
Towards Reliable AI for Source Code Understanding
Sahil Suneja

IBM Research

Yorktown Heights, NY, USA

suneja@us.ibm.com

Yunhui Zheng

IBM Research

Yorktown Heights, NY, USA

zhengyu@us.ibm.com

Yufan Zhuang

IBM Research

Yorktown Heights, NY, USA

yufan.zhuang@ibm.com

Jim A. Laredo

IBM Research

Yorktown Heights, NY, USA

laredoj@us.ibm.com

Alessandro Morari

IBM Research

Yorktown Heights, NY, USA

amorari@us.ibm.com

ABSTRACT

Cloud maturity and popularity have resulted in Open source

software (OSS) proliferation. And, in turn, managing OSS

code quality has become critical in ensuring sustainable

Cloud growth. On this front, AI modeling has gained popu-

larity in source code understanding tasks, promoted by the

ready availability of large open codebases. However, we have

been observing certain peculiarities with these black-boxes,

motivating a call for their reliability to be verified before off-

setting traditional code analysis. In this work, we highlight

and organize different reliability issues affecting AI-for-code

into three stages of an AI pipeline- data collection, model

training, and prediction analysis. We highlight the need for

concerted efforts from the research community to ensure

credibility, accountability, and traceability for AI-for-code.

For each stage, we discuss unique opportunities afforded by

the source code and software engineering setting to improve

AI reliability.

CCS CONCEPTS

• Software and its engineering → Software notations

and tools; •Computingmethodologies→Machine learn-

ing.

KEYWORDS

machine learning, reliability, signal awareness, explainability

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00

https://doi.org/10.1145/3472883.3486995

ACM Reference Format:

Sahil Suneja, Yunhui Zheng, Yufan Zhuang, JimA. Laredo, andAlessan-

dro Morari. 2021. Towards Reliable AI for Source Code Understand-

ing. In ACM Symposium on Cloud Computing (SoCC ’21), November
1–4, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3472883.3486995

1 INTRODUCTION

The maturity and acceptance of Cloud for application de-

ployment have fundamentally altered how code is developed,

managed, and distributed. Specifically, open-source software

(OSS) existence has flourished, with reliance on OSS steadily

gained momentum along with the rise of microservices par-

adigm, cloud-native CI/CD pipelines, serverless platforms,

amongst other technologies. The relationship is symbiotic,

with OSS also playing a significant role in powering today’s

Cloud ecosystem [21], in addition to serving as foundations

of a great majority of applications and industries [29, 55]

Although OSS helps developers build applications faster,

it also puts developers at risk of bringing in defects or even

security vulnerabilities hidden in those OSS components.

According to a recent report [50], 11% of the OSS components

developers build into their applications are known to be

vulnerable, with 38 vulnerabilities on average. In addition,

the number of cyber attacks targeting OSS has surged by

430% and new 0-day vulnerabilities are exploited in the wild

within 3 days of public disclosure. Therefore, ensuring code

quality remains critical to infrastructures and applications

atop OSS components in every industry.

Scanning the source code or testing the executions to

detect vulnerabilities has been a domain traditionally dom-

inated by static and dynamic program analysis techniques.

Recently, the ready availability of large code bases to ‘train’

upon and the machine learning success in natural language

understanding, have promoted the entry of AI into the source

code analysis space. AI promises to understand the semantics

of the code and alleviate the shortcomings of traditional code

analysis approaches, for example the high false positives of

static analyzers, and the lack of completeness of dynamic

https://doi.org/10.1145/3472883.3486995
https://doi.org/10.1145/3472883.3486995


SoCC ’21, November 1–4, 2021, Seattle, WA, USA Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim A. Laredo, and Alessandro Morari

analysis [35, 57, 62]. There has been a rapid proliferation of

AI models for source code understanding, with each model

surpassing its predecessor in terms of statistical model qual-

ity measures such as F1 and accuracy. As AI enters the CI/CD

workflow, it will start affecting most cloud-native deploy-

ments where CI/CD provides fundamental quality assurance.

However, we observe certain peculiarities with the AI for

code understanding ecosystem (AI-for-code), motivating a

call for their reliability to be verified, before offsetting the

similarly-scrutinized traditional code analysis toolchain. Sub-

par results, if any, of such quality checks can, for example,

help decide whether the tremendous amount of resources

which model training increasingly consumes [10, 31], are

better utilized for other kinds of code analysis or testing,

such as fuzzing the application longer to catch more bugs.

In this paper, using primarily a vulnerability analysis use-

case, we highlight and categorize the reliability issues affect-

ing AI-for-code, into three different stages of an AI pipeline-

(i) data collection, (ii) model training, and (iii) prediction

analysis. We call for efforts at each stage from the research

community to ensure:

• Credibility of data collection correctness

• Accountability in ensuring task-relevant signal learning

by the model

• Traceability in terms of analyzing behavioral trends across

data affecting model performance

For each stage, we propose potential solutions, tied to-

gether with a common theme of utilizing proven software

engineering (SE) and data-driven techniques to assist with

improving AI reliability. We strongly believe that a concerted

effort to acknowledge and resolve these reliability concerns

will go a long way in better utilizing the potential of AI

for source code understanding. And, the source code & SE

setting offers unique opportunities to realize this goal.

2 BACKGROUND

Recent advancement in computing hardware has lead to a

resurgence of deep learning. The end-to-end learning process

starts from collecting a dataset, vectorizing it, feeding it to

a neural network to fit a desired function atop the dataset,

training the network’s weights as per an objective function

(e.g., error minimization), and finally evaluating the model’s

performance on unseen test data using statistical measures

such as F1 and accuracy.

Various neural network architectures have been proposed

for different domains and data formats. Some popular ones

which have been employed for learning over source code

include: (i) Convolutional neural networks (CNN), which

learn on image inputs. They have been applied to source code

learning by treating code as a photo [48], (ii) Recurrent neural

networks (RNN), designed to learn over sequential inputs

such as text and audio. These treat code as a linear sequence

of tokens [39, 48]. (iii) Graph neural networks (GNN), which

deal with graph-structured data such as social networks and

molecular structures. These have been used to operate on

graph representations of source code [36, 66].

In the software engineering domain, AI-for-code has been

employed in source code understanding tasks such as de-

fect detection [17, 26, 39, 48], code summarization [5, 24, 28,

33, 43], code completion [15, 25, 54], function and variable

naming [3, 4, 7, 41], amongst others [23, 37, 58, 60]. While

ever more sophisticated models are emerging and pushing

the state of the art in AI-for-code rapidly, we notice certain

reliability issues in the AI-for-code ecosystem, echoing some

prevailing doubts regarding model quality [2, 6, 8, 11, 12, 45].

Our frustrating experiences with sophisticated AI-for-code

models failing in real-world settings have made us skeptical

of their published performance numbers. Besides general AI-

for-SE challenges observed in previous works [23, 37, 58], we

particularly work towards exposing reliability caveats and

argue for sanity checks such as whether models are learn-

ing tasks related signals, which are usually not reflected by

non-domain specific and signal-agnostic model performance

metrics such as F1 scores.

We concur with the unfairness of the criticism of tradi-

tional SE code analysis techniques, to be replaced with signal-

agnostic AI. But we do believe in the potential for AI to learn

task-relevant signals with proper guidance. We believe the

source code setting offers unique opportunities to leverage

SE for tackling reliability problems, which exist in AI in

general. That is why we look towards SE+AI collaborations

rather than competition and work towards ascertaining at

the least that the models learn task-relevant source code

constructs. We believe the vision we are proposing in this

paper is complementary to generic AI reliability solutions.

In this work, we highlight and organize various AI-for-

code reliability issues into different stages of an AI pipeline,

call for concerted efforts at each stage, and highlight unique

opportunities afforded by the source code & SE setting to

improve AI reliability.

3 THE RELIABILITY PROBLEM

In this Section, we describe the different reliability problems

with AI-for-code, while organizing them within the three

stages of an AI pipeline.

3.1 Data Collection

High-quality data serves as the backbone of AI because a

learning-based model is only as good as the data it is trained

upon. A well-labeled, low-noise dataset significantly im-

proves the chances of a model performing well, especially in



Towards Reliable AI for Source Code Understanding SoCC ’21, November 1–4, 2021, Seattle, WA, USA

the typical, controlled, train-test model evaluation setting.

The data collection methodology also dictates how the model

will perform ‘in the wild’– when it is faced with real-world

code samples, untouched by any data collection bias.

There are multiple avenues by which reliability concerns

creep into the data collection stage, including:

(1) Cross-split Leaks: When the test split contains dupli-

cates or near-duplicates of the training set’s code samples,

it can inflate the models’ reported performance metrics

significantly, sometimes up to 100% [2].

(2) Correlation Capture: The way in which a dataset is

curated, can lead to certain code artifacts being present in

samples belonging to one class, but missing in the other.

When such data nuances are irrelevant to the task at

hand, such as specific keywords or identifier names, this

increases the chances of learning unnatural correlations

to create its classifier. Such a model may show good F1

scores, but would struggle in real-world deployments.

(3) Erroneous Labeling: Labeling for synthetic datasets

[49] is relatively easy and error-free because they are gen-

erated from predefined patterns, but they can’t capture

the complexity and diversity of real-world code. On the

other hand, many real-world datasets are based on rela-

tively straightforward GitHub commit-message analysis,

which introduces a source of error in the labeling logic.

For example, in the case of [66], if a commit is believed to

fix bugs, all functions patched by the commit are labeled

as being buggy, which isn’t true in many cases. Others di-

rectly use static analysis verdicts to label the samples [48].

But given its limitation of generating False Positives, a

subsequent manual validation, if any, is not scalable ow-

ing to the dataset size required for training. This leads to

potentially incorrect labeling, significantly limiting the

quality of the models trained over such datasets [34]

(4) Scope Limitation: A large majority of existing source

code datasets is limited to function-level scope, and do

not capture key inter-procedural information crucial for

complete code analysis. Models trained on such narrow

scope will, with a high probability, miss several cases

for the code analysis tasks sensitive to inter-procedural

flows, limiting their effectiveness in practice. The effect

can be significant as shown in [45, 51], which attributes

an extra 20% gains achievable by incorporating inter-

procedural flows. Similarly, useful context, such as bug

location, is lacking in several datasets, which can be quite

useful for cross-verification of dataset as well as model

quality (See Section 4.2).

There are obvious solutions to some of the aforementioned

problems, such as detecting and removing duplicates, and

normalizing code to remove identifier dependency. A sound

data collection and pre-processing strategy would indeed

filter these away, but this isn’t always the case. Similarly,

not all datasets suffer from these limitations [39, 64]. These

examples merely serve to highlight the potential pitfalls in

data collection methodology, and as a sanity-check call to

ensure that this isn’t truly the case before proceeding to

model training. Furthermore, not all are fixable after-the-

fact, requiring more careful data collection to begin with.

Summary: While some dataset-bias issues can be resolved
by smart pre-processing prior to model ingestion, the most
critical elements require a meticulous code curation strategy
to maximize chances for reliable modeling down the line.

3.2 Model Training

AI-for-code models also seem to suffer from the usual low

generality and robustness frailties of AI. But only a part

of this can be attributed to the aforementioned pitfalls in

the data collection stage. To highlight these issues, we now

present some observations which raise model reliability con-

cerns. Note that with the following analysis, our goal is not

to perform any adversarial attacks on the model, or create ex-

periment settings to discredit the models. We only use these

observations to highlight the need for deeper inspection into

‘what’ the model is learning.

(1) Low Robustness: It is reasonable to expect that a good

model, which is correctly picking up the correct task-

relevant signals, show robustness in its prediction. How-

ever, we observe that even a 99 F1 model flips its predic-

tion on only slightly syntactically-different code variants.

An occurrence of this can be seen in Table 1. In fact, in a

vulnerability detection setting, for even a simple dataset

such as s-bAbI [49], this model doesn’t even focus on the

bug to give its prediction in almost 40% of the buggy sam-

ples. The problem exists across different models (CNN,

RNN, GNN), and datasets (synthetic and real-world) [53].

This raises a question as to whether even such high F1

models can be trusted, especially in a security sensitive

setting, or whether another metric is needed which cap-

tures a model’s task-relevant learning ability.

(2) Weak Generalization:We observe that a well perform-

ing model, trained on one dataset performs poorly on

others. This can be seen in Table 2, for a vulnerability

detection setting. This is concerning because the datasets

used for this experiment all target almost the same finite

set of common vulnerability types including null pointer

dereference, buffer overflow, use-after-free, amongst oth-

ers. This raises a question about what the models are

actually learning– actual vulnerability-relevant signals

or merely dataset nuances.



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim A. Laredo, and Alessandro Morari

Table 1: Bad Robustness: a 99 F1 GNN model flips on

only slightly syntactically different function variants.

Dataset from [49]. Model from [52].

int a = 99; int a = 99;
int b = 57; int b = 57;
char arr[69]; char arr[69];
if (b < a) { if (b) {

b = 78; b = 78;
} }
arr[b] = ’X’; arr[b] = ’X’;

Ground Truth Buggy Buggy

Prediction Buggy Non-buggy

(3) Exponential growth for incremental benefits: The

rapid proliferation of AI-for-code models is leading to

ever more sophisticated models for incremental accuracy

improvements. Table 3 highlights this rate of growth of

cost vs. performance for different popular models. Con-

firmation of model quality is necessary to justify such

costs of improvement. Otherwise, this time budget is

better spent on other software testing or code analysis

techniques, such as fuzzing.

The goal of the analysis is not to create settings which

break AI-for-code models, but rather to highlight their frail-

ties so that steps can be taken to understand and resolve

these shortcomings, as we shall discuss in the next section.

For example, the robustness example can be treated as an ‘ad-

versarial attack’ on the models [27, 59]. And similarly, there

can be defenses such as training the model on multiple code

variants. But this line of thought is complementary to our

goal. Such occurrences only triggered our suspicion regard-

ing what the models are learning, and whether the metrics

correctly capture task relevance. Similarly, the generaliza-

tion problem can be ‘fixed’ by first combining the datasets

together, and only after that splitting them into train and

test subsets. But again, that’s not our objective. This would

only mask the issue for a controlled train-test evaluation en-

vironment, rather than addressing it head-on as to whether

the models are even learning task-relevant signals.

Summary: The AI frailties apparent in AI-for-code mod-
els raise questions regarding model reliability. Specifically,
whether the models are truly learning code structures, or mere
task-irrelevant dataset nuances. And whether this aspect of
the model quality is being captured by the usual statistical
measures of model performance.

3.3 Prediction Analysis

The black-box nature of AI modeling precludes easily de-

ciphering its learned logic, unlike the explicit rules and

Table 2: Low Generalization: a well-performing CNN

model trained on one dataset performs poorly on oth-

ers. All datasets target C/C++ code. Model from [48].

Dataset for F1 on Self F1 on Others’

Model Training Test Set Test Set

Juliet [42] 90 28

VulDeePecker [39] 83 27

SySeVR [38] 90 39

Draper [48] 54 35

Table 3: Huge models delivering only incremental F1

improvements. Use case: vulnerability detection on

the Draper dataset [48]. Baseline BiLSTM and GGNN

models derived from [66], 3GNN from [67].

Model # Parameters GPU Time F1

(millions) (mins / epoch)

BiLSTM 1.3 28 49.3

GGNN 209 5120 50.8

3GNN 208 7680 54.3

path/flow analysis of static analyzers and the execution trac-

ing of dynamic analysis. Attempts to explain black-box learn-

ing for AI-for-code models have been limited. For example,

for attention-based models, the attention weights can be

interpreted as importance scores of certain features of the

data [20]. Similarly, gradient-based methods have been used

to generate heatmaps for input tokens to highlight regions

of the source code considered important by the model [48].

However, these saliency maps are not fully accurate and can

be misleading [1].

Other than white-box explanations, an important aspect

missing from current research is an analysis of the model’s

predictions from the dataset perspective, beyond the non-

domain specific statistical measures of the model prediction

accuracy. This includes analyzing the characteristics of the

samples which the model predicted correctly versus those

that it got wrong, along with the corresponding confidence

levels. Such post-facto prediction analysis can help uncover

the model logic, by using the common code characteristics

across correctly (and incorrectly) predicted samples to derive

what signals from the code the model may be picking up,

and whether they are relevant to the task at hand. If the

learning behavior is as per expectation, this can help assert

confidence in the model’s reliability.

4 DATA-DRIVEN AND SE-ASSISTED

SOLUTIONS

We now present potential solutions to improve AI-for-code

reliability. As in the previous Section, we categorize these



Towards Reliable AI for Source Code Understanding SoCC ’21, November 1–4, 2021, Seattle, WA, USA

solutions as addressing the issues with the three– data col-

lection, modeling, and post-facto analysis– stages of the

AI pipeline. For each stage, we first present how some of

the ideas from the broader AI community, such as vision

and natural language processing (NLP), can be adapted to

AI-for-code. We suggest potential data-driven solutions by

borrowing proven techniques from the SE domain. When

delving into the specifics, we occasionally use vulnerability

analysis as an example setting. However, our data-driven vi-

sion is independent of the target source code understanding

tasks, being applicable to other settings in general such as

those explored in recent model and dataset probing works

[2, 46, 53] including code summarization, method naming,

and variable misuse detection, amongst others.

4.1 Data Credibility

An important takeaway from the Section 3.1’s data collection

reliability concerns is the need for high-quality real-world

datasets with trustworthy labels and rich context associated

with the code samples. Some datasets come close to satisfy-

ing these requirements. For example, the CDG dataset [39],

in part, consists of real-world programs derived from the

National Vulnerability Database (NVD). Its label quality is

good since it is based upon confirmed bugs. Its code samples

include richer inter-procedural context, but they are curated

in the form of only subsets of program slices as opposed to

valid sub-programs. Although this potentially removes noise,

but limits the ability of the models to learn natural and valid

code structures. Furthermore, the real-world (NVD) portion

of the dataset is limited in size and by itself is insufficient for

model training.

To satisfy the size requirements, certain techniques used

in the vision and NLP AI counterparts can be borrowed, such

as crowd-sourcing [18, 19, 40], To improve the credibility

of the data gathered in such a noisy setting, the AskIt! [9]

system is able to learn which question is best directed to

which worker. In the AI-for-code ecosystem, this translates

to directing program samples to better-suited software de-

velopers or security engineers for ground truth labelling.

CrowdFill [44] is another system which used secondary vali-

dation on workers’ responses, in terms of up/down voting

from other workers. This translates to a collaborative ground

truth labeling by software engineers in the AI-for-code do-

main.

However, since human labeling is an expensive and scare

resource, especially in the more skilled SE domain, automatic

labeling is a preferred avenue. One approach is to use the

vast collection of OSS repositories as the raw data source,

together with smart filtering atop traditional code analysis

tools to automatically derive a reliable dataset. We have

been curating a dataset, D2A [64], by combining differential

analysis over Infer static analyzer outputs.

 
 
 
 
 
 
 

88 
97 
115 

 
3648 
3649 
3723 
3724 
3725 
3730 
3733 
3734 
3868 

// FFMpeg commit f4730a58454283ef1141be4152b53a2b45e5a200 
// Infer: BUFFER_OVERRUN_L1 @ libavcodec/vp9.c:3730:65 
//        Array access: Offset: [3, 4], Size: 2 
// Auto-labeler:  False Positive 
// Manual Review: False Positive 
 
struct { 
    unsigned tx32p[2][4]; 
} counts; 
 
static void adapt_probs(VP9Context *s) 
{ 
    if (s->s.h.txfmmode == TX_SWITCHABLE) { 
        for (i = 0; i < 2; i++) { 
            unsigned ... *c32 = s->counts.tx32p[i]; 
            adapt_prob(..., ..., ... + c32[3], ..., ...); 
        } 
    } 
} 

 
 
 
 
 

 
 
 

35 
37 
38 
51 
54 
55 
59 
63 
64 

 
157 
158 
159 
162 
164 
165 
167 
172 
175 

// FFMpeg commit hash dfa988ee5ea704ba761d004f0c27e7acc1fb4251 
// Infer: NULL_DEREFERENCE @ libavfilter/audio.c:167 
//        pointer `outlink->out_buf` assigned @ 165 could be  
          null and is dereferenced @ 167 
// Auto-labeler:  False Positive 
// Manual Review: True Positive 
 
AVFilterBufferRef *ff_default_get_audio_buffer(...) 
{ 
    AVFilterBufferRef *samplesref = NULL; 
    samplesref = avfilter_get_audio_buffer_ref_from_arrays(...); 
    if (!samplesref) 
        goto fail; 
fail: 
    return samplesref; 
} 
 
void ff_default_filter_samples(...) 
{ 
    AVFilterLink *outlink = NULL; 
    outlink = ... 
    if (outlink) { 
        outlink->out_buf = ff_default_get_audio_buffer(...); 
        outlink->out_buf->pts = ...; 
    } 
} 

Figure 1: D2A Auto-labeler can improve the label

quality by identifying issues that are very likely to

be false positives. In this example, Infer incorrectly

reported a buffer overflow triggered by c32[3] at line
3730 because it thinks the size of array c32 is 2, while

Auto-labeler concluded it is a false positive thanks to

its differential analysis.

Because static analyzers are known to produce an exces-

sive number of false positives, it’s unreliable to directly use

them to label samples [48]. Instead, we assume some com-

mits are bug-fixing changes and run static analysis on the

before and after versions. If some issues disappear, they are

very likely to be true positives. Similarly, if an issue detected

in the before-fix version appears again in a later version,

they are very likely to be false positives because they are not

fixed. For example, Figure 1 shows a false alarm that was

correctly suppressed by our approach.

The input to our automated dataset generation pipeline is

just a git repository. We first analyze all commit messages

using an NLP model trained on the NVD database to identify

commits that are likely to fix bugs. Then, for each commit,

we run the static analysis on the before-fix and after-fix

version pairs. After getting the static analysis results, they

are consolidated and labeled by the auto-labeler that runs

the differential analysis logic. We manually reviewed a set of

samples and found our approach can significantly improve

the label quality. Although D2A samples were captured by

the static analyzer Infer, because of the better labels, the

models trained on D2Amay potentially achieve better results

for some issues, especially the false positives suppressed by

the differential analysis.

However, although D2A raises the bar of dataset relia-

bility, there exists scope for improvement as detected via



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim A. Laredo, and Alessandro Morari

 
 
 
 
 
 
 

88 
97 
115 

 
3648 
3649 
3723 
3724 
3725 
3730 
3733 
3734 
3868 

// FFMpeg commit f4730a58454283ef1141be4152b53a2b45e5a200 
// Infer: BUFFER_OVERRUN_L1 @ libavcodec/vp9.c:3730:65 
//        Array access: Offset: [3, 4], Size: 2 
// Auto-labeler:  False Positive 
// Manual Review: False Positive 
 
struct { 
    unsigned tx32p[2][4]; 
} counts; 
 
static void adapt_probs(VP9Context *s) 
{ 
    if (s->s.h.txfmmode == TX_SWITCHABLE) { 
        for (i = 0; i < 2; i++) { 
            unsigned ... *c32 = s->counts.tx32p[i]; 
            adapt_prob(..., ..., ... + c32[3], ..., ...); 
        } 
    } 
} 

 
 
 
 
 

 
 
 

35 
37 
38 
51 
54 
55 
59 
63 
64 

 
157 
158 
159 
162 
164 
165 
167 
172 
175 

// FFMpeg commit hash dfa988ee5ea704ba761d004f0c27e7acc1fb4251 
// Infer: NULL_DEREFERENCE @ libavfilter/audio.c:167 
//        pointer `outlink->out_buf` assigned @ 165 could be  
          null and is dereferenced @ 167 
// Auto-labeler:  False Positive 
// Manual Review: True Positive 
 
AVFilterBufferRef *ff_default_get_audio_buffer(...) 
{ 
    AVFilterBufferRef *samplesref = NULL; 
    samplesref = avfilter_get_audio_buffer_ref_from_arrays(...); 
    if (!samplesref) 
        goto fail; 
fail: 
    return samplesref; 
} 
 
void ff_default_filter_samples(...) 
{ 
    AVFilterLink *outlink = NULL; 
    outlink = ... 
    if (outlink) { 
        outlink->out_buf = ff_default_get_audio_buffer(...); 
        outlink->out_buf->pts = ...; 
    } 
} 

Figure 2: D2A Auto-labeler incorrectly flagged a

real bug as a false positive. This was because D2A

didn’t include the bug-fixing commit c9c7bc4 in the

analysis, as its commit message doesn’t fit the pro-

file learned from bug-fixing commit messages ob-

tained from NVD. This can be fixed by improving

the commit message NLP model, which in turn em-

phasizes the importance of the data credibility for

the NLP model training.

manual validation of auto-labeler verdicts. This can be seen

in Figure 2 and Figure 3. In particular, Figure 2 shows the

case where the auto-labeler incorrectly labels a buggy sam-

ple as being non-buggy. This particular occurrence is attrib-

uted to a mismatch between a bug-fixing commit message

versus the corresponding commit-message-profile learned

by the NLP model used inside D2A. This example in turn

emphasizes the importance of the data credibility for the

commit-message-analysis NLP model training. Similarly, Fig-

ure 3 shows an example where the auto-labeler incorrectly

labels a non-buggy case as buggy, highlighting the need of

more refined differential analysis heuristics and an improved

commit message analysis model.

A ‘cheaper’ alternative to curating a dataset from scratch

is to augment an existing dataset. This can additionally miti-

gate its limitations and bias such as size or class imbalance.

Statistical methods such as SMOTE [13] can generate syn-

thetic samples derived from the learned class distributions.

While statistical sampling methods have appealing features

and can be extended onto sequential data such as human

texts, but since they operate in vector space, the synthesized

data is not typically valid in terms of syntax and semantics

in a source code setting. Such augmentation can similarly be

 
 

 
 
 
 

 
 

64 
65 
66 
68 
70 
71 
 

80 
81 
82 
87 
92 
93 
95 
96 
98 
102 

// OpenSSL commit hash dfa988ee5ea704ba761d004f0c27e7acc1fb4251 
// Infer: BUFFER_OVERRUN_L2 @ crypto/buffer/buf_str.c:98 
//        Array access: Offset added: [0, 2147483646] Size: 96 
// Auto-labeler:  True Positive 
// Manual Review: False Positive 
 
size_t BUF_strnlen(const char *str, size_t maxlen) 
{ 
    const char *p; 
    for (p = str; maxlen-- != 0 && *p != '\0'; ++p) ; 
    return p - str; 
} 
 
char *BUF_strndup(const char *str, size_t siz) 
{ 
    char *ret; 
    siz = BUF_strnlen(str, siz); 
    ret = OPENSSL_malloc(siz + 1); 
    if (ret == NULL) { 
        return NULL; 
    } 
    memcpy(ret, str, siz); 
} 

 
 
 
 
Figure 3: D2A Auto-labeler incorrectly flagged an

issue as a true positive. Although its differential

analysis can effectively suppress false positives, if

a reported issue disappears in the after-commit ver-

sion (due to some inconsistencies in the static ana-

lyzer) and is never reported in a later version an-

alyzed, the Auto-labeler may incorrectly assume

it’s fixed by that commit. Including more versions

in the analysis or further refining the differential

analysis heuristics can correct this labeling issue.

achieved by using software engineering techniques, while

also maintaining code validity. Delta Debugging [63] com-

bined with compiler validation offers one way of generating

new samples, with the added advantage of noise reduction.

We discuss this more in Section 4.2.

4.2 Model Accountability

The observations of Section 3.2 raise questions about how

reliable the models really are, in terms of whether the models

are picking up the real signals relevant to a code understand-

ing task. We call this aspect of the model’s quality ‘signal

awareness’, which is different than correctness. A model’s

job is to learn a separator between the different classes in a

dataset, say ‘buggy’ or ‘healthy’ in a vulnerability detection

setting. And the model is free to choose the best differenti-

ating features (signals) it can find from the samples. It can

arrive at this separator by picking up non-representative

signals to the task at hand, such as unexpected correlations

between code samples and sample lengths, or certain pro-

gramming constructs, which may happen to differ for buggy

or healthy samples. This would still be ‘correct’ learning

from the model’s perspective, which may even lead to great-

looking performance numbers by using the usual statistical



Towards Reliable AI for Source Code Understanding SoCC ’21, November 1–4, 2021, Seattle, WA, USA

measures of model quality that don’t capture the model’s

signal awareness. But, going by such metrics is a dangerous

call, especially in a security-sensitive setting, because it is

not clear if such a model has truly learned what makes a

code snippet buggy.

This calls for accountability in ensuring that the mod-

els are learning the correct logic relevant to code analy-

sis, to generate trust in models if they are to be put into

the field in competition to, or alongside, traditional static

and dynamic analyzers. This is along the dimension of the

broader AI trustworthiness research, which includes efforts

to ensure that the models will generalize on unseen data (ro-

bustness) [27, 56, 59], will not reveal people’s identity from

training data (privacy) [22, 32], and will be fair when making

decisions (fairness) [14, 16].

The first step towards improving model accountability is

measuring its signal awareness, which can then be used to

guide model evolutions. To this end, we have developed a

data-driven approach to uncover a model’s ability to cap-

ture task-relevant signals. For this, we borrow a fault isola-

tion technique from the Software Engineering domain called

Delta Debugging [63]. We use it to extract the bare minimum

excerpt from a source code input, which a model needs to

arrive at and stick to its original prediction. And then verify

whether the minimal snippet has the same task profile as the

original code [53]. For the vulnerability detection setting, the

model’s reliance on incorrect signals can then be uncovered

when a vulnerability in the original code is missing in the

minimal snippet, both of which the model however predicts

as being vulnerable. By using this approach to probe them

for signal awareness, we show a sharp performance drop for

multiple AI-for-code models (CNN, RNN, GNN) across mul-

tiple datasets (both- synthetic and real-wordl), with Recall

dropping from high 90s to sub-60s.

With our data-driven SE-assisted approach we are able

to highlight that the models are picking up a lot of noise,

presumably dataset nuances, as opposed to capturing task-

relevant signals. This ability to measure model signal aware-

ness now enables systematic exploration towards improving

model accountability in terms of ensuring that themodels are

learning the relevant code constructs. The usual white-box

hyperparameter-tuning techniques can be employedwith the

enhanced goal of additionally improving model signal aware-

ness, together with the usual statistical measures of model

quality [30, 61]. Purely data-driven black-box approaches can

also be utilized such as program simplification (e.g. via slic-

ing), data segmentation, as well as augmentation. We have

observed encouraging preliminary results using such data-

driven approaches. For example, we are able to improve the

signal awareness of models by over 30% by adding a notion

of code complexity metrics into model training (difficulty:

low), and by over 50% by using a program-simplification

based augmentation approach similar to the aforementioned

Delta Debugging technique (difficulty: high).

4.3 Prediction Traceability

Section3.3 highlighted an under-explored avenue in AI-for-

code research with regards to post-facto prediction analysis,

which can be a valuable resource towards uncovering the

code analysis logic learned by models.

Analyzing mispredictions is a useful means towards model

refinement. Statistical methods, such as Naive Bayes, lin-

ear and logistic regression, are helpful in identifying in-

put features contributing to mispredictions. But the auto-

matic feature extraction quality of deep learning models

precludes such interpretability. To add some transparency

into these black boxes, general AI explanation methods have

been developed. For example, gradient-based methods [65]

compute activation maps of gradients over inputs to high-

light input regions most influencing the model’s prediction.

Approximation-based methods [47] use interpretable sur-

rogate models to approximate the deep learning model’s

behavior, and then use the surrogate to derive the feature

importance ranking for the input.

In addition to such white-box approaches, AI-for-code

offers unique opportunities to use SE techniques for purely

data-driven analytics. One approach is to analyze the code

characteristics of the samples which the model predicted

correctly versus those that it got wrong. By using source

code-related metrics, such as lines of code, loop count, deci-

sion points, etc., to group samples by prediction accuracy, it

can help uncover what aspects of code the model may be able

to grasp, and where it may be facing difficulties. This can

then provide insights into improving the model’s learning

to target the code characteristics common to mispredictions.

Promoting task-relevant learning in this way in turn helps

improve model accountability, as discussed in the last section.

The same group-by-metric approach can be used to trace

the evolution of the model across iterations. For example,

our preliminary experiments suggest models facing difficulty

capturing bigger and harder samples, which improves across

augmentation iterations, even without any explicit notion

of code complexity in model training.

5 CONCLUSION

With AI-for-code services gaining popularity in the Cloud, in

this work, we categorized the reliability issues affecting these

into the different stages of an AI pipeline: (i) data collection,

(ii) model training, and (iii) prediction analysis. For each

stage, we propose potential solutions tied to proven software

engineering and data-driven techniques. We call for efforts

from the research community to ensure achieving credibility,

accountability, and traceability in the AI-for-code ecosystem.



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim A. Laredo, and Alessandro Morari

REFERENCES

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow,

Moritz Hardt, and Been Kim. 2018. Sanity Checks for Saliency Maps.

(2018), 9525–9536. https://proceedings.neurips.cc/paper/2018/hash/

294a8ed24b1ad22ec2e7efea049b8737-Abstract.html

[2] Miltiadis Allamanis. 2019. The adverse effects of code duplication in

machine learning models of code. In Onward! 2019. 143–153. https:

//doi.org/10.1145/3359591.3359735

[3] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.

2015. Suggesting accurate method and class names. In ESEC/FSE 2015.
ACM, 38–49. https://doi.org/10.1145/2786805.2786849

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.

2018. Learning to Represent Programs with Graphs. In ICLR 2018.
https://openreview.net/forum?id=BJOFETxR-

[5] M. Allamanis, H. Peng, and C. Sutton. 2016. A Convolutional Attention

Network for Extreme Summarization of Source Code. In ICML 2016,
Vol. 48. 2091–2100. http://proceedings.mlr.press/v48/allamanis16.html

[6] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali.

2020. On the time-based conclusion stability of cross-project defect

prediction models. Empir. Softw. Eng. 25, 6 (2020), 5047–5083. https:

//doi.org/10.1007/s10664-020-09878-9

[7] Rohan Bavishi, Michael Pradel, and Koushik Sen. 2018. Context2Name:

A Deep Learning-Based Approach to Infer Natural Variable Names

from Usage Contexts. (2018). http://arxiv.org/abs/1809.05193

[8] Pavol Bielik and Martin T. Vechev. 2020. Adversarial Robustness for

Code. In ICML 2020 (Proceedings of Machine Learning Research, Vol. 119).
896–907. http://proceedings.mlr.press/v119/bielik20a.html

[9] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and W.

Tan. 2012. Asking the Right Questions in Crowd Data Sourcing. In

IEEE 28th International Conference on Data Engineering (ICDE 2012).
https://doi.org/10.1109/ICDE.2012.122

[10] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2016. An

Analysis of Deep Neural Network Models for Practical Applications.

(2016). http://arxiv.org/abs/1605.07678

[11] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021.

Bias in machine learning software: why? how? what to do?. In

ESEC/FSE 2021. 429–440. https://doi.org/10.1145/3468264.3468537

[12] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray. 2021. Deep Learning

based Vulnerability Detection: Are We There Yet. IEEE Trans. Software
Eng. (2021). https://doi.org/10.1109/TSE.2021.3087402

[13] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip

Kegelmeyer. 2002. SMOTE: Synthetic Minority Over-sampling Tech-

nique. J. Artif. Intell. Res. 16 (2002). https://doi.org/10.1613/jair.953

[14] Alexandra Chouldechova. 2017. Fair Prediction with Disparate Impact:

A Study of Bias in Recidivism Prediction Instruments. Big Data 5, 2
(2017), 153–163. https://doi.org/10.1089/big.2016.0047

[15] M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk, M. Penta, and

G. Bavota. 2021. An Empirical Study on the Usage of BERT Models

for Code Completion. In MSR 2021. 108–119. https://doi.org/10.1109/

MSR52588.2021.00024

[16] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz

Huq. 2017. Algorithmic Decision Making and the Cost of Fairness. In

KDD 2017. 797–806. https://doi.org/10.1145/3097983.3098095

[17] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John

Grundy, and Aditya Ghose. 2021. Automatic Feature Learning for

Predicting Vulnerable Software Components. IEEE Trans. Software
Eng. 47, 1 (2021), 67–85. https://doi.org/10.1109/TSE.2018.2881961

[18] Thomas Davidson, Debasmita Bhattacharya, and Ingmar Weber. 2019.

Racial Bias in Hate Speech and Abusive Language Detection Datasets.

(2019). http://arxiv.org/abs/1905.12516

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

2009. ImageNet: A large-scale hierarchical image database. In (CVPR

2009. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

[20] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang. 2020. Hoppity:

Learning Graph Transformations to Detect and Fix Bugs in Programs.

In ICLR 2020. https://openreview.net/forum?id=SJeqs6EFvB

[21] Bill Doerrfeld. 2021. How Open Source Software Powers Digital In-

novation. https://devops.com/how-open-source-software-powers-

digital-innovation/.

[22] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith.

2006. Calibrating Noise to Sensitivity in Private Data Analysis. In TCC
2006. 265–284. https://doi.org/10.1007/11681878_14

[23] Fábio F. Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. 2021.

Software engineering meets deep learning: a mapping study. In SAC
2021. ACM, 1542–1549. https://doi.org/10.1145/3412841.3442029

[24] Jaroslav M. Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Mil-

tiadis Allamanis, Mirella Lapata, and Charles Sutton. 2017. Autofolding

for Source Code Summarization. IEEE Trans. Software Eng. 43, 12 (2017),
1095–1109. https://doi.org/10.1109/TSE.2017.2664836

[25] Github. 2021. GitHub Copilot- Your AI pair programmer. https:

//copilot.github.com/.

[26] Mojdeh Golagha, Alexander Pretschner, and Lionel C. Briand. 2020.

Can We Predict the Quality of Spectrum-based Fault Localization?. In

ICST 2020. 4–15. https://doi.org/10.1109/ICST46399.2020.00012

[27] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R.

Arandjelovic, T. Mann, and P. Kohli. 2018. On the Effectiveness of

Interval Bound Propagation for Training Verifiably Robust Models.

(2018). http://arxiv.org/abs/1810.12715

[28] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020.

Code to Comment "Translation": Data, Metrics, Baselining & Evalua-

tion. In ASE 2020. 746–757. https://doi.org/10.1145/3324884.3416546

[29] Red Hat. 2021. The State of Enterprise Open Source. https://www.

redhat.com/en/enterprise-open-source-report/2021.

[30] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of

the state-of-the-art. Knowl. Based Syst. 212 (2021). https://doi.org/10.

1016/j.knosys.2020.106622

[31] Joel Hestness, Newsha Ardalani, and Gregory F. Diamos. 2019. Beyond

human-level accuracy: computational challenges in deep learning. In

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP 2019. 1–14. https://doi.org/10.1145/3293883.3295710

[32] B. Hitaj, G. Ateniese, and F. Pérez-Cruz. 2017. Deep Models Under the

GAN: Information Leakage from Collaborative Deep Learning. In CCS
2017. 603–618. https://doi.org/10.1145/3133956.3134012

[33] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer.

2016. Summarizing Source Code using a Neural Attention Model. In

ACL 2016. https://doi.org/10.18653/v1/p16-1195

[34] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro,

Yves Le Traon, and Mark Harman. 2019. The importance of accounting

for real-world labelling when predicting software vulnerabilities. In

ESEC/FSE 2019. 695–705. https://doi.org/10.1145/3338906.3338941

[35] Ugur Koc, Parsa Saadatpanah, Jeffrey S. Foster, and Adam A. Porter.

2017. Learning a classifier for false positive error reports emitted by

static code analysis tools. In MAPL 2017. 35–42. https://doi.org/10.

1145/3088525.3088675

[36] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan.

2020. Improved Code Summarization via a Graph Neural Network. In

ICPC 2020. 184–195. https://doi.org/10.1145/3387904.3389268

[37] Xiaochen Li, He Jiang, Zhilei Ren, Ge Li, and Jingxuan Zhang. 2018.

Deep Learning in Software Engineering. CoRR abs/1805.04825 (2018).

arXiv:1805.04825 http://arxiv.org/abs/1805.04825

[38] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan

Chen. 2021. SySeVR: A Framework for Using Deep Learning to Detect

Software Vulnerabilities. IEEE Transactions on Dependable and Secure
Computing (2021). https://doi.org/10.1109/TDSC.2021.3051525

https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/2786805.2786849
https://openreview.net/forum?id=BJOFETxR-
http://proceedings.mlr.press/v48/allamanis16.html
https://doi.org/10.1007/s10664-020-09878-9
https://doi.org/10.1007/s10664-020-09878-9
http://arxiv.org/abs/1809.05193
http://proceedings.mlr.press/v119/bielik20a.html
https://doi.org/10.1109/ICDE.2012.122
http://arxiv.org/abs/1605.07678
https://doi.org/10.1145/3468264.3468537
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1613/jair.953
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1109/MSR52588.2021.00024
https://doi.org/10.1109/MSR52588.2021.00024
https://doi.org/10.1145/3097983.3098095
https://doi.org/10.1109/TSE.2018.2881961
http://arxiv.org/abs/1905.12516
https://doi.org/10.1109/CVPR.2009.5206848
https://openreview.net/forum?id=SJeqs6EFvB
https://devops.com/how-open-source-software-powers-digital-innovation/
https://devops.com/how-open-source-software-powers-digital-innovation/
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/3412841.3442029
https://doi.org/10.1109/TSE.2017.2664836
https://copilot.github.com/
https://copilot.github.com/
https://doi.org/10.1109/ICST46399.2020.00012
http://arxiv.org/abs/1810.12715
https://doi.org/10.1145/3324884.3416546
https://www.redhat.com/en/enterprise-open-source-report/2021
https://www.redhat.com/en/enterprise-open-source-report/2021
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1145/3293883.3295710
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.1145/3338906.3338941
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/3387904.3389268
http://arxiv.org/abs/1805.04825
https://doi.org/10.1109/TDSC.2021.3051525


Towards Reliable AI for Source Code Understanding SoCC ’21, November 1–4, 2021, Seattle, WA, USA

[39] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,

Zhijun Deng, and Yuyi Zhong. 2018. In Network and Distributed System
Security Symposium, NDSS 2018. http://wp.internetsociety.org/ndss/

wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf

[40] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro

Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014.

Microsoft COCO: Common Objects in Context. In European Conference
on Computer Vision, ECCV 2014. 740–755. https://doi.org/10.1007/978-

3-319-10602-1_48

[41] K. Liu, D. Kim, T. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim, and Y.

Traon. 2019. Learning to spot and refactor inconsistent method names.

In ICSE 2019. 1–12. https://doi.org/10.1109/ICSE.2019.00019

[42] NIST. 2017. Juliet Test Suite for C/C++ V1.3. https://samate.nist.gov/

SRD/testsuite.php

[43] Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and

Raymond J. Mooney. 2020. Learning to Update Natural Language

Comments Based on Code Changes. In ACL 2020. 1853–1868. https:

//doi.org/10.18653/v1/2020.acl-main.168

[44] Hyunjung Park and Jennifer Widom. 2014. CrowdFill: collecting struc-

tured data from the crowd. In International Conference on Management
of Data, SIGMOD 2014. https://doi.org/10.1145/2588555.2610503

[45] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2020. On the

performance of method-level bug prediction: A negative result. J. Syst.
Softw. 161 (2020). https://doi.org/10.1016/j.jss.2019.110493

[46] Md. Rafiqul IslamRabin, Vincent J. Hellendoorn, andMohammadAmin

Alipour. 2021. Understanding neural code intelligence through pro-

gram simplification. In ESEC/FSE 2021. 441–452. https://doi.org/10.

1145/3468264.3468539

[47] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why

Should I Trust You?": Explaining the Predictions of Any Classifier. In

KDD 2016. 1135–1144. https://doi.org/10.1145/2939672.2939778

[48] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,

P. Ellingwood, and M. McConley. 2018. Automated Vulnerability

Detection in Source Code Using Deep Representation Learning. In

ICMLA 2018. https://doi.org/10.1109/ICMLA.2018.00120

[49] Carson D. Sestili, William S. Snavely, and Nathan M. VanHoudnos.

2018. Towards security defect prediction with AI. CoRR abs/1808.09897

(2018). http://arxiv.org/abs/1808.09897

[50] Sonatype. 2020. State of the Software Supply Chain Re-

port. https://www.sonatype.com/resources/white-paper-state-of-

the-software-supply-chain-2020.

[51] Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020.

Flow2Vec: value-flow-based precise code embedding. Proc. ACM Pro-
gram. Lang. 4, OOPSLA (2020), 233:1–233:27. https://doi.org/10.1145/

3428301

[52] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim Laredo, andAlessandro

Morari. 2020. Learning to map source code to software vulnerability

using code-as-a-graph. (2020). https://arxiv.org/abs/2006.08614

[53] Sahil Suneja, Yunhui Zheng, Yufan Zhuang, Jim Alain Laredo, and

Alessandro Morari. 2021. Probing model signal-awareness via

prediction-preserving input minimization. In ESEC/FSE 2021. 945–955.

https://doi.org/10.1145/3468264.3468545

[54] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert,

Juliana Vicente Franco, and Miltiadis Allamanis. 2021. Fast and

Memory-Efficient Neural Code Completion. In MSR 2021. 329–340.
https://doi.org/10.1109/MSR52588.2021.00045

[55] Synopsys. 2020. Open Source Security and Risk Analysis Re-

port. https://www.synopsys.com/software-integrity/resources/

analyst-reports/open-source-security-risk-analysis.html.

[56] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,

Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014. Intrigu-

ing properties of neural networks. In 2nd International Conference on
Learning Representations, ICLR 2014. http://arxiv.org/abs/1312.6199

[57] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Y.

Aravkin. 2014. ALETHEIA: Improving the Usability of Static Secu-

rity Analysis. In CCS 2014. 762–774. https://doi.org/10.1145/2660267.

2660339

[58] Cody Watson, Nathan Cooper, David Nader-Palacio, Kevin Moran,

and Denys Poshyvanyk. 2020. A Systematic Literature Review on

the Use of Deep Learning in Software Engineering Research. (2020).

https://arxiv.org/abs/2009.06520

[59] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning,

and I. Dhillon. 2018. Towards Fast Computation of Certified Robustness

for ReLU Networks. In ICML 2018. 5273–5282. http://proceedings.mlr.

press/v80/weng18a.html

[60] Yanming Yang, Xin Xia, David Lo, and John C. Grundy. 2020. A Survey

on Deep Learning for Software Engineering. CoRR abs/2011.14597

(2020). arXiv:2011.14597 https://arxiv.org/abs/2011.14597

[61] Q. Yao,M.Wang, H. Escalante, I. Guyon, Y. Hu, Y. Li,W. Tu, Q. Yang, and

Y. Yu. 2018. Taking Human out of Learning Applications: A Survey on

Automated Machine Learning. (2018). http://arxiv.org/abs/1810.13306

[62] Ulas Yuksel and Hasan Sözer. 2013. Automated Classification of Static

Code Analysis Alerts: A Case Study. In ICSM 2013. 532–535. https:

//doi.org/10.1109/ICSM.2013.89

[63] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating

Failure-Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.
https://doi.org/10.1109/32.988498

[64] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,

A. Morari, and Z. Su. 2021. D2A: A Dataset Built for AI-Based Vulner-

ability Detection Methods Using Differential Analysis. In ICSE-SEIP
2021. 111–120. https://doi.org/10.1109/ICSE-SEIP52600.2021.00020

[65] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio

Torralba. 2016. Learning Deep Features for Discriminative Localization.

In CVPR 2016. 2921–2929. https://doi.org/10.1109/CVPR.2016.319

[66] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang

Liu. 2019. Devign: Effective Vulnerability Identification by Learning

Comprehensive Program Semantics via Graph Neural Networks. In

NeurIPS 2019. 10197–10207. https://proceedings.neurips.cc/paper/

2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

[67] Yufan Zhuang, Sahil Suneja, Veronika Thost, Giacomo Domeniconi,

Alessandro Morari, and Jim Laredo. 2021. Software Vulnerability

Detection via Deep Learning over Disaggregated Code Graph Repre-

sentation. (2021). https://arxiv.org/abs/2109.03341

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/ICSE.2019.00019
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://doi.org/10.18653/v1/2020.acl-main.168
https://doi.org/10.18653/v1/2020.acl-main.168
https://doi.org/10.1145/2588555.2610503
https://doi.org/10.1016/j.jss.2019.110493
https://doi.org/10.1145/3468264.3468539
https://doi.org/10.1145/3468264.3468539
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/ICMLA.2018.00120
http://arxiv.org/abs/1808.09897
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://doi.org/10.1145/3428301
https://doi.org/10.1145/3428301
https://arxiv.org/abs/2006.08614
https://doi.org/10.1145/3468264.3468545
https://doi.org/10.1109/MSR52588.2021.00045
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
http://arxiv.org/abs/1312.6199
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1145/2660267.2660339
https://arxiv.org/abs/2009.06520
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
https://arxiv.org/abs/2011.14597
https://arxiv.org/abs/2011.14597
http://arxiv.org/abs/1810.13306
https://doi.org/10.1109/ICSM.2013.89
https://doi.org/10.1109/ICSM.2013.89
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/CVPR.2016.319
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://arxiv.org/abs/2109.03341

	Abstract
	1 Introduction
	2 Background
	3 The Reliability Problem
	3.1 Data Collection
	3.2 Model Training
	3.3 Prediction Analysis

	4 Data-driven and SE-assisted Solutions
	4.1 Data Credibility
	4.2 Model Accountability
	4.3 Prediction Traceability

	5 Conclusion
	References

