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Abstract
While there are a variety of existing virtual machine intro-

spection (VMI) techniques, their latency, overhead, com-

plexity and consistency trade-offs are not clear. In this work,

we address this gap by first organizing the various existing

VMI techniques into a taxonomy based upon their opera-

tional principles, so that they can be put into context. Next

we perform a thorough exploration of their trade-offs both

qualitatively and quantitatively. We present a comprehen-

sive set of observations and best practices for efficient, accu-

rate and consistent VMI operation based on our experiences

with these techniques. Our results show the stunning range

of variations in performance, complexity and overhead with

different VMI techniques. We further present a deep dive

on VMI consistency aspects to understand the sources of in-

consistency in observed VM state and show that, contrary to

common expectation, pause-and-introspect based VMI tech-

niques achieve very little to improve consistency despite

their substantial performance impact.

Categories and Subject Descriptors C.4 [Performance of

Systems]: Design studies; D.2.8 [Metrics]: Performance

measures; D.4.2 [Storage Management]: Virtual memory;

D.4.1 [Process Management]: Synchronization

Keywords Virtualization; Virtual Machine; VMI; Taxon-

omy; Consistency

1. Introduction

Virtual machine introspection (VMI) [28] has been used to

support a wide range of use cases including: digital foren-
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sics [13, 14, 24, 31, 63]; touchless systems monitoring-

tracking resource usage, ensuring system health and policy

compliance [32, 67]; kernel integrity and security monitoring-

intrusion detection, anti-malware, firewall and virus scan-

ning [9, 23, 26–28, 34, 36, 38, 54, 64]; cloud management

and infrastructure operations such as VM sizing and mi-

gration, memory checkpointing and deduplication, device

utilization monitoring, cloud-wide information flow track-

ing and policy enforcement, cluster patch management, and

VM similarity clustering [3, 8, 10, 15, 33, 58, 76].

There are different ways in which VMI gains visibility

into the runtime state of a VM, ranging from exposing a

raw byte-level VM memory view and traversing kernel data

structures in it [5, 6, 14, 25, 40, 41, 46], to implanting pro-

cesses or drivers into the guest [16, 29]. A security-specific

survey of the VMI design space can be found in [37]. Al-

though several techniques to expose VM state have been de-

veloped independently over the years, there is no compre-

hensive framework that puts all these techniques in context,

and compares and contrasts them. Understanding the trade-

offs between the competing alternatives is crucial to the de-

sign of effective new applications, and would aid potential

VMI users in deciding as to which of the myriad techniques

to adopt as per their requirements and constraints.

In this paper, we present a thorough exploration of VMI

techniques, and introduce a taxonomy for grouping them

into different classes based upon four operation princi-

ples: (i) whether guest cooperation is required; (ii) whether

the technique creates an exact point-in-time replica of the

guest’s memory; (iii) whether the guest has to be halted;

and, (iv) the type of interface provided to access guest state.

We present the results of a qualitative and quantitative

evaluation of a wide range of VMI techniques. We compare

software-only methods; VMI techniques that rely on hard-

ware memory acquisition (e.g., System Management Mode

(SMM) in x86 BIOS [7, 74], DMA [1, 9, 12, 47, 55], system

bus snooping [43, 48]) are beyond the scope of this paper.

The qualitative evaluation considers techniques available in
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VMware, Xen and KVM. The quantitative evaluation is re-

stricted to a single hypervisor to minimize environmental

variability. We use KVM as it has the highest coverage of

VMI techniques and gives us more control, but its results

can be extrapolated to similar VMware and Xen techniques

that fall in the same taxonomy classes. We also present a

detailed exploration of the memory consistency aspects of

VMI techniques. We show the actual reasons behind poten-

tial inconsistency in the observed VM state, and the inability

of pause-and-introspect based VMI techniques to mitigate

all forms of inconsistency, contrary to common expectation.

Our evaluation reveals that VMI techniques cover a

broad spectrum of operating points. Their performance

varies widely along several dimensions, such as their speed

(0.04Hz to 500Hz), resource consumption on host (34% to

140% for always-on introspection), and overhead on VM’s

workload (0 to 85%). VMI methods may be available out-of-

box on different hypervisors or be enabled by third party li-

braries or hypervisor modifications, giving the user a choice

between easy deployability vs. hypervisor specialization.

Furthermore, higher performance may be extracted by mod-

ifying the hypervisor or host, yielding a performance vs.

host/hypervisor specialization tradeoff. Therefore, applica-

tion developers have different alternatives to choose from

based on their desired levels of latency, frequency, over-

head, liveness, consistency, and intrusiveness, constrained

by their workloads, use-cases, resource budget and deploya-

bility flexibility.

The rest of this paper is organized as follows. Sec-

tion 2 introduces our VMI taxonomy and groups existing

VMI methods based on this taxonomy. Section 3 presents

a qualitative evaluation of VMI techniques implemented on

VMware, Xen and KVM. Sections 4 presents quantitative

evaluation of VMI techniques based on KVM. Section 5 ex-

plores VMI state consistency. Section 6 present a summary

of our key observations, best operational practices and our

experiences with all the explored techniques. Finally, Sec-

tion 7 offers our conclusions.

2. VMI Taxonomy
We characterize VMI techniques based on four orthogonal

dimensions: (i) Guest Cooperation, whether the technique

involves cooperation from code running inside the guest

VM; (ii) Snapshotting, whether the technique creates an

exact point-in-time replica of the guest’s memory; (iii) Guest

Liveness, whether the techniques halts the guest VM; and

(iv) Memory Access Type, the type of interface provided to

access guest state, which can be either via address space

remapping, reads on a file descriptor, or through an interface

provided by a VM manager or a debugger.

While there can be arbitrary combinations of these di-

mensions, in practice only a few are employed. Figure 1’s

taxonomy shows the specific attribute combinations that can

categorize the current implementations for accessing in-VM

memory state. Some of these methods are hypervisor ex-

Figure 1: VMI Taxonomy: categorizing current implementa-

tions

posed, while others are either specialized use cases, or lever-

age low level memory management primitives, or enabled by

third party libraries. The proposed taxonomy is general and

hypervisor independent. The rest of this section describes

the techniques’ functionality.

I. Agent assisted access requiring guest cooperation

These techniques install agents or modules inside the guests

to facilitate runtime state extraction from outside.

• VMWare VMSafe() [72], XenServer’s XenGuestAgent

[17, 18], QEMU’s qemu-ga [57]: Access VM’s memory

directly via guest pseudo-devices (/dev/mem) or interface

with the guest OS via pseudo filesystem (/proc) or kernel

exported functions. The solutions then communicate either

directly through their own custom in-VM agents [2, 22, 69–

71], or mediated by the hypervisor [16, 36].

II. Halt Snap

These methods do not require guest cooperation and distin-

guish themselves for producing a full copy of the guest’s

memory image, while also pausing the guest to obtain a con-

sistent snapshot.

• QEMU pmemsave, Xen dump-core, Libvirt/Virsh li-

brary’s dump and save, VMWare vmss2core: These

techniques dump the VM memory to a file. Example usages

include Blacksheep [10], Crash [21].

• QEMU migrate to file: Migrates VM to a file instead

of a physical host. Essentially similar to memory dumping,

but smarter in terms of the content that actually gets written

(deduplication, skipping zero pages etc.).

• LibVMI library’s shm-snapshot [11]: Creates a VM

memory snapshot inside a shared memory virtual filesys-

tem at host. Implemented for both Xen and KVM (QEMU

modified). Access to snapshot mediated by LibVMI after in-

ternally mapping the memory resident (/dev/shm/*) file.
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III. Live Snap

These methods obtain a consistent snapshot without pausing

the guest.

• HotSnap [20] for QEMU/KVM and similar alternatives for

Xen [19, 35, 42, 66, 73] use copy-on-write implementations

to create consistent memory snapshots that does not halt the

guest. These approaches modify the hypervisor due to lack

of default support.

IV. Live Memory Mapping

These methods do not require guest cooperation or a guest

memory image capture, and support introspection while the

guest continues to run. Methods in this class provide a mem-

ory mapped interface to access the guest state.

• Xen xc map foreign range(), QEMU Pathogen [60]:

Maps the target guest’s memory into the address space of

a privileged monitoring or introspection process. Used in

libraries such as XenAccess [53] and LibVMI [11], and

in cloud monitoring solutions such as IBMon [58] and

RTKDSM [32].

• QEMU large-pages (hugetlbfs) based and VMWare

.vmem paging file backed VM memory: Mapping the file

that backs a VM’s memory into the monitoring or introspec-

tion process’ address space. Used in OSck [34] for monitor-

ing guest kernel code and data integrity, and in [68] to expose

a guest’s video buffer as a virtual screen.

• QEMU and VMWare host physical memory access:

Mapping the machine pages backing the VM’s memory,

into the introspection process’ address space. Leveraging

Linux memory primitives for translating the virtual mem-

ory region backing the VM’s memory inside the QEMU

or vmware-vmx process (via /proc/pid/maps psuedo-

file) to their corresponding physical addresses (/proc/pid/

pagemap file). Not straightforward in Xen, although the ad-

ministrator domain can access the host physical memory,

still need hypervisor cooperation to extract guest backing

physical frames list (physical-to-machine (P2M) table).

V. Live Memory Reads

Methods in this class also enable live introspection without

perturbing the guest, but access guest state through a file

descriptor-based interface.

• QEMU and VMWare direct VM memory access: These

methods directly read a guest’s memory contents from

within the container process that runs the VM. This can

be achieved in different ways: (i) Injecting a DLL into the

vmware-vmx.exe container process in VMWare to read its

.vmem RAM file [45], (ii) Using QEMU’s native mem-

ory access interface by running the introspection thread

inside QEMU itself [8], (iii) Leveraging Linux memory

primitives– reading QEMU process’ memory pages at the

hypervisor (via /proc/pid/mem pseudo-file) indexed ap-

propriately by the virtual address space backing the VM

memory (/proc/pid/maps) [67].

• LibVMI memory transfer channel: Requesting guest

memory contents over a unix socket based communication

channel created in a modified QEMU container process,

served by QEMU’s native guest memory access interface.

VI. Guest-Halting Memory Map and Reads

These methods achieve coherent/consistent access to the

guest memory by halting the guest while introspection takes

place (pause-and-introspect), but do not create a separate

memory image and access guest memory contents directly.

While all the live memory map and read methods can be

included in this category by also additionally pausing the

guest, we only select one direct read method, employed

in literature, as a representative—QEMU semilive direct

access, that encompasses the guest memory reads (QEMU

/proc/pid/mem) between ptrace()- attach/detach calls.

Used in NFM [67] for cloud monitoring under strict consis-

tency constraints.

VII. Live Interface Access

Methods in this class also enable live introspection without

perturbing the guest, but access guest state over an interface

provided by a third party program.

• KVM with QEMU monitor’s xp [75]: uses the hypervi-

sor management interface to extract raw bytes at specified

(pseudo) physical addresses.

VIII. Guest-Halting Interface Access

Methods in this class halt the guest and access guest state

over an interface provided by a third party program.

• Xen’s gdbsx, VMWare’s debugStub, QEMU’s gdbserver

GDB stub for the VM: attach a debugger to the guest VM

and access guess state over the debugger’s interface. This

method is used in IVP [62] for verifying system integrity.

LibVMI when used without its QEMU patch defaults to us-

ing this technique to access guest state. We use the libVMI

GDB-access version in our evaluation.

3. Qualitative Comparison
The various VMI techniques described in the previous sec-

tion follow different operation principles and correspond-

ingly exhibit different properties. Table 1 compares them in

terms of the following properties:

• Guest Liveness: A live memory acquisition and subse-

quent VM state extraction is defined in terms of whether

or not the target VM continues to make progress normally

without any interruption.

• Memory view consistency: refers to coherency between

the runtime state exposed by the method and the guest’s

actual state (Section 5).

• Speed: How quickly can guest state be extracted with a

particular method?

• Resource consumption on host: How heavy is a particu-

lar approach in terms of the CPU resources consumed by
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Host and Hypervisor Compatibility

Live View con-

sistency

Speed Resource

cost

VM perf

impact

Xen KVM/QEMU VMWare

Guest cooperation /

agent assisted access

X X (not
/dev/mem)

Medium Medium Low VM /dev/mem sup-
port or module in-
stallation

VM /dev/mem support or
module installation

Default; special
drivers/tools in VM

Halt Snap X Low High High Default; Default; Default
- In-mem snap via
library

- In-mem snap via library +
hypervisor modifications

Live Snap X X Medium Low Low Hypervisor modifi-
cations

Hypervisor modifications

Live Memory X Very High Very Low Very Low Default Hypervisor modifications; via library;
Mapping - Default file backed map-

ping with special VM flags,
- Default file backed
mapping;

large pages host reservation;
- /dev/mem support for host
phys mem access

- /dev/mem support
host phys mem ac-
cess

Live Memory Reads X High Low Very Low Compatible (via /proc); via library
- Mem transfer channel via
library + hypervisor mod.

Guest-Halting Mem-

ory Map and Reads

X Medium Low Medium Compatible (+ guest
pause)

Compatible (+ guest pause) Compatible (+ guest
pause)

Live Interface Ac-

cess

X Very Low Very High Low Default (via management in-
terface)

Guest-Halting Inter-

face Access

X Very Low Very High Low Default Default + special VM initial-
ization flags

Default + special
VM config options

Table 1: Qualitative comparison of VMI techniques- empty cells in compatibility column do not necessarily indicate missing

functionality in hypervisor.

it, normalized to monitoring 1 VM at 1Hz (memory and

disk cost is negligible for all but snapshotting methods).

• VM performance impact: How bad does memory acqui-

sition and state extraction hit the target VM’s workload.

• Compatibility: How much effort does deploying a par-

ticular technique cost in terms of its host and hypervisor

compatibility- whether available as stock functionality, or

requiring hypervisor modifications, or third party library

installation, or host specialization.

Table 1 only contrasts these properties qualitatively, while

a detailed quantitative comparison follows in the next sec-

tion. The compatibility columns in the table, do not indicate

whether a functionality is available or missing from a hyper-

visor, rather whether the functionality has been ‘shown’ to

work by virtue of it been exported as a default feature by the

hypervisor or via libraries or hypervisor modifications.

As can be seen, no one technique can satisfy all proper-

ties at the same time, leading to different tradeoffs for differ-

ent use cases. One tradeoff is between the conflicting goals

of view consistency and guest liveness for almost all tech-

niques. If the user, however, desires both, then he would

either have to let go of guest independence by opting for

the guest cooperation methods that run inside the guest OS

scope, or choose a hardware assisted out-of-band approach

using transactional memory [44]. COW based live snapshot-

ting seems to be a good compromise, providing an almost-

live and consistent snapshot.

Another tradeoff is between a VMI techniques’ perfor-

mance and generality in terms of requirements imposed on

the host’s runtime. For example, the live direct-reads method

in KVM is sufficiently fast for practical monitoring appli-

cations and works out-of-box, still an order of magnitude

higher speed can be achieved with live memory-mapping

techniques by either enabling physical memory access on

host, or reserving large pages in host memory for file-backed

method. Although the latter come with a tradeoff of increas-

ing system vulnerability (/dev/mem security concerns) and

memory pressure (swapping concerns [51, 65]).

4. Quantitative Comparison
To quantitatively compare VMI techniques, we use a sim-

ple generic use case of periodic monitoring. This entails

extracting at regular intervals generic runtime system in-

formation from the VM’s memory: CPU, OS, modules,

N/W interfaces, process list, memory usage, open files,

open network connections and per-process virtual memory

to file mappings. This runtime information is distributed

into several in-memory kernel data structures for processes

(task struct), memory mapping (mm struct), open files

(files struct), and network information (net devices)

among others. These struct templates are overlaid over

the exposed memory, and then traversed to read the vari-

ous structure fields holding the relevant information [46],

thereby converting the byte-level exposed memory view

into structured runtime VM state. This translates to read-

ing around 700KB of volatile runtime state from the VM’s

memory, spread across nearly 100K read/seek calls.

We compare the different VMI techniques along the fol-

lowing dimensions:

1. Maximum frequency of monitoring

2. Resource usage cost on host

3. Overhead caused to the VM’s workload

We run different benchmarks inside the VM to measure

monitoring’s impact when different resource components are

stressed - CPU, disk, memory, network and the entire system

as a whole. The different targeted as well as full system

benchmarks tested are as follows.
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1. x264 CPU Benchmark: Measured is x264 video encod-

ing benchmark’s [50] (v1.7.0) frames encoded per second.

2. Bonnie++ Disk Benchmark: Measured is bonnie++’s [61]

(v1.96) disk read and write throughputs as it processes 4GB

of data sequentially. High performance virtio disk driver

is loaded in the VM, and disk caching at hypervisor is dis-

abled so that true disk throughputs can be measured, which

are verified by running iostat and iotop on host. Host and

VM caches are flushed across each of the 5 bonnie++ runs.

3. STREAM Memory Benchmark: Measured is STREAM

benchmark’s [39] (v5.10) a[i] = b[i] sort of in-memory

data copy throughput. We modified the STREAM code to

also emit the ‘average’ sustained throughput across all the

STREAM iterations (N=2500), along with the default ‘best’

throughput. The array size is chosen to be the default 10M

elements in accordance with STREAM’s guidelines of ar-

ray size vs. cache memory size on the system. The memory

throughputs observed inside the VM are additionally con-

firmed to be similar to when STREAM is run on the host.

4. Netperf Network Benchmark: Measured is network

bandwidth when a netperf [59] server (v2.5.0) runs inside the

VM, while another physical machine is used to drive TCP

data transfer sessions (N=6). High performance virtio net-

work driver is loaded in the VM, and the network throughput

recorded by the client is confirmed to be similar to when the

netperf server runs on the host machine itself.

5. Full System OLTP Benchmark: Measured is Sys-

bench OLTP database benchmark’s [4] (v0.4.12) throughput

(transactions per sec) and response time. The benchmark is

configured to fire in 50K database transactions, which in-

cludes a mix of read and write queries, on a 1M row Inn-

oDB table. Optimal values are ensured for InnoDB’s service

thread count, cache size and concurrency handling, with the

in-VM performance verified to be similar to on-host.

6. Full System Httperf Benchmark: Measured is the in-

coming request rate that a webserver VM can service with-

out any connection drops, as well as its average and 95th per-

centile response latency. A 512MB working set workload is

setup in a webserver VM, from which it serves different 2KB

random content files to 3 different httperf clients (v0.9.0)

running on 3 separate machines. The file size is chosen to be

2KB so that server is not network bound.

Experimental Setup: The host is an 8 core Intel Xeon E5472

@ 3GHz machine, with 16GB memory and Intel Vt-x hard-

ware virtualization support. The software stack includes

Linux-3.8 host OS with KVM support, Linux 3.2 guest OS,

libvirt 1.0.4, QEMU 1.6.2, libvmi-master commit-b01b349

(for in-memory snapshot).

In all experiments except the memory benchmark, the tar-

get VM has 1GB of memory and 1 VCPU. Bigger mem-

ory impacts snapshotting techniques linearly, without any

noticeable impact on other techniques as they are agnostic

to VM size. Also, more VCPUs do not affect VMI perfor-

mance much, except for generating some extra CPU-specific

state in the guest OS that also becomes a candidate for state

extraction. We select 1 VPCU so as to minimize any CPU

slack which could mask the impact of the VMI techniques on

the VM’s workload. However, in case of the memory bench-

mark, a multicore VM was necessary as the memory band-

width was observed to increase with the number of cores,

indicating a CPU bottleneck, with the peak bandwidth being

recorded on employing 4 cores (almost twice as much as on

a singe core; going beyond 4 had no further improvement).

Discussion: (i) We do not include live snapshotting in our

quantitative evaluation because of the unavailability of a

standalone implementation (patch or library) for our KVM

testbed, while its qualitative performance measures are bor-

rowed from [35]. Live snapshotting is expected to have a

much better performance as indicated in Table 1. Quanti-

tatively, while monitoring the target VM, live snapshotting

is expected to achieve ∼5Hz of monitoring frequency, with

about 10% CPU consumption on host, and <13% hit on the

VM’s workload [35].

(ii) Also, we do not explicitly compare guest coopera-

tion methods in the remainder of this section. This is be-

cause the default qemu-ga guest agent implementation on

KVM/QEMU is pretty limited in its functionality. Absence

of a dynamic exec capability with the agent means the

generic monitoring process on host has to read all relevant

guest /proc/* files to extract logical OS-level state [2],

which takes about 300ms per transfer over the agent’s serial

channel interface. This translates to a maximum monitoring

frequency of the order of 0.01Hz with <1% CPU consump-

tion on host and guest. However, a better way would be for

a custom agent to do the state extraction processing in-band

and only transfer the relevant bits over to the host, along the

lines of [52]. Emulating this with qemu agent, to extract the

700KB of generic VM runtime state, results in a maximum

monitoring frequency of the order of 1Hz with about 50%

CPU consumption on host, and a 4.5% hit on the VM work-

load.

4.1 Maximum Monitoring Frequency

Figure 2 compares the maximum attainable frequency at

which an idle VM can be monitored while employing the

different VMI techniques. The monitoring frequency is cal-

culated from the average running time for 1000 monitor-

ing iterations. We use an optimized version of LibVMI in

this study that skips per iteration initialization/exit cycles.

Disabling this would add over 150ms latency per iteration

thereby lowering the maximum monitoring frequency, most

noticeably of the live memory transfer channel implementa-

tion.

Interestingly, when sorting the methods in increasing or-

der of their maximum monitoring frequency, each pair of

methods shows similar performance, that jumps almost al-

ways by an order of magnitude across the pairs. This is be-
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Figure 2: Comparing maximum monitoring frequency

across all KVM instances of VMI techniques

cause the candidates per pair belong to the same taxonomy

category, hence they follow similar operation principles, ex-

cept for interface based methods where the frequency is lim-

ited by the interface latency. Amongst the live memory ac-

cess methods, mapping is much superior to direct reads pri-

marily because of greater system call overheads in the lat-

ter (multiple read()/seek() vs. single mmap()). The next

best is guest-halting direct reads that stuns the VM period-

ically for a few milliseconds, while still being much faster

than guest-halting snapshotting methods that halt the VM

for a few seconds. Finally, the methods interfacing with the

management layer and GDB are the slowest because of yet

another layer of indirection.

The maximum monitoring frequencies can vary with the

workload inside the VM. Depending upon how active the

VM is, it would change the amount of runtime state that ex-

ists in the VM, thereby leading to a change in the time re-

quired to extract this state. This can easily be observed in the

maximum frequencies recorded with httperf in Section 4.4.1

which decrease by 4X due to a proportional increase in run-

time state.

4.2 Resource Cost on Host

Monitoring with almost all methods has a negligible space

footprint, except for snapshotting techniques that consume

space, on disk or memory, equivalent to the VM’s size. As

for the CPU cost, Figure 3 plots the CPU resource usage on

host while an idle VM is monitored at the maximum fre-

quency afforded by each technique. The graph shows the

same pairwise grouping of the methods as in the case of

their maximum monitoring frequency. The exception here is

that the management interface is much heavier than the de-

bugger interface, although both deliver the same monitoring

frequency.

The previous frequency comparison graph showed that

the live memory mapping methods were an order of mag-

nitude faster than live direct reads, which were themselves

faster than guest-halting reads and snapshotting methods.

This graph shows that the better performance does not

come at an added cost as all of these except for halting-

reads consume similar CPU resources. However, with the

same CPU consumption, the methods situated more towards

the increasing X axis are more efficient in terms of normal-

ized CPU cost per Hz. Hence, amongst the live methods

Figure 3: CPU used vs. maximum monitoring frequency

having the same CPU consumption, the higher efficiency of

guest memory mapping can be easily observed. Also, the

lower CPU usage for the halting-reads method is misleading

as the graph does not plot the impact on the VM with each

technique. So even though the former can hit the 10Hz fre-

quency while consuming <40% CPU as compared to live

reads that consume 100% CPU for about 30Hz, yet it is

costlier because it stuns the VM periodically thereby dis-

turbing its workload heavily. The next section quantifies this

impact.

4.3 Impact on VM’s Performance

We run targeted workloads inside the VM stressing different

resource components, and measure the percentage overhead

on their corresponding performance metrics. VM impact is

measured for the lowest monitoring frequency of 0.01 Hz,

increasing in orders of 10 up to 10Hz or the maximum attain-

able frequency for each VMI technique. Each benchmark is

run enough number of times to ensure sufficient monitor-

ing iterations are performed for each method at each fre-

quency. The graphs only plot the mean values while the er-

ror bars are omitted for readability (the experimental varia-

tion was within 5% of the means). We use the guest reported

benchmark performance metrics, after having ensured that

the guest timing matches with the host timings throughout

the benchmarks’ progress.

In the experiments, our VMI based monitoring applica-

tion runs on a separate host core, while we experiment with

two different configurations mapping the VM’s VCPU to

host’s PCPU1. In the first 1VPCU-1PCPU configuration, we

pin to a single core on host the QEMU process that runs

the main VM thread and all other helper threads that get

spawned to serve the monitoring process’ memory access

requests. In the second 1VCPU-2PCPU configuration, we

taskset the QEMU process to two cores on host, the VM still

having only one virtual core to itself . We do this to visualize

the kind of overheads that would be seen if each technique

was given unbounded CPU resources (a single extra core

suffices, going beyond this has no additional effect).

1 The hardware architecture influences the introspection application’s as

well as the VM’s VPCPU-PCPU core mapping. The chosen configuration

ensures the least impact on VM due to introspection.
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(a) 1VCPU- 1PCPU

(b) 1VCPU - 2PCPU

Figure 4: Comparing % degradation on x264 benchmark’s

frames-encoded/s as a function of monitoring frequency.

4.3.1 CPU Benchmark

Figure 4(a) plots the percentage degradation on x264’s [50]

frames encoded per second as a function of monitoring fre-

quency for each technique. The rightmost points for each

curve show the overheads for the maximum attainable mon-

itoring frequency for each method. Each data point is ob-

tained by averaging 10 x264 runs.

As can be seen, there is minimal overhead on x264’s

framerate with the live methods (except the libVMI mem-

ory transfer channel implementation), while for the rest, the

overhead decreases with decreasing monitoring frequency.

Biggest hit is observed for methods that quiesce the VM, as

expected.

Figure 4(b) compares x264’s performance degradation

when each technique is given unbounded CPU resources

in the 1VCPU - 2PCPU taskset configuration. As a result,

the VM overhead is greatly reduced for methods that spawn

QEMU threads to extract VM state, as the main QEMU

thread servicing the VM now no longer has to contend

for CPU with the other helper threads that get spawned to

serve the monitoring process’ memory access requests. The

halting-read method, which wasn’t using a full CPU to be-

gin with, has no use for the extra CPU resources and thus the

VM overhead remains the same owing to the periodic VM

stuns.

This is the only case where we compare the performance

of all candidate techniques. Our main focus is actually on

how the categories themselves compare in terms of perfor-

mance degradation of the target VM’s workload. Hereafter,

we only present results for one representative method from

each category- namely memory dumps (guest-halting snap-

shotting), management interface (interface access), semilive

direct access (halting-reads), QEMU direct memory access

(live memory reads), and file-backed VM memory (live

memory map). Although not explicitly shown, the omitted

methods follow performance trends similar to their sibling

candidates from the same taxonomy category. The interface

access methods are also observed to exhibit similar perfor-

mance.

4.3.2 Memory, Disk and Network Benchmarks

Figure 5 plots the impact on the VM’s memory, disk and

network throughputs, owing to VMI based monitoring. Im-

pact is mostly observed for only the methods that quiesce

the VM, and does not improve markedly when extra CPU re-

sources (1VPCU-2PCPU mapping) are provided to the tech-

niques. This is because the CPU is not the bottleneck here,

with the workloads either being limited by the memory sub-

system, or bounded by network or disk IO.

The degradation on STREAM [39] benchmark’s default

‘best’ (of all iterations) memory throughput was negligi-

ble even while monitoring with methods that quiesce the

VM. However, the techniques’ true impact can be seen

in Figure 5(a) that compares the percentage degradation

on STREAM’s ‘average’ (across all iterations) memory

throughput. In other words, the impact is only observed on

the sustained bandwidth and not the instantaneous through-

put.

For the impact on bonnie++ [61] disk throughputs, sepa-

rate curves for disk writes are only shown for VM quiescing

methods (Figure 5(b)), the rest being identical to those of

reads, with the main noticeable difference being the minimal

impact seen on the write throughput even with the halting-

reads method. This can be attributed to the fact that the VM’s

CPU is not being utilized at its full capacity and spends a

lot of time waiting for the disk to serve the write requests

made from bonnie++. Hence, minor VM stunning doesn’t

hurt the benchmark so bad, as the work gets delegated to the

disk. This, along with the writeback caching in the kernel,

also means that the worst-case per-block write latency (not

shown in the graphs) does not see a big hit even for methods

that quiesce the VM, while their worst-case read latency is

an order of magnitude higher.

Another interesting observation is the markedly high im-

pact on the disk throughputs with memory dumping, as com-

pared to the CPU intensive benchmark, which moreover

shows no improvement even when the monitoring frequency

is reduced from 0.1Hz to 0.01Hz. Netperf’s [59] network

bandwidth also sees a similar hit with guest-halting snap-

shotting (Figure 5(c)), with its impact curves being very sim-

ilar to those of the disk (read) throughputs. The difference

in this case is that that the overhead curve does not plateau

out and eventually subsides to minimal impact at 0.01Hz. As

demonstrated later in Section 4.4.1, these high overheads can
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(a) Impact on STREAM benchmark’s memory copy throughput

(b) Impact on bonnie++’s disk throughputs. Differing behaviour on writes

shown separately.

(c) Impact netperf’s network transfer bandwidth

Figure 5: Comparing % degradation on memory, disk and

network throughput as a function of monitoring frequency

attributed to the backlog of pending IO requests that dump-

ing (and hence VM quiescing) creates in the network and

disk IO queues.

4.4 Real Workload Results

After characterizing VMI based monitoring’s impact on

individual VM resources, we use two full system bench-

marks to understand the impact on real world deployments-

database and webserver. We omit the OLTP database bench-

mark [4] for brevity, as the graphs for impact on its transac-

tion throughput and response times are pretty much identical

to the disk read benchmark, being attributed to the backlog-

ging in the database transaction queues. Instead we dig deep

into the httperf benchmark to inspect these queue perturba-

tions.

4.4.1 Full System Httperf Benchmark

Figure 6(a) plots the impact on the webserver VM’s sustain-

able request rate as compared to the base case without any

monitoring, for the different VMI techniques under different

monitoring frequencies. Each data point in the graph is ob-

tained by averaging 3 httperf [49] runs, each run lasting for

320s.

Amongst all the benchmarks, httperf is hit the worst by

methods that quiesce the VM, even at low monitoring fre-

quency, with the halting-reads method recording ∼25% im-

pact even at 1Hz. With memory dumping, like in case of the

disk and OLTP benchmarks, the impact on the sustainable

request rate is not lowered even with extra CPU resources

afforded to the QEMU process, as well as when the monitor-

ing frequency is reduced from 0.1Hz to 0.01Hz. We explain

this with an experiment later in this Section.

Also note the much lower maximum monitoring frequen-

cies recorded for the different techniques as they monitor the

httperf workload. The longer monitoring cycles are because

the amount of state extracted is far more than other bench-

marks (∼4X), owing to several apache processes running

inside the VM. This also prevents the interface based ap-

proaches from operating even at 0.01Hz, while the halting-

reads method is unable to operate at its usual 10Hz (iteration

runtime ∼150ms).

The sustainable request rate is only one half of the story.

Figure 6(b) also plots the impact on the webserver VM’s

average and 95th percentile response latencies. Shown are

overheads for the practical monitoring frequencies of 0.1Hz

for techniques that quiesce the VM, and for maximum at-

tainable monitoring frequencies for the other live methods.

As can be seen, even if a user was willing to operate the

webserver at 75% of its peak capacity, while snapshotting

once every 10s for view consistent introspection, they should

be aware of the fact that the response times would shoot up

100% on an average, going beyond 200% in the worst case.

The particular requests experiencing these massive degrada-

tions can be spotted in a server timeline graph, omitted for

brevity, where the response times jump quite a bit for about

50s after a single dumping iteration (<2s).

Finally, we investigate why guest-halting snapshotting

shows a horizontal impact curve from 0.1Hz to 0.01Hz in

Figure 6(a), instead of the impact on server’s capacity low-

ering on snapshotting it 10 times less frequently. As dis-

cussed above, when the webserver operates at 75% of its

peak capacity (serving 1500 requests/s as opposed to 1950),

the jump in response times eventually subsides after a single

snapshotting iteration, and no requests are dropped. If the

requests arrive at any rate greater than this, it is observed

that a single <2s dumping cycle degrades the server ca-

pacity to ∼700 serviced requests/s, with several connection

drops, and the server doesn’t recover even after 15 minutes.

Figure 6(c) visualizes this observation for 5 httperf rounds

of 320s each, plotting the (i) server capacity (reply rate)

(ii) avg. response time per request, and (iii) percentage con-

nections dropped (Error %). In the end, the server has to

be ‘refreshed’ with an apache process restart to clear up
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(a) Impact on httperf’s sustainable request rate

(b) Impact on httperf’s response times

(c) httperf 1950 req/s + 1 round of memory dumping

Figure 6: Comparing % degradation on httperf’s metrics as

a function of monitoring frequency

all the wait queues to bring it back up to its base capacity.

Hence, because the server is operating at its peak capacity in

this case, the wait queues are operating at a delicate balance

with the incoming request rate. Any perturbation or further

queuing introduced by a single VM quiescing cycle destroys

this balance, thereby creating a backlog of pending requests

which the webserver never seems to recover from. The be-

haviour is same for any incoming rate >1500 requests/s.

And this is why even for 0.01Hz monitoring frequency, the

server can only handle 1500 requests per sec at best. Note

that the measurements are made from the clients’ side in

httperf, so the requests from a new round also get queued up

behind the pending requests from an earlier round. Hence,

from the clients’ perspective, a possible eventual server ca-

pacity recovery is not observed without a complete server

queue flush.

5. Consistency of VM State
A key concern with VMI techniques is the consistency of

the observed VM state. Particularly, introspecting a live sys-

tem while its state is changing may lead to inconsisten-

cies2 in the observed data structures. An inconsistency dur-

ing introspection may cause the monitoring process to fail,

trying to access and interpret non-existent or malformed

data. A common approach to mitigate inconsistencies is to

pause/quiesce3 the systems during introspection (halting-

reads method). This is considered a safe approach as the sys-

tem does not alter its state while the data structures are in-

terpreted [11, 28, 30, 44, 56]. Therefore it is commonly em-

ployed for “safe” introspection despite its high overheads as

we had shown in the prior sections. In this section we present

a deeper exploration of what these inconsistencies are, their

likelihood, and when pause-and-introspect (PAI) solutions

help. Our investigation leads to some interesting key obser-

vations. First, we show that there are multiple forms of in-

consistencies, both in intrinsic VM state and extrinsic due to

live introspection. Second, contrary to common expectation,

PAI does not mitigate all forms of inconsistency.

5.1 Inconsistency Types

We capture inconsistencies by recording the read() or

seek() failures in the introspection process, while the VM

being monitored runs workloads (Section 5.2) that contin-

uously alter system state. Each of these failures denote an

access to a malformed or non-existent data structure. Fur-

thermore, by tracing back the root of these failures, we were

also able to categorize every inconsistency observed as fol-

lows. We further verified the exact causes of each incon-

sistency occurrence by running Crash [21] on a captured

memory snapshot of the paused VM under inconsistency.

I. Intrinsic Inconsistencies

This category of inconsistencies occur due to different

but related OS data structures being at inconsistent states

themselves—for a short period—in the OS, and not because

of live introspection. These inconsistencies still persist even

if PAI techniques are employed instead of live introspection.

We subcategorize these into the following types:

I.A Zombie Tasks: For tasks marked as dead but not yet

reaped by the parent, only certain basic task struct

fields are readable. Others such as memory mapping in-

formation, open files and network connections lead to in-

consistency errors when accessed.

I.B Dying Tasks: For tasks that are in the process of dying

but not dead yet (marked “exiting” in their task struct),

their memory state might be reclaimed by the OS. There-

fore, although their state seems still available, accessing

2 While the OS itself is not inconsistent, the observed inconsistencies arise

because of a missing OS-context within VMI scope.
3 We use pause/quiesce/halt to refer to the same guest state; not to be

confused with the possibly different interpretations from the point of view

of the OS.
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these can lead to NULL or incorrect values being read by

the monitoring process.

I.C As-good-as-dead tasks: We still optimistically go

ahead and extract state for tasks of the previous type -

tagged as exiting. We skip them only in cases where the

memory info data structure mm struct is already NULL

which means not only are this task’s memory mappings

unavailable, but any attempt to extract its open files /

network connections list is also highly likely to fail.

I.D Fresh tasks: For newly-created processes, all of their

data structures do not instantaneously get initialized.

Therefore, accessing the fields of a fresh process may

lead to transient read() errors, where addresses read

may be NULL or pointing to incorrect locations.

II. Extrinsic Inconsistencies

This second category of inconsistencies occur during live in-

trospection and only these can be mitigated by PAI tech-

niques. The reason for these inconsistencies is VM state

changing during introspection. We subcategorize these into

the following types:

II.A Task Dies During Monitoring: For tasks that die while

their data structures were being interpreted, data fields

and addresses read after the task state is recycled lead to

read()/seek() errors.

II.B Attributes Change During Monitoring: In this case,

while the tasks themselves keep alive, their attributes

that point to other data structures might change, such

as open files, sockets or network connections. In this

case accessing these data structures based on stale/invalid

memory references leads to inconsistency errors.

5.2 Quantitative Evaluation

We first create a benchmark, cork, that rapidly changes sys-

tem state by forking and destroying processes at various

rates, and use it with a process creation rate of 10Hz and

a process lifetime of 1s. We quantify the occurrence proba-

bilities of inconsistencies with two workloads: (i) our simple

cork benchmark, which stresses the process create/delete di-

mension; and (ii) a webserver at its peak capacity serving

incoming HTTP requests from three separate httperf clients

for 218 different 2KB files, which stresses both the process

and file/socket open/close dimensions.

Figure 7 shows the observed probabilities for all the dif-

ferent inconsistency types for both benchmarks. These prob-

abilities are computed from 3 separate runs, each of which

repeat 10,000 introspection iterations (based on the live di-

rect memory read approach) while the benchmarks are ex-

ecuted. The observed results are independent of the intro-

spection frequency. As the figure shows, most inconsisten-

cies are rather rare events (except for one corner case with

httperf), and the majority of those observed fall into category

I. While not shown here, when we perform the same experi-

ments with the halting-reads approach, all dynamic state
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Figure 7: Observed inconsistency probabilities for all cate-

gories.

extrinsic inconsistencies of Category II disappear, while

Category I results remain similar.

The quantitative evaluation shows some interesting trends.

First, we see that Category II events are rather rare (less than

1%) even for these worst-case benchmarks. Therefore, for

most cases PAI techniques produce limited return on in-

vestment for consistency. If strong consistency is what is

desired regardless of cost, then PAI approaches do elimi-

nate these dynamic state inconsistencies. The cost of this

can be up to 35% with a guest-halting direct-reads approach

for 10Hz monitoring, and 4% for 1Hz monitoring, in terms

of degradation on VM’s workload. Cork records more type

II.A inconsistencies, whereas the webserver workload ex-

hibits more of type II.B. This is because of the continuous

closing and opening of files and sockets, while serving re-

quests in the webserver case. Both of these, however, occur

infrequently—in only 0.4% of the iterations. Cork also ex-

hibits type I.C and I.D inconsistencies for freshly created

and removed tasks, as the OS context itself becomes tem-

porarily inconsistent while updating task structures. One un-

expected outcome of this evaluation is the very high rate of

type I.A inconsistencies with the webserver, which also has

a significant occurrence in cork. The amount of time state

is kept for zombie tasks varies by both system configura-

tion and load, and can lead to substantial VMI errors (type

I.A inconsistency) as seen with the webserver. Zombies are

alive until the parent process reads the child’s exit status. If

the parent process dies before doing so, then the system’s

init process periodically reaps the zombies. Under high

loads, the webserver forks several apache worker threads

and it takes a while before reaping them, thereby leading to

their zombie state existence for longer durations.

6. Observations and Recommendations
In this section, we summarize our observations and present

our suggestions to VMI users in selecting the technique best

suited to their requirements and constraints.

• Broad Spectrum of Choices: There are several avail-

able VMI alternatives operating on different principles rang-

ing from dumping to memory-mapping. Their performance

varies widely along several dimensions such as their speed,

resource consumption, overhead on VM’s workload, view
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consistency, and more. These methods may be available

out-of-box on different hypervisors or be enabled by third

party libraries or hypervisor modifications, giving the user a

choice between easy deployability vs. hypervisor specializa-

tion.

• Guest Cooperation vs. Out-of-band: If the user has suf-

ficient resources allocated to his VMs, and installing in-VM

components is acceptable, then guest-cooperation is a great

way of bridging VMI’s semantic gap. If this isn’t accept-

able, or security and inaccuracy of in-VM entities is an ad-

ditional concern, then, the out-VM methods are a good al-

ternative. The latter also helps against vendor lock-in, if the

user prefers uninterrupted functionality with VM mobility

across hypervisors without specializing his VMs for a par-

ticular hypervisor.

• VMI use-case: Some techniques are more suitable in cer-

tain scenarios. For example, high speed live methods are

best for high frequency realtime monitoring such as pro-

cess level resource monitoring, continuous validation, best

effort security monitoring. On the other hand, snapshotting

techniques are useful when all that is needed is an (infre-

quent) point in time snapshot, as in digital forensics investi-

gation. For infrequent peeking into guest memory, a simple

management interface access would suffice, while for guest

debugging or crash troubleshooting, the guest-halting GDB-

access interface would be the most suitable to freeze and

inspect the guest in its inconsistent state without any regards

to performance or overhead. Where strict view consistency

is desired within acceptable overhead, guest-halting mem-

ory mapping/reads would work well such as for low fre-

quency security scanning and compliance audits. Low fre-

quency monitoring offers a lot more flexibility in terms of

the choice of technique, except if the workloads are bound

by specific resources as discussed next.

• VM Workload: Along with the intended VMI use-case,

the target VM’s workload can also influence the choice of

introspection technique. If the user’s workload is not bound

by a particular VM resource, then there is more flexibility

in selecting the introspection technique as well as its speed

(frequency), even the ones that quiesce the VM. Even if it is

CPU-intensive or memory bound, it can still tolerate guest-

halting snapshotting better than if it were IO bound (disk

/ network / transactions), because the latter would be more

sensitive to perturbation of the service queues, in which case

snapshotting can be heavy even at very low monitoring fre-

quencies. On the other hand, IO bound workloads can toler-

ate the lighter stuns of the guest-halting direct-reads method

better than CPU intensive workloads, because the work gets

handed off to other components while the CPU halts tem-

porarily. But the halting-reads method’s execution length,

and hence the VM stun duration, depends on the amount of

state to be extracted. So it might not be a good fit on an ac-

tive VM with rapidly changing state (see rapidly spawning

apache processes in httperf evaluation in Section 4.4.1), or

an application that accesses large memory such as virusscan.

• Host/Hypervisor Specialization: Different hypervisors

support different techniques out-of-box, some faster than

others (comparison across techniques, not across hypervi-

sors). If the user has freedom of choice over hypervisor se-

lection, e.g. if they are not vendor locked to a particular

provider or constrained by enterprise policies, then they may

choose the one offering the best technique- fastest or cheap-

est (resource consumption). Otherwise, if the hypervisor se-

lection is fixed, but the user still has control over the host

resources or is willing to modify the hypervisor or install

third party libraries, they can further optimize the available

option to extract the best performance. For example, a ‘di-

rect memory access’ method in KVM is sufficiently fast for

practical monitoring applications and works out-of-box, still

an order of magnitude higher speed can be achieved by ei-

ther modifying QEMU, or enabling physical memory access

on host, or reserving large pages in host memory for file-

backed method. Although the latter come with a tradeoff of

increasing system vulnerability and memory pressure. This

work also shows that libraries or hypervisor modification

may not be needed to extract high performance, as depicted

by the QEMU direct access live method (enabled by lever-

aging Linux memory primitives) being more efficient than

the LibVMI library’s live transfer channel implementation,

while the latter also requiring QEMU modifications.

• Mapping over direct reads: Amongst the various meth-

ods compared in this study, the live methods are the best

performing across several dimensions. Amongst these, guest

memory mapping is much superior to direct memory reads

(e.g. speed order of 100Hz vs 10Hz), primarily because

of greater system call overheads in the latter (multiple

read()/seek() vs. single mmap()). However, the previous ob-

servation’s speed vs. hypervisor specialization tradeoff holds

true here as well, atleast for KVM.

• Guest-halting map/reads over snapshotting: For strict

view-consistent monitoring and other VM-snapshot based

use-cases, it is better to use halting-reads than halting-

snapshot based approaches, because although both tech-

niques quiesce the target VM, the impact on the VM’s work-

load is generally much lower with the former technique, and

especially bearable for low monitoring frequency. Also, as

shown in experiments, guest-halting snapshotting methods

create backlogs in work queues thereby heavily impacting

performance. Live snapshotting, on the other hand, is a much

better alternative as indicated in Section 3’s qualitative anal-

ysis and towards the end of Section 4 (as Discussion).

• Consistency vs. Liveness, Realtimeness, and VM per-

formance: For almost all techniques, view consistency and

guest liveness are conflicting goals. If the user, however, de-

sires both, then they would either have to let go of guest in-

dependence by opting for the guest cooperation methods that

run inside the guest OS scope, or choose a hardware assisted
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out-of-band approach using transactional memory [44]. One

compromise option is COW snapshotting that provides an

almost-live and consistent snapshot.

For the common non-live pause-and-introspect (PAI)

based techniques (halting-reads), its maximum monitoring

frequency can never equal live’s because that would mean

the VM is paused all the time and is thus making no mean-

ingful progress. Thus, for PAI techniques, there exists a con-

sistency vs. realtimeness tradeoff in addition to the consis-

tency vs. VM performance tradeoff, the latter evident with

high VM overheads with halting-reads.

Consistency Fallacy: Furthermore, as our experiments

indicate, PAI techniques, employed for “safe” introspection

despite their high VM performance impact, do not mitigate

all forms of inconsistency, which are very rare to begin with.

There is thus a need to synchronize with the guest OS to

determine guest states safe for introspection.

• Monitoring Overhead vs. Resource Usage: In the KVM/

QEMU implementations of guest-halting snapshotting and

interfaced based memory access methods, there exists a

tradeoff between the resources available for monitoring ver-

sus the impact on the VM being monitored, except for when

the target VM has CPU slack. This tradeoff does not hold

true for the Live memory map/reads which already have

negligible VM overhead in the base case, as well as the

halting-reads method that doesn’t consume a full CPU to

begin with, while the overhead stems from periodic VM

stuns.

• Scalability of approaches: If the user targets several VMs

to be monitored at once, another important metric to con-

sider is scalability. Although an explicit comparison is omit-

ted for brevity, it is relatively straightforward to correlate a

technique’s maximum frequency with CPU usage, and ob-

serve that the live memory map/read techniques all consum-

ing more or less a single CPU core on host would monitor

the maximum number of VMs at 1 Hz (ranging between 30

to 500 VMs per dedicated monitoring core).

7. Conclusion
We presented a comparative evaluation of exisiting VMI

techniques to aid VMI users in selecting the approach best

suited to their requirements and constraints. We organized

existing VMI techniques into a taxonomy based upon their

operational principles. Our quantitative and qualitative eval-

uation reveals that VMI techniques cover a broad spectrum

of operating points. We show that there is substantial dif-

ference in their operating frequencies, resource consump-

tion on host, and overheads on target systems. These meth-

ods may be available out-of-box on different hypervisors or

can be enabled by third party libraries or hypervisor mod-

ifications, giving the user a choice between easy deploy-

ability vs. hypervisor specialization. We also demonstrate

the various forms of intrinsic and extrinsic inconsistency in

the observed VM state, and show that pause-and-introspect

based techniques have marginal benefits for consistency, de-

spite their prohibitive overheads. Therefore application de-

velopers have different alternatives to choose from based on

their desired levels of latency, frequency, overhead, consis-

tency, intrusiveness, generality and practical deployability.

We hope that our observations can benefit the community in

understanding the trade-offs of different techniques, and for

making further strides leveraging VMI for their applications.
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