload (sysbench
prime computation [6]). It takes about 6.5s for CIVIC clones
to get up and running, with the stage-wise breakdown being
about 0.2s for VM initialization, 4s for disk snapshotting and
hotplug, and 2.3s for code injection.

While the clone instantiation time can be reduced by hav-
ing the persistent store and NIC for clone operations hot-
plugged (but inactive) ahead of time inside the source, but it
introduces source modification which is against CIVIC’s de-
sign principles. A better alternative is to reuse the same clone
across successive rounds by only fetching the delta from the
latest source state. This would take away the hotplugging
and GDB overheads and lead to sub-second clones with an
inspection-ready environment. This serves as a possible fu-
ture optimization to CIVIC.

Summary: CIVIC clones are ready in at most 6.5s, irre-
spective of the source VM’s working set size.

4.3 Impact on Source VM
To measure CIVIC’s impact on the source VM, we peri-
odically clone it while running the following three work-
loads individually inside the source: (i) x264 video encod-
ing CPU benchmark [59] (v1.7.0) with ∼350MB of mem-
ory footprint, (ii) bonnie++ disk benchmark [65] (v1.96)
processing 4GB of data sequentially, and (iii) full system
webserver benchmark- httperf [57] (v0.9.0) serving distinct
2KB random-data files 512MB in working set size, to clients
running on separate machines. Additional measures were
taken to ensure true benchmark measurements, such as using
high performance virtio drivers in the guest, disabling disk
caching at hypervisor (and QEMU snapshot’s writeback
caching for bonnie++), ensuring network isn’t a bottleneck,
and pushing webserver to saturation.

Each cloning iteration performs periodic monitoring
tasks of compliance scan, healthcheck and resource moni-
toring (Section 5.1); by tracking open files and connections,
loaded modules, running applications, system logs and re-
source utilization metrics. CIVIC’s clone instantiation time
(Section 4.2) limits the monitoring frequency to 0.1Hz. The
average degradation on the source’s workload was observed
to be 5.2% on x264’s framerate, 1.2% on bonnie++’s disk
throughputs, and 10% on the webserver’s maximum sustain-
able capacity, attributable to work queue backlogging [77]
due to minor VM stuns (see downtime below).

In the case of monitoring, as well as inspection that
isn’t heavily dependent on full system state, a majority
of source’s memory would not get transferred over to the
clone (memory-on-demand). Thus, to additionally account
for higher-level analysis tasks like anomaly detection and
autotuning (Sections 5.3, 5.4), we also let a cloned instance
of the webserver operate in parallel with the source. For the
case of httperf, during the cloning process both the source
and the clone see 5-6% degradation on maximum sustain-
able capacity. Thereafter, both are able to operate at peak
capacity as recorded in source pre-cloning.

Finally, for measuring VM downtime, we use fping to
fire ICMP ECHO REQUEST packets to the source VM with
a 100ms timeout, and count the failed i.e. timeout-expired
requests. The VM downtime was recorded to be 0.4 seconds.

Although the source impact is low for the 0.1Hz max-
imum cloning frequency supported by our current imple-
mentation, this seems to translate to a heavy impact for
higher frequencies. For such high frequency use-cases, the
0.4s source VM stuns per cloning iteration would need to
be minimized. Also, a lower impact can be expected with
the potential optimization of reusing the same clone instance
across cloning rounds (Section 4.2).

Summary: CIVIC has a low impact on the source VM,
reaching 10% degradation with continuous (0.1Hz) cloning.

0 50 100 150 200 250
0

20

40

60

80

100

Time (s)

C
P

U
 U

sa
g

e
(%

)

(a)

0 50 100 150 200 250
0

20

40

60

80

100

Time (s)

C
P

U
 u

sa
g

e
(%

)
(b)

Figure 4: Measuring CPU usage with collectd in source (top), clone (bottom)

5. Applications
This section highlights CIVIC’s versatility by describing
how we have used CIVIC in different settings to facilitate
a variety of inspection operations. These scenarios don’t
necessarily require CIVIC to operate, but in most cases
CIVIC works better than other alternatives as described
below (more details in Section 6). First, the VMI-based
solutions [42; 76] would be incompatible with the stock
software employed to address these scenarios. Second, the
redirection-based solutions [73; 89; 35] would be very slow
and cause guest intrusion and interference by running han-
dler components inside the source VM, which is precisely
what some of these scenarios attempt to avoid. Finally, most
can be achieved by live cloning solutions [23; 49] by ei-
ther directly accessing the clones via credentials/SSH, or
through backdoors or hooks installed beforehand in the
source VM [85; 84]. But the former approach hurts cloud
manageability [35] and auditing [36], and wouldn’t work
when inspecting dysfunctional systems as in the Google
outage example [19], while the latter approach defeats cloud
portability [69; 48].

5.1 Safe Agent Reuse
Most companies require employees to run monitoring agents
on their machines (VMs) to ensure compliance, check
for vulnerabilities, or just monitor usage. Informal ac-
counts from employees highlights their concerns against
such heavyweight and/or intrusive but necessary agents.

0

100

200

300

400

500

600

Time [s]

(a) PHP 5.1.6
Time [s]

Memory Usage [MB]

Num PHP Processes

(b) PHP 5.3.20
Time [s]

90% objects with expired TTL

10% objects with expired TTL

(c) PHP 5.6.10

Figure 5: Count as well as memory usage of PHP processes in a webserver, for different proportions of cached data with expired TTL. Compared across 3 different PHP versions
with memory leaks, fixed between v5.1.6 to v5.6.10.

There have also been reported cases, such as at Amazon [7],
where bugs in agents caused severe performance degrada-
tion for the actual service being monitored. Although VM
introspection (VMI) [37; 76; 42] can be used to monitor
these systems non-intrusively, it requires extra functional-
ity duplication effort (Section 6). CIVIC enables reusing the
vast agent software codebase without the extra effort, while
providing similar isolation benefits by virtue of restricting
agents in the clone.

To provide simple visual evidence, we use process-level
resource tracking as an example for agent-based monitor-
ing. We have tested CIVIC successfully against three such
agents- an internal custom agent, a closed-source enterprise-
level agent- IBM Tivoli Endpoint Manager (BESClient [44]),
and a popular open-source monitoring agent-collectd [32].
The agents were run as-is, with the config files updated
to point to persistent store’s mirrored root partition for in-
stalling the agent software and associated dependencies.

In this experiment, we use collectd to track the resource
use metrics for a custom source workload that varies its
CPU and memory utilization sinusoidally. The workload
gets frozen in the clone, with its runtime state analyzed by
collectd injected on successive cloning iterations. Housing
this agent (one of eventually many such) in the clone avoids
installing up to 77 packages on the source. To illustrate the
performance of a CIVIC clone as a runtime monitoring
proxy for the source, Figure 4 compares the workload’s
CPU-usage tracking by collectd inside the clone, with the
expected curve had the agent run inside the source (memory
graphs similar; omitted for brevity). Section 4.2 discusses
improving the clone’s 0.1Hz monitoring frequency, in com-
parison to 1Hz as configured for in-source monitoring.

5.2 Problem Diagnostics and Troubleshooting
By replicating a troubled system’s runtime state inside
a clone, and introducing debugging tools in it, CIVIC
enables risk-free exploratory diagnosis while absorbing
the associated impact and side-effects. Since this use-case
requires manual diagnosis, a root shell also gets injected for
the dev, again useful when source system access is restricted.

0 5 10 15 20
0

3

6

9

12

15

18
PHP 5.1.6
PHP 5.3.20
PHP 5.6.10

Time [s]

M
e

m
o

ry
 U

s
a

g
e

 [
M

B
]

Figure 6: Measuring PHP process’ memory usage via strace; Leaks detected in
versions 5.1.6 and 5.3.20

We highlight this problem diagnostics use-case by cap-
turing and fixing PHP memory leaks (by recreating bugs
#45161 and #65458 [62]) in our custom webserver setting.
Our apache + php-fastcgi webserver serves incoming user
requests for data that it caches from a backend server (a
database) based upon time-to-live (TTLs). When the TTLs
expire, the webserver either fetches fresh data from backend,
or otherwise renews their TTL until the next synchroniza-
tion cycle. Figure 5(a) shows two different memory usage
patterns for different proportion of data with expired TTLs-
10% and 90%, without any fresh data being fetched from
the backend. Also, the difference in the count (Figure 5(a)’s
bottom-most curves), and RSS for PHP processes in the two
cases does not account for the memory usage explosion.

At this point, troubleshooting this apparent memory leak
on the webserver VM itself could degrade its sustainable
request rate by further polluting its memory cache and/or
adding debugging/instrumentation load to the system (up
to 20.5% capacity degradation with the diagnostics em-
ployed below). Furthermore, the production system might
not have the instrumentation frameworks installed there and
one wouldn’t want to perturb the environment even more. To
enable risk-free diagnosis, CIVIC replicates the problematic
runtime cache state into a webserver clone, introduces diag-
nostics tools, and mirrors incoming requests to it.

ü  Detects	 anomalous	 control	 flow	
ü  Detects	 performance	 anomaly	 for	 normal	 flow	
ü  Assists	 in	 avoiding	 fault-‐masking	 repercussions	

	

ü  Raises	 cri)cal	 alarms	 only	 (reduced	 false	 posi)ves)	
ü  Provides	 richer	 alarm	 context	

	 	 	 	 	 	 	 	 	 -‐	 method	 parameters,	 call	 graphs,	 stack	 trace	
ü  Be?er	 root	 cause	 diagnosis	

	 	 	 	 	 	 	 	 	 -‐	 internal	 vs.	 external,	 soAware	 vs.	 hardware	 	
ü  Suggests	 possible	 fix	

Figure 7: SAAD under CIVIC: enhancements on enabling debug mode in clones,
in addition to stock SAAD capabilities (dashed box)

In this example, we attach strace to the apache/php
processes in the webserver clone to measure their memory
usage trends [79]. Figure 6 plots the memory usage across
time across 3 different PHP versions- v5.1.6 used in the
webserver experiment of Figure 5(a), v5.3.20 that fixed one
leak, and v5.6.10 with no leaks. Although new data was not
being fetched from the backend, simply communicating with
it for TTL renewal was enough to activate the memory leaks
(caused by cURL [4] reuse) Figure 5(b) and (c) plot the clone
webserver’s memory usage across time on changing the PHP
versions. The latter setting gets reported to the source to fix
the issue.

5.3 Anomaly Detection
CIVIC enables a model where secondary functionality is
introduced as hotpluggable components, instead of bak-
ing it into the primary base service. Employing clones
to provide the add-on functionality (such as a diagnostics
framework) allows the latter to be as intrusive or destructive
as need be, while also isolating possibly conflicting function-
alities (or base service modifications) in their own separate
environments (clones).

We highlight this capability by enabling the SAAD [38]
anomaly detector to be hotplugged to a base Cassandra [50]
service. SAAD serves as an example for a whole class of
Java-based services that can be automatically ported over
CIVIC by using JVM classloader level class-hotswapping.

Instead of users having to patch their Cassandra versions
to get SAAD’s functionality, CIVIC enables running an
unmodified Cassandra service by adding SAAD-equipped
clones to the Cassandra worker pool on-the-fly. To preserve
a source’s replicated runtime state in a clone (which will be
lost on Cassandra re-instantiation with SAAD’s version), we
use JRebel tool [97] to automatically replace and reload run-
ning instances of stock Cassandra classes with their SAAD
versions inside the clone. Requests to the source worker
node are mirrored (either completely or partially), and redi-
rected to the clone(s) under analysis.

Along with the source service being spared from analysis’
intrusion and interference, CIVIC also improves SAAD’s
anomaly detection accuracy and quality. Figure 7 highlights

Httperf Surge Rubis
0.0

50.0

100.0

150.0

200.0
Base config
Tuned config for Httperf
Tuned config for Surge
Tuned config for Rubis

N
o

rm
al

iz
e

d
 T

h
ro

u
g

h
p

u
t

>500

Figure 8: Webserver capacity variations with apache+kernel tuning

SAAD’s capability enhancement in a restriction-free oper-
ation mode, in this particular case by enabling debug-level
logging on-the-fly in the clone. Such verbose logging is not
recommended in a production system since it causes heavy
performance degradation, such as a 25.8% impact on Cas-
sandra’s throughput in our experiments with the YCSB [20]
benchmark. Similarly, CIVIC enables SAAD to incorporate
potentially heavyweight syscall tracing in its analysis while
limiting the associated overhead to the clone. This can im-
prove SAAD’s accuracy by additionally identifying anoma-
lous methods, an example being a buggy infinite loop in Cas-
sandra bug #5064 [13; 26].

5.4 Autotuning-as-a-Service
Webserver tuning is an error-prone, time consuming [67],
computationally intensive, and highly workload-dependent
task [18; 98; 100], with over 240 configurable apache param-
eters. As a final demonstration of CIVIC’s usefulness, we
propose to employ CIVIC clones to perform faster, risk-
free and on-the-fly webserver configuration-parameter
autotuning.

Using the context of Amazon cloud service, the users
would simply need to deploy their webserver VMs on the
cloud without having to predict how their traffic would look
like, or worry about tuning their server themselves or via
autotuners. With the webserver live, CIVIC would fork the
clone(s), carrying over the webserver’s runtime cache state
onto the clone (otherwise costly to rebuild, see ’Instance
Reproduction’ in Section 6), followed by autotuner [27; 67;
100; 18] injection, and live input request replication and
redirection to the clone. Furthermore, multiple clones can be
employed in parallel for a faster, more aggressive and less
time-constrained configuration space exploration.

To quantify the potential gains from such a model, we
tune webserver configuration parameters for the following
three workloads: (i) a streaming type Httperf [57] work-
load, (ii) a Surge [10] workload modeled to represent actual
traffic serviced by commodity webservers, and (iii) a RU-
BiS [60] auction website workload modeled after eBay. In
this experiment, the configuration space under tuning in-
cludes (i) apache (httpd.conf) parameters such as core
multi-processing module type, MaxClients, KeepAlive

Timeout, ListenBacklog, etc., as well as (ii) kernel
(sysctl) parameters such as net.ipv4.tcp rmem, vm.

swappiness, fs.file-max amongst others. For each
workload, Figure 8 plots the webserver’s capacity (normal-
ized to the base system configuration) for 4 configurations-
base, tuned configuration for the particular workload, as well
the best performing configurations for the other two work-
loads. As can be seen, no single configuration works best
for all workloads, and the tuned configuration for one may
not be ideal for the other, leading to a performance range of
13% to over 500% of the base configuration in our experi-
ments. Such extreme variations are not uncommon [3]. This
experiment illustrates the need for tuning, and the potential
benefits to be had with CIVIC-enabled autotuning.

6. Related Work
In this Section, we discuss other techniques that can poten-
tially enable safe VM inspection.
Virtual machine introspection (VMI): VMI based moni-
toring and inspection solutions [37; 42; 76] operate outside
the guest VM on a live runtime image of the VM’s mem-
ory. However, the runtime view exposed in such a manner is
of a raw byte-level form, requiring deep per-guest-OS ker-
nel data structure information to reconstruct logical infor-
mation. Additionally, it demands effort in terms of either
exposing the entire OS like view (/proc etc.) for already
existing software, or writing fresh tools using introspection
directly. Tools for automatic generation of VMI-based util-
ities [28] are much slower than native execution, require
in-guest training and expert intervention, and still remain
incompatible with existing software. CIVIC, on the other
hand, enables efficient reuse of the vast stock software code-
base without requiring such effort.
Redirection-based solutions: These operate from a sec-
ondary context such a separate privileged VM or the hy-
pervisor, and feed off of the guest VM’s runtime state di-
rectly. This secondary context can be viewed as offering
isolation, with access to the guest state being facilitated by
employing techniques such as (i) process relocation outside
guest [73], (ii) kernel data redirection to guest [33; 34; 66],
and (iii) component implanting (syscall, function-call, mod-
ule or process) inside guest [40; 89; 35; 16; 12; 86].

A major concern with most of these is that they inject
handler components inside the guest VM itself. Such guest
intrusion and interference would be unacceptable in a pro-
duction VM. CIVIC, on the other hand, restricts all opera-
tions to clones. In many cases, only basic utilities (like ps,
lsmod) are supported and that too with heavy performance
slowdowns [33; 34; 89; 35], one reason being reliance on
binary translation. In other cases, the solution is not trans-
parent to the utility software [40], which needs to be made
aware of a non-standard runtime environment (e.g., recom-
pilation with static linking and hypercalls). CIVIC, on the
other hand, supports complex stock software software with

negligible runtime slowdown. Some solutions require sepa-
rate OS fingerprinting to use the exact same version of the
guest OS in the secondary VM [34; 66], while cloning gives
that for free in CIVIC.

Instance Reproduction: These methods are capable of re-
producing a problematic occurrence in another VM, thus
providing greater diagnosis flexibility and isolation. These
can be sub-classified based upon how the secondary VM is
created from the primary- (i) a cold boot over base image
copy, (ii) from point-in-time snapshot [83], (iii) live cloning
with runtime state [23; 49; 78; 101; 56], or (iv) via record-
and-replay [30; 72; 17; 46].

Copy booting suffers from full memory duplication, in-
stantiation latency, as well state rebuilding which can be
costly (e.g. up to 15 minutes to warmup caches or load
data [14; 68]). VM snapshots, on the other hand, are useful
for fast provisioning [39; 87; 102; 90]. But, for a secondary
VM instantiated from a point-in-time snapshot, explicit state
propagation, especially when the snapshot is not recent,
costs additional developer effort, resource wastage (idle
workers) and migration delays (consolidated idle VMs) [49].
Additionally, both of these categories may miss capturing
exact point-in-time occurrences or anomalies. CIVIC cir-
cumvents all these concerns via on-demand replication of
the source VM’s live runtime state.

While other work has explored runtime VM replication
(the third category), unlike CIVIC, the replicas do not per-
form new functionality and are typically employed for re-
liability and resource optimization such as high availabil-
ity [23], fault tolerance [78], parallel worker forking [49; 56]
and speeding up system testing [101]. Furthermore, they are
based on the assumption of direct access to clones, which
although valid when users themselves create replicas for
self management, but problematic when access is restricted
as in production environments. For the latter, it would ei-
ther require enforcing guest cooperation for login access, or
defeat portability by installing vendor-specific drivers and
agents [85; 82; 84; 55], even if assuming this would be ac-
ceptable. CIVIC instead employs code injection to avoid im-
posing such guest cooperation and vendor locking. However,
even without requring access to the clone VM, some types of
analysis may still be performed, as done in JustRunIt [99].
It employes clone-based sandboxing to aid system adminis-
trators with tasks such as server consolidation and upgrade
evaluation. For example, by experimenting with different re-
source allocations at the clone VM and observing its corre-
sponding throughput / response time, it can estimate mini-
mum resource needs for a service while satisfying its SLAs.
CIVIC, on the other hand, can perform a wider range of anal-
ysis, by exercising control within the clone VM as well.

Finally, in case of record-and-replay based replication,
new analysis in the middle of a recording is typically lim-
ited to the granularity of registers, instructions, memory
addresses, page bits, and disk blocks. Although this en-

ables interesting analysis like heap overflow detection and
memory safety checking [17], it is tricky to realize analy-
sis at an OS or application-level semantics as with CIVIC.
Also unlike CIVIC, these systems do not support changes to
the application state [81]. Further architectural requirements
and constraints that CIVIC does not have to deal with in-
clude maintaining multi-threaded scheduling order, precise
instruction/branch counting, and stricter constraints on tar-
get architecture than virtualization, amongst others [23].

7. Conclusion
In this work, we’ve presented our execution-inspection de-
coupling approach to enable safe inspection of production
VMs. All inspection impact and side-effects are restricted
to a runtime replica (the clone) of the original unmodified
VM (the source). New functionality is introduced on-the-
fly using runtime code injection into the clone. By using
clones as inspection proxies, and without enforcing access
via pre-installed credentials or special agents / hooks inside
the original VMs, CIVIC allows developers to gain opera-
tional visibility and control in the DevOps automation world.
We demonstrated CIVIC’s versatility and benefits with four
use-cases. Our evaluation showed our approach is nimble
and lightweight and has a low impact on the target systems.

References
[1] Amos Waterland . Stress.

http://people.seas.harvard.edu/ apw/stress/.

[2] Anthony Liguori and Stefan Hajnoczi . QEMU Snapshots.
http://wiki.qemu.org/Documentation/CreateSnapshot

and http://wiki.qemu.org/Features/Snapshots2.

[3] Caleb Gilbert. Scaling Drupal: HTTP
pipelining and benchmarking revisited.
http://rocketmodule.com/blog/scaling-drupal-

http-pipelining-and-benchmarking-revisited/.

[4] Daniel Stenberg. PHP cURL Manual.
http://no1.php.net/manual/en/intro.curl.php.

[5] Jonathan Corbet and Andrea Arcangeli. Page faults in user
space. http://lwn.net/Articles/615086/.

[6] Alexey Kopytov. SysBench Manual.
http://sysbench.sourceforge.net/docs/#data

base mode.

[7] Amazon. Summary of the October 22,2012 AWS Service
Event in the US-East Region. https://aws.amazon.com/
message/680342/.

[8] Andrea Arcangeli. Linux Userfault.
https://kernel.googlesource.com/pub/scm/linux/

kernel/git/andrea/aa/+/userfault.

[9] Angelo Laub. Practical Mac OS X Insecurity.
https://events.ccc.de/congress/2004/fahrplan/

files/95-macosx-insecurity-paper.pdf.

[10] P. Barford and M. Crovella. Generating representative web
workloads for network and server performance evaluation. In
Proceedings of the 1998 ACM SIGMETRICS Joint Interna-

tional Conference on Measurement and Modeling of Com-
puter Systems, SIGMETRICS ’98/PERFORMANCE ’98,
pages 151–160, New York, NY, USA, 1998. ACM.

[11] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganap-
athy. Self-service cloud computing. In Proceedings of the
2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 253–264, New York, NY, USA,
2012. ACM.

[12] M. Carbone, M. Conover, B. Montague, and W. Lee. Secure
and robust monitoring of virtual machines through guest-
assisted introspection. In Proceedings of the 15th Interna-
tional Conference on Research in Attacks, Intrusions, and
Defenses, RAID’12, pages 22–41, 2012.

[13] Cassandra. Bug 5064: Alter table when it includes collec-
tions makes cqlsh hang. https://issues.apache.org/

jira/browse/CASSANDRA-5064.

[14] J. Chen, S. Ghanbari, F. Iorio, A. B. Hashemi, and C. Amza.
Ensemble: A tool for performance modeling of applications
in cloud data centers. In IEEE TRANSACTIONS ON CLOUD
COMPUTING, SPECIAL ISSUE ON SCIENTIFIC CLOUD
COMPUTING, 2015.

[15] P. M. Chen and B. D. Noble. When virtual is better than real.
In HotOS, pages 133–138, 2001.

[16] T.-c. Chiueh, M. Conover, and B. Montague. Surrepti-
tious deployment and execution of kernel agents in windows
guests. In Proceedings of the 2012 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing
(Ccgrid 2012), CCGRID ’12, pages 507–514, Washington,
DC, USA, 2012. IEEE Computer Society.

[17] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic
program analysis from execution in virtual environments.
In USENIX 2008 Annual Technical Conference on Annual
Technical Conference, pages 1–14, 2008.

[18] I.-H. Chung and J. K. Hollingsworth. Automated cluster-
based web service performance tuning. In Proceedings of the
13th IEEE International Symposium on High Performance
Distributed Computing, HPDC ’04, pages 36–44, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[19] C. Colohan. The Scariest Outage Ever. CMU SDI/ISTC
Seminar Series. http://www.pdl.cmu.edu/SDI/2012/

083012b.html, 2012.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Comput-
ing, SoCC ’10, pages 143–154, New York, NY, USA, 2010.
ACM.

[21] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Se-
cure virtual architecture: A safe execution environment for
commodity operating systems. SIGOPS Oper. Syst. Rev.,
41(6):351–366, Oct. 2007.

[22] L. Cui, B. Li, Y. Zhang, and J. Li. Hotsnap: A hot distributed
snapshot system for virtual machine cluster. In Proceed-
ings of the 27th International Conference on Large Instal-
lation System Administration, LISA’13, pages 59–73, Berke-
ley, CA, USA, 2013. USENIX Association.

https://aws.amazon.com/message/680342/
https://aws.amazon.com/message/680342/
https://issues.apache.org/jira/browse/CASSANDRA-5064
https://issues.apache.org/jira/browse/CASSANDRA-5064
http://www.pdl.cmu.edu/SDI/2012/083012b.html
http://www.pdl.cmu.edu/SDI/2012/083012b.html

[23] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchin-
son, and A. Warfield. Remus: High availability via asyn-
chronous virtual machine replication. In Proceedings of the
5th USENIX Symposium on Networked Systems Design and
Implementation, pages 161–174. San Francisco, 2008.

[24] Dave Gilbert. PostCopyLiveMigra-
tion. http://wiki.qemu.org/Features/

PostCopyLiveMigration.

[25] Dave Gilbert. PostCopyLiveMigration.
https://github.com/orbitfp7/qemu/tree/

wp3-postcopy.

[26] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora,
and G. Jiang. Perfscope: Practical online server performance
bug inference in production cloud computing infrastructures.
In Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, pages 8:1–8:13, New York, NY, USA, 2014.
ACM.

[27] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Man-
aging web server performance with autotune agents. IBM
Systems Journal, 42(1):136–149, 2003.

[28] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee.
Virtuoso: Narrowing the Semantic Gap in Virtual Machine
Introspection. In IEEE Security and Privacy ’11, pages 297–
312.

[29] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan.
Colo: Coarse-grained lock-stepping virtual machines for
non-stop service. In Proceedings of the 4th Annual Sympo-
sium on Cloud Computing, SOCC ’13, pages 3:1–3:16, New
York, NY, USA, 2013. ACM.

[30] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. SIGOPS Oper. Syst. Rev.,
36(SI):211–224, Dec. 2002.

[31] EMC. VNX Snapshots White Paper. https://www.

emc.com/collateral/software/white-papers/

h10858-vnx-snapshots-wp.pdf.

[32] Florian octo Forster. Collectd: The system statistics collec-
tion daemon. https://collectd.org/.

[33] Y. Fu and Z. Lin. Space Traveling across VM: Automati-
cally Bridging the Semantic Gap in Virtual Machine Intro-
spection via Online Kernel Data Redirection. In IEEE Secu-
rity&Privacy’12.

[34] Y. Fu and Z. Lin. Exterior: Using a dual-vm based external
shell for guest-os introspection, configuration, and recovery.
In Proceedings of the 9th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE
’13, pages 97–110, 2013.

[35] Y. Fu, J. Zeng, and Z. Lin. Hypershell: A practical hypervisor
layer guest os shell for automated in-vm management. In
Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’14, pages 85–
96, 2014.

[36] A. Ganjali and D. Lie. Auditing cloud management using
information flow tracking. In Proceedings of the Seventh
ACM Workshop on Scalable Trusted Computing, STC ’12,
pages 79–84, New York, NY, USA, 2012. ACM.

[37] T. Garfinkel and M. Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection. In
NDSS, pages 191–206, 2003.

[38] S. Ghanbari, A. B. Hashemi, and C. Amza. Stage-aware
anomaly detection through tracking log points. In Proceed-
ings of the 15th International Middleware Conference, Mid-
dleware ’14, 2014.

[39] G. R. Goodson, S. Susarla, and K. Srinivasan. System and
method for fast restart of a guest operating system in a virtual
machine environment, Aug. 23 2011. US Patent 8,006,079.

[40] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process implanting:
A new active introspection framework for virtualization. In
Reliable Distributed Systems (SRDS), 2011 30th IEEE Sym-
posium on, pages 147–156. IEEE, 2011.

[41] M. R. Hines and K. Gopalan. Post-copy based live vir-
tual machine migration using adaptive pre-paging and dy-
namic self-ballooning. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, VEE ’09, pages 51–60, New York, NY,
USA, 2009. ACM.

[42] J. Hizver and T.-c. Chiueh. Real-time deep virtual machine
introspection and its applications. In Proceedings of the
10th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’14, pages 3–14, New
York, NY, USA, 2014. ACM.

[43] J. Humble and D. Farley. Continuous delivery: reliable soft-
ware releases through build, test, and deployment automa-
tion. Pearson Education, 2010.

[44] IBM. BigFix / Endpoint Manager.
https://github.com/bigfix/platform-releases.

[45] A. Kangarlou, P. Eugster, and D. Xu. Vnsnap: Taking snap-
shots of virtual networked environments with minimal down-
time. In 2009 IEEE/IFIP International Conference on De-
pendable Systems & Networks, pages 524–533. IEEE, 2009.

[46] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
Proceedings of the annual conference on USENIX Annual
Technical Conference, 2005.

[47] Konstantin Boudnik. Hadoop: Code Injection, Distributed
Fault Injection. http://www.boudnik.org/~cos/docs/

Hadoop-injection.pdf.

[48] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and
M. Kunze. Cloud federation. In Proceedings of the 2nd
International Conference on Cloud Computing, GRIDs, and
Virtualization, CLOUD COMPUTING 2011.

[49] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. Snowflock: Rapid virtual machine
cloning for cloud computing. In EuroSys, 2009.

[50] A. Lakshman and P. Malik. Cassandra: A decentral-
ized structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010.

[51] M. Le and Y. Tamir. Fault injection in virtualized systems-
challenges and applications. Dependable and Secure Com-
puting, IEEE Transactions on, 12(3):284–297, May 2015.

https://www.emc.com/collateral/software/white-papers/h10858-vnx-snapshots-wp.pdf
https://www.emc.com/collateral/software/white-papers/h10858-vnx-snapshots-wp.pdf
https://www.emc.com/collateral/software/white-papers/h10858-vnx-snapshots-wp.pdf
http://www.boudnik.org/~cos/docs/Hadoop-injection.pdf
http://www.boudnik.org/~cos/docs/Hadoop-injection.pdf

[52] Linux man page. Chroot.
http://linux.die.net/man/1/chroot.

[53] Linux man page. chrt - manipulate real-time attributes of a
process. http://linux.die.net/man/1/chrt.

[54] Matthew H. Intel SGX for Dummies (In-
tel SGX Design Objectives). https://

software.intel.com/en-us/blogs/2013/09/26/

protecting-application-secrets-with-intel-sgx.

[55] Microsoft Azure. VM Agent and Extensions .
https://azure.microsoft.com/en-us/blog/

vm-agent-and-extensions-part-2/.

[56] M. J. Mior and E. de Lara. Flurrydb: A dynamically scalable
relational database with virtual machine cloning. In 4th An-
nual International Systems and Storage Conference, Haifa,
Israel, May 2011.

[57] D. Mosberger and T. Jin. httperf - a tool for measuring
web server performance. SIGMETRICS Perform. Eval. Rev.,
26(3):31–37, 1998.

[58] Nemo. Abusing Mach on Mac OS X .
http://uninformed.org/index.cgi?v=4&a=3.

[59] OpenBenchmarking/Phoronix. x264 Test Profile. http:

//openbenchmarking.org/test/pts/x264-1.7.0.

[60] OW2 Consortium. RUBiS: Rice University Bidding System.
http://rubis.ow2.org/.

[61] Patrick Colp. VM Snapshots.
http://www-archive.xenproject.org/files/

xensummit oracle09/VMSnapshots.pdf.

[62] PHP. Bug 45161 and 65458.
https://bugs.php.net/bug.php?id=45161 and

https://bugs.php.net/bug.php?id=65458.

[63] B. Procházka, T. Vojnar, and M. Drahanskỳ. Hijacking the
linux kernel. In MEMICS, pages 85–92, 2010.

[64] QEMU. Documentation/Debugging: Using gdb.
http://wiki.qemu.org/Documentation/Debugging.

[65] Russell Coker. Bonnie++. http://www.coker.com.au/

bonnie++/.

[66] A. Saberi, Y. Fu, and Z. Lin. Hybrid-bridge: Efficiently
bridging the semantic-gap in vmi via decoupled execution
and training memoization. In NDSS, 2014.

[67] A. Saboori, G. Jiang, and H. Chen. Autotuning configura-
tions in distributed systems for performance improvements
using evolutionary strategies. In Proceedings of the 2008
The 28th International Conference on Distributed Comput-
ing Systems, ICDCS ’08, pages 769–776, Washington, DC,
USA, 2008. IEEE Computer Society.

[68] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone.
Application level ballooning for efficient server consolida-
tion. In Proceedings of the 8th ACM European Conference
on Computer Systems, EuroSys ’13, pages 337–350, 2013.

[69] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, and S. Dust-
dar. Winds of change: From vendor lock-in to the meta cloud.
IEEE Internet Computing, 17(1):69–73, Jan. 2013.

[70] B. Shi, B. Li, L. Cui, J. Zhao, and J. Li. Syncsnap: Synchro-
nized live memory snapshots of virtual machine networks. In
2014 IEEE Intl Conf on High Performance Computing and

Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded
Software and Syst (HPCC,CSS,ICESS), pages 490–497, Aug
2014.

[71] L. M. Silva, J. Alonso, P. Silva, J. Torres, and A. Andrze-
jak. Using virtualization to improve software rejuvenation.
In Network Computing and Applications, 2007. NCA 2007.
Sixth IEEE International Symposium on, pages 33–44. IEEE,
2007.

[72] D. Srinivasan and X. Jiang. Time-traveling forensic analysis
of vm-based high-interaction honeypots. In Security and
Privacy in Communication Networks, pages 209–226. 2012.

[73] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process out-
grafting: An efficient ”out-of-vm” approach for fine-grained
process execution monitoring. In Proceedings of the 18th
ACM Conference on Computer and Communications Secu-
rity, CCS ’11, pages 363–374, New York, NY, USA, 2011.
ACM.

[74] Stanley Cen. Mac OS X Code In-
jection and Reverse Engineering .
http://stanleycen.com/blog/mac-osx-code-injection/.

[75] R. Sun, J. Yang, Z. Gao, and Z. He. Lsovc: A framework for
taking live snapshot of virtual cluster in the cloud. In 2013
IEEE 10th International Conference on High Performance
Computing and Communications 2013 IEEE International
Conference on Embedded and Ubiquitous Computing, pages
1727–1732, Nov 2013.

[76] S. Suneja, C. Isci, V. Bala, E. de Lara, and T. Mummert. Non-
intrusive, out-of-band and out-of-the-box systems monitor-
ing in the cloud. In The 2014 ACM International Conference
on Measurement and Modeling of Computer Systems, SIG-
METRICS ’14, pages 249–261, New York, NY, USA, 2014.
ACM.

[77] S. Suneja, C. Isci, E. de Lara, and V. Bala. Exploring vm
introspection: Techniques and trade-offs. In Proceedings of
the 11th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’15, pages 133–
146, New York, NY, USA, 2015. ACM.

[78] Y. Tamura. Kemari: Fault tolerant vm synchronization based
on kvm. 2010.

[79] Tim Starling. Measuring memory usage with strace.
http://tstarling.com/blog/2010/06/measuring-

memory-usage-with-strace/.

[80] Vasilis Liaskovitis, Igor Mamme-
dov, et. al. ACPI memory hotplug.
https://lists.gnu.org/archive/html/qemu-devel/

2014-04/msg00734.html.

[81] N. Viennot, S. Nair, and J. Nieh. Transparent mutable replay
for multicore debugging and patch validation. In Proceed-
ings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’13, pages 127–138, New York, NY,
USA, 2013. ACM.

[82] VMware. Guest Operating System Customization Re-
quirements . https://pubs.vmware.com/vsphere-51/

index.jsp#com.vmware.vsphere.vm_admin.doc/

http://linux.die.net/man/1/chrt
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://azure.microsoft.com/en-us/blog/vm-agent-and-extensions-part-2/
https://azure.microsoft.com/en-us/blog/vm-agent-and-extensions-part-2/
http://openbenchmarking.org/test/pts/x264-1.7.0
http://openbenchmarking.org/test/pts/x264-1.7.0
http://www.coker.com.au/bonnie++/
http://www.coker.com.au/bonnie++/
https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.vm_admin.doc/GUID-E63B6FAA-8D35-428D-B40C-744769845906.html
https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.vm_admin.doc/GUID-E63B6FAA-8D35-428D-B40C-744769845906.html

GUID-E63B6FAA-8D35-428D-B40C-744769845906.

html.

[83] VMware. Understanding Clones. https://www.vmware.

com/support/ws5/doc/ws_clone_overview.html.

[84] VMware. VMCI Sockets Documentation.
www.vmware.com/support/developer/vmci-sdk/.

[85] VMware. VMWare Tools. http://kb.vmware.com/kb/

340.

[86] S. Vogl, F. Kilic, C. Schneider, and C. Eckert. X-tier: Kernel
module injection. In J. Lopez, X. Huang, and R. Sandhu, ed-
itors, Network and System Security, volume 7873 of Lecture
Notes in Computer Science, pages 192–205. Springer Berlin
Heidelberg, 2013.

[87] E. Warszawski and M. Ben-Yehuda. Fast initiation of work-
loads using memory-resident post-boot snapshots, Nov. 3
2015. US Patent App. 14/930,674.

[88] J. Wettinger, U. Breitenbücher, and F. Leymann. Standards-
based devops automation and integration using tosca. In Pro-
ceedings of the 2014 IEEE/ACM 7th International Confer-
ence on Utility and Cloud Computing, UCC ’14, pages 59–
68, Washington, DC, USA, 2014. IEEE Computer Society.

[89] R. Wu, P. Chen, P. Liu, and B. Mao. System call redirection:
A practical approach to meeting real-world virtual machine
introspection needs. In Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP International Confer-
ence on, pages 574–585, 2014.

[90] X. Wu, Z. Shen, R. Wu, and Y. Lin. Jump-start cloud: ef-
ficient deployment framework for large-scale cloud applica-
tions. Concurrency and Computation: Practice and Experi-
ence, 24(17):2120–2137, 2012.

[91] Xen Project Blog. Debugging on xen.
https://blog.xenproject.org/2009/10/21/

debugging-on-xen/.

[92] Xen Project Wiki. Blktap.
http://wiki.xenproject.org/wiki/Blktap.

[93] Xen Project Wiki. Migration.
http://wiki.xenproject.org/wiki/Migration.

[94] Xen.org: Sean Dague, Daniel Stekloff, Reiner Sailer,
and Stefan Berger. Xen Management User Interface.
http://xenbits.xen.org/docs/4.3-testing/man/

xm.1.html#block devices.

[95] Yasuaki Ishimatsu. Memory Hotplug.
http://events.linuxfoundation.org/sites/

events/files/lcjp13 ishimatsu.pdf.

[96] J. Zeng, Y. Fu, and Z. Lin. Pemu: A pin highly compatible
out-of-vm dynamic binary instrumentation framework. In
Proceedings of the 11th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, VEE
’15, pages 147–160, New York, NY, USA, 2015. ACM.

[97] ZeroTurnaround. JRebel Java Plugin.
http://zeroturnaround.com/software/jrebel/.

[98] F. Zhang, J. Cao, L. Liu, and C. Wu. Fast autotuning con-
figurations of parameters in distributed computing systems
using ordinal optimization. In Proceedings of the 2009 In-
ternational Conference on Parallel Processing Workshops,

ICPPW ’09, pages 190–197, Washington, DC, USA, 2009.
IEEE Computer Society.

[99] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos,
and Y. Turner. Justrunit: Experiment-based management of
virtualized data centers. In Proc. USENIX Annual technical
conference, pages 18–18, 2009.

[100] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic
configuration of internet services. SIGOPS Oper. Syst. Rev.,
41(3):219–229, Mar. 2007.

[101] J. Zhi, S. Suneja, and E. De Lara. The case for system
testing with swift hierarchical vm fork. In Proceedings of the
6th USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’14, pages 19–19, 2014.

[102] J. Zhu, Z. Jiang, and Z. Xiao. Twinkle: A fast resource
provisioning mechanism for internet services. In INFOCOM,
2011 Proceedings IEEE, pages 802–810, 2011.

https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.vm_admin.doc/GUID-E63B6FAA-8D35-428D-B40C-744769845906.html
https://pubs.vmware.com/vsphere-51/index.jsp#com.vmware.vsphere.vm_admin.doc/GUID-E63B6FAA-8D35-428D-B40C-744769845906.html
https://www.vmware.com/support/ws5/doc/ws_clone_overview.html
https://www.vmware.com/support/ws5/doc/ws_clone_overview.html
http://kb.vmware.com/kb/340
http://kb.vmware.com/kb/340

	Introduction
	CIVIC's Design
	Discussion

	Implementation
	Disk COW
	Live Migration
	COW Memory
	Hotplugging
	Code Injection
	Application Loader Script

	Performance Evaluation
	Memory Cost
	Clone Instantiation Time
	Impact on Source VM

	Applications
	Safe Agent Reuse
	Problem Diagnostics and Troubleshooting
	Anomaly Detection
	Autotuning-as-a-Service

	Related Work
	Conclusion

