
VELVET: a noVel Ensemble Learning approach to
automatically locate VulnErable sTatements

Yangruibo Ding∗, Sahil Suneja†, Yunhui Zheng†, Jim Laredo†, Alessandro Morari†, Gail Kaiser∗, Baishakhi Ray∗
∗Columbia University, †IBM Research

Abstract—Automatically locating vulnerable statements in
source code is crucial to assure software security and alleviate
developers’ debugging efforts. This becomes even more important
in today’s software ecosystem, where vulnerable code can flow
easily and unwittingly within and across software repositories like
GitHub. Across such millions of lines of code, traditional static
and dynamic approaches struggle to scale. Although existing
machine-learning-based approaches look promising in such a
setting, most work detects vulnerable code at a higher granularity
– at the method or file level. Thus, developers still need to inspect
a significant amount of code to locate the vulnerable statement(s)
that need to be fixed.

This paper presents VELVET, a novel ensemble learning
approach to locate vulnerable statements. Our model combines
graph-based and sequence-based neural networks to successfully
capture the local and global context of a program graph and
effectively understand code semantics and vulnerable patterns.
To study VELVET’s effectiveness, we use an off-the-shelf synthetic
dataset and a recently published real-world dataset. In the static
analysis setting, where vulnerable functions are not detected in
advance, VELVET achieves 4.5× better performance than the
baseline static analyzers on the real-world data. For the isolated
vulnerability localization task, where we assume the vulnerability
of a function is known while the specific vulnerable statement
is unknown, we compare VELVET with several neural networks
that also attend to local and global context of code. VELVET
achieves 99.6% and 43.6% top-1 accuracy over synthetic data and
real-world data, respectively, outperforming the baseline deep
learning models by 5.3-29.0%.

Index Terms—Security Bugs, Vulnerability Localization, En-
semble Learning, Transformer Model, Graph Neural Network

I. INTRODUCTION

Rapid detection and elimination of vulnerabilities is crucial
to protect production software from malicious attacks. Un-
fortunately, the shortcomings of traditional program analysis
and software testing techniques become apparent at the scale
of the software nowadays [1]–[3]. For example, dynamic
analysis tools are known to suffer from high false negatives,
as they cannot reach many code regions, particularly given
the huge size of modern applications and infrastructure. Static
analysis tools scale better but require configuration with known
vulnerability patterns (i.e., rules), typically running behind the
attackers, and tend to report high false positives.

Recent progress in AI techniques, combined with the avail-
ability of large volumes of source code, presents an oppor-
tunity for security analysts to apply data-driven approaches
that augment traditional program analysis. Researchers have
explored applying deep-learning techniques to identify se-
curity vulnerabilities [4]–[14]. These works typically learn

vulnerability patterns from large amounts of vulnerable/non-
vulnerable examples without active manual effort. However,
previous approaches are mostly limited to predicting vulnera-
ble methods or files, without locating the statement that really
triggers the vulnerability. Such coarse-grained vulnerability
detection slows down developers seeking to locate and fix
a vulnerability, since they still need to spend significant
debugging effort to inspect hundreds or even thousands of lines
of source code manually.

However, it is challenging to locate vulnerabilities at the
finer granularity of identifying vulnerable statements. First,
existing vulnerability detection tools [4], [6], [12] classify
the function as a whole, and a recent research study [13]
revealed that these tools learn high-level vulnerable features
and cannot highlight the individual vulnerable statements.
In contrast, localization requires the model to learn more
concrete statement-level vulnerable features; the model needs
to pay attention not only to the individual statements but
also to the control flows and data dependencies among them.
Second, manually annotating vulnerable statements requires
significant effort, so collecting a large volume of reliable
training data containing vulnerable location information is
expensive. We address these challenges by (i) developing a
novel ensemble learning approach, VELVET, that learns to
capture code semantics at statement granularity from both
local and global context. (ii) pre-training on large amounts
of synthetic data to learn artificial vulnerability patterns, and
then fine-tuning on a smaller real-world dataset, which enables
the model to understand more complex patterns even though
large real-world annotated datasets are not available.
Modeling Vulnerability Localization. We propose VELVET
to locate vulnerable statements. Our design stems from two
insights: (i) the model needs to capture the semantics of the
vulnerable statements, and (ii) the semantics often depend on
both local and global context. To this end, VELVET consists
of two main steps:
(i) Learning Node Semantics. For locating a vulnerable state-
ment, it is important to understand the statement semantics
(e.g., control and data dependency, context, etc.). In a static
analysis setting, such semantics can be captured well with a
code graph, where each graph node represents code elements
and edges represent the dependencies between the nodes. Rep-
resenting these dependencies via a graph has proven effective
to understand the code syntax and semantics by many previous
studies [4], [12], [13], [15]–[21]. In this work, we use a Code
Property Graph (CPG) [22] to represent the code. We then

1

ar
X

iv
:2

11
2.

10
89

3v
2

 [
cs

.S
E

]
 1

3
Ja

n
20

22

use a Deep Learning (DL) model to learn node semantics
from the CPG. The DL model essentially learns a node-
level embedding that captures the node content along with
contextual dependencies. We then feed the embedded node
representation to a classifier to classify the node as vulnerable
or not. We further map the node back to the corresponding
statement as the final prediction.
(ii) Incorporating Global and Local Context with Ensemble
Learning. To locate the vulnerable statement, developers spend
significant amounts of time debugging the program, trying to
both understand the functionality at a high level and, also,
estimate the behaviors from local context of suspicious code
blocks. Listing 1 shows a confirmed CVE from our real-world
dataset. To identify the out-of-array access at line 146, devel-
opers need to know the latest update of block_ptr, which
is in the surrounding context (line 138), together with the
faraway declarations of variable row_ptr and pixel_ptr.
Thus, to locate the vulnerable line, developers need to reason
about both local and global context. To mimic real-world
debugging practice, we propose a novel ensemble approach
to learn both contexts for vulnerability localization.

Using our VELVET framework, we capture node semantics
with a transformer-based model and a GGNN model. We use a
linear layer and a softmax to assign vulnerability probabilities
to each embedded node. The node with the highest vulnera-
bility probability will be marked as vulnerable, and will be
mapped back to the source code statement. Our ablation study
shows that transformer is better able to capture long-range
dependencies, i.e., global context, while GGNN captures short-
range local dependencies better. Thus, we combine these two
models as an ensemble for final localization.
Pre-training & Fine-tuning. Another challenge for DL-
based vulnerability localization tools is the scarcity of high-
quality, real-world vulnerability datasets with well-annotated
statement-level information, i.e., which specific line or lines
are the triggers of the security issue (e.g.,, line 146 in List-
ing 1). Fortunately, a recently launched real-world vulnerabil-
ity dataset, D2A [23], contains precise vulnerability location
information. We apply D2A as the main resource on which to
build the prototype for our data-driven technique. To imitate
the practical scenario at best, we sort the functions in D2A
based on their commit dates. We train the model on the past
commits and evaluate the performance on the latest ones.

Because of the time-consuming data collection process and
the expensive manual validation, D2A has a relatively small
size and is not enough to sufficiently train a generalized
model. One possible alternative is to train a localization model
on synthetic vulnerabilities: for example, NIST’s Juliet Test
Suite [24] was artificially produced to imitate CWE [25]
vulnerability patterns, and it indicates the location information
for each sample. However, models trained on synthetic data
do not usually perform very well in real scenarios [13]. In
this work, we propose a practical mitigation to address these
concerns: we pre-train VELVET with large-scale synthetic data,
forcing the model to first learn simple, artificial patterns, and
then fine-tune with D2A examples to capture the complexity

of real-world patterns. We show that the pre-training and fine-
tuning workflow mitigates the dataset scarcity problem.
Results. In the static analysis setting, where vulnerable func-
tions are not detected in advance, VELVET achieves 2.7× and
4.5× better performance than baseline static analyzers on the
synthetic and real-world dataset separately, and significantly
reduces the false positives and false negatives. For the vul-
nerability localization task, where we assume the vulnerable
function has already been perfectly detected, VELVET achieves
99.6% accuracy on the NIST Juliet Test Suite [24]. With
further fine-tuning on the D2A dataset, VELVET achieves
43.6/63.9% localization accuracies for top-1/3 predictions over
the much more complex real-world data. Our ablation study
further provides evidence that Transformer is better at captur-
ing distant dependencies while GGNN focuses better on local
context of statements, and our VELVET’s ensemble approach
is the most effective way of combining global and local
information for vulnerability localization – outperforming the
baseline deep-learning models by 5.3%-29.0%.

Listing 1: Out-of-array accesses vulnerability: CVE-2013-7009
// project: ffmpeg (commit sha: 920046a)
// file: libavcodec/rpza.c
1 static void rpza_decode_stream(...)
2 {
14 unsigned short *pixels = ...;
15 int row_ptr = 0;
16 int pixel_ptr = 0; // Fix: int pixel_ptr = -4;

...
135 case 0x00:
136 if (s->size - stream_ptr < 16)
137 return;
138 block_ptr = row_ptr + pixel_ptr;

...
146 pixels[block_ptr] = colorA;
147 block_ptr ++;
148 }
149 block_ptr += row_inc;
162}

This paper makes the following contributions:
• We propose an ensemble neural architecture, VELVET, to

locate vulnerabilities at statement-level by successfully cap-
turing local and global program dependencies [26].

• We design the model learning process as pre-training on the
synthetic data, JULIET, and fine-tuning on real-world data,
D2A, following a practical workflow that alleviates data
inadequacy concerns regarding real-world vulnerabilities.

• We evaluate VELVET on both JULIET and D2A. Our
ablation studies show our ensemble approach significantly
reduces false positives and false negatives and performs
4.5× better than the baseline static analyzers on real-world
data. We also show VELVET’s ensemble approach is the
most effective way to capture vulnerable contexts among
baseline deep-learning models.

II. BACKGROUND

Graph Neural Network (GNN). A graph is a common
way to represent source code, where each code element is
modeled as a graph node, and relations between the code
elements are captured by the edges. Graph Neural Network
(GNN) is a deep-learning model that learns directly from

2

graph structure. GNN has been applied to bug detection [12],
[13], [27] and fixing [17], [18], [20], [28]. GNN learns the
node representations by aggregating the information through
the graph structure where nodes can only communicate via
neighboring edges. Thus, after sufficient training, each node
gains knowledge about its local neighborhood. In this way,
GNN leans more fine-granular information about semantic
(e.g.,, data-dependencies) and syntactic (e.g.,, tree structure)
properties of code than mere token-based representations [15].
In this work, we implement GGNN [29] as representative of
graph-based models.
Transformer Model. Transformer model [30] is the state-
of-art model for sequence learning and has proven to be
effective for source code modeling tasks [17], [31]–[35].
Transformer leverages the power of attention mechanisms (i.e.,
self-attention and encoder-decoder attention) and builds the
architecture entirely on that basis. Multi-head self-attention
enables the model to attend to any set of code elements across
arbitrarily long distances so that each element will maintain a
global [17] view over the entire sequence. Thus, compared
to GNN, Transformer can aggregate information from two
faraway nodes more efficiently. Nevertheless, the Transformer
model usually treats code as a sequence of tokens (keywords,
variable, etc.) and ignores the underlying graph structure of
programs. Theoretically, the multi-head attention is able to
capture the relations between code tokens during training, but
in practice, learning “edges”, de novo, is more challenging
than explicitly defining them with graph structure in advance.
Ensemble Learning. Various neural networks (e.g., GNN and
Transformer) are designed out of divergent instincts and thus
have divergent architectures. With the random initialization
of model weights, different neural architectures can learn
quite distinct aspects of the same dataset, even for the same
task. This variance leaves challenges for a single model to
capture the complexity of the data distributions. Ensemble
learning provides a practical solution to minimize individual
architectures’ noisy bias and improve overall performance: it
aggregates multiple models’ decisions by either asking models
to vote or (weighted) averaging each model’s predictions. Such
a combination can build a more stable neural network with a
comprehensive understanding of the whole data. The ensemble
method has shown its effectiveness in code modeling tasks,
e.g., Lutellier et al. [33] use ensemble learning to repair bugs
and report better results than a single-model counterpart.

Due to the diversity of vulnerability patterns, one single
model will struggle to generalize when locating vulnerabilities.
Instead, combining the knowledge learned by multiple neural
architectures can be more effective in identifying diverse
patterns. To this end, we propose an ensemble approach that
integrates the individual advances of GNN and Transformer
to predict the vulnerable statements.

III. APPROACH

This section presents our VELVET framework, which aims
to predict the vulnerable statements in source code. VELVET is
built on the premise that similar vulnerabilities have occurred

in the past [36], [37] and can be learned from the previous
experience. In particular, VELVET analyzes the code as graphs
and tries to identify vulnerable graph nodes.

To this end, we train VELVET on vulnerable/non-vulnerable
samples in a supervised learning setting, where graph nodes
are annotated with a vulnerability probability—true vulnerable
nodes are annotated with 1 and non-vulnerable nodes are
marked with 0 probability. We then design the vulnerability
localization as a classification task where each node is as-
signed a vulnerability probability. The node with the maximum
vulnerability probability will be predicted as the vulnerable
location. With sufficient training, we expect the model to
learn the patterns of where vulnerabilities are likely to occur,
transplant this knowledge to unseen samples with similar
characteristics, and make predictions accordingly. Limited
by the availability of annotated datasets, we currently only
consider functions with a single vulnerable statement/node.
However, it should be straightforward to extend VELVET to
locate multiple statements, which we plan as future work once
we get such datasets.

A. VELVET’s Localization Framework

Locating the vulnerable node in a graph can be regarded as
classifying graph nodes as vulnerable/non-vulnerable. Thus,
we define the vulnerability localization problem with respect
to a code graph, where we assume a program can be directly
transformed to a graph structure (Section III-B). We consider
a code graph as a set of nodes and edges G = (V, E), where
V indicates the set of nodes of the graph and E represents
the list of edges connecting the nodes. Given a graph G, the
goal for the vulnerability localization task is to locate the
vulnerable node v ∈ V by predicting its index, y ∈ |V|, where
|V| represents the number of nodes in the graph. Therefore,
we build the samples in our dataset as D = {Gi, yi}m, where
m is the size of our dataset.

Given a graph G, this involves three main steps:
(i) Learn the semantic representation of each node of G in

an embedded space;
(ii) Use the node-level semantic embedding to assign a

vulnerability probability to each node; and
(iii) Select the node with highest vulnerable probability as

the vulnerable location of G.
To identify non-vulnerable graphs, we inject a dummy node to
every graph. This dummy node acts as a general representation
for the entire graph and indicates whether this graph contains
vulnerabilities or not. If a sample is non-vulnerable, we mark
the dummy node as the ground-truth location.

We design a node embedding method φ (Section III-B) to
vectorize the nodes vi as hi ∈ Rd, where d is the embedding
dimension. The set of hi that contains all the node embeddings
of a graph is defined as H. Given a sample {G, y}, we then
feed the vectorized graph into a neural-network model to learn
the semantic node representation H′ = Fmodel(H, E).

A well-trained model is expected to encode sufficient se-
mantic knowledge of a node, together with its context, so we
feed the transformed semantic representation, h′ of each node

3

Fig. 1: VELVET Overview

to a classifier that tries to compute the probability of each node
being vulnerable. More formally, the learned H′ ∈ Rdh×|V|

(dh is the hidden dimension of the model) is fed into a linear
layer with trainable weights W ∈ Rdh×1 and bias b ∈ R1×|V|

to get a score for each node and then a softmax layer for
probability P = softmax(W>H′+b). Given the vulnerable
probability of each node, we take the index of the most
probable node as the prediction ŷ = argmaxi∈|V|(pi), and
compute cross-entropy loss comparing with the ground-truth.

Figure 1 illustrates the end-to-end workflow of the proposed
approach. Similar to many NN-based tools, our technique
contains two stages: Training and Inference. The following
sections explain the details of each module of the framework.

B. Building Vectorized Code Graphs

Graph Vectorization. In our work, we use Code Property
Graph (CPG) [22] to represent the graph semantics of pro-
grams (code graph module in Fig. 1). CPG is a code represen-
tation designed specifically for vulnerability detection. Besides
AST, CFG, DFG edges, it also includes several other types
of edges that encode detailed information regarding program
dependencies. Specifically, we use Joern [38] to generate CPG.
To vectorize the node information, we train a word2vec model
over all possible code tokens in our dataset, and for each node,
we concatenate the token embeddings corresponding to that
node, as the initial node representation.
Vulnerable Node Annotation. In the graph representation,
we annotate the AST node that corresponds to the vulnerable
statement as the ground-truth. As shown in Figure 1, the red
line in the training sample represents the vulnerable statement,
and we annotate the corresponding (red) node in the graph as
the ground truth.

C. Locating Vulnerable Nodes with Ensemble Model

As shown in the example of Listing 1, to identify the integer
overflow statement, a localization tool should maintain a global
view to understand the initialized value of pixel_ptr from
its declaration, together with the local context about the latest
updates of the variable block_ptr’s value. Capturing such
a combination of long-range and short-range dependencies

is necessary for the localizer to successfully identify the
vulnerable statement. To this end, we propose our ensemble
approach built on two main components to capture these two
distinct dependencies: GGNN and Transformer.

Graph-based neural networks are effective at understanding
the semantic order of programs, since they directly learn con-
trol flows and data dependencies with the pre-defined edges.
However, training involves a message passing algorithm where
nodes only communicate with their neighbors. The ability to
learn long-range dependencies is limited by the number of
message passing iterations, which are typically set to a small
number (e.g., less than eight) due to computational cost [4],
[12], [13], [15], [17], [39]. Such a limitation will result in an
inherently local [17] model. In contrast, Transformer allows
global, program-wise information aggregation [17], and with-
out pre-defined edges, the self-attention mechanism of Trans-
former is expected to encode considerable code semantics –
which can be complementary to those defined explicitly by
the code graph. Therefore, to learn the diversity of vulnerable
patterns, we separately train these two distinct models and use
their predictions in an ensemble learning setting at inference
time (Training Stage in Fig. 1).
Local GGNN Model. As the input, the initial vectorized node
representation, H, is passed to the GGNN model, along with
the list of edges E . Following the design of Li et al. [29],
the GGNN model aggregates information from node-neighbors
using message passing over different edge types with distinct
weights. This results in an aggregation vector, representing the
information from the neighborhood, for each node at time-step
t−1. Each node is then, at time-step t, updated by aggregating
its own representation of t− 1 and its neighbors’ information
using GRU units. After K time steps, the output of GGNN
model will be the transformed node representations, encoded
with local context for each node Hg = [hg1, h

g
2, ..., h

g
|V|]

Global Transformer Model. In order to learn the implicit
code dependencies complementary to GGNN, we only provide
Transformer with AST nodes of the graph as a sequence.
Removing edges can also enforce the model to learn the
long-range dependencies in a more efficient way, since it
does not have to reach faraway node step-by-step. We align
the AST nodes in the order that reserves the original source
code’s sequential logic. For example, if the source code has
a order of statements as: {stmt1 -> stmt2}, then when
building the input sequence, all the nodes belonging to stmt1
will be placed at the left side of all those belonging to
stmt2. With the power of multi-head self-attention [30],
the final node representations transformed by the model are
encoded with a global view over the whole function [17]
Htr = [htr1 , h

tr
2 , ..., h

tr
|V|]

The final node representations from the model (either
GGNN or Transformer) are then fed into a multilayer per-
ceptron layer to get a single score for each node: Sg =
[sg1, s

g
2, ..., s

g
|V|] ∈ R|V| for GGNN, Str = [str1 , s

tr
2 , ..., s

tr
|V|] ∈

R|V| for Transformer. During training, all vulnerability scores
are passed into a softmax layer to get the per-node vulner-

4

ability probability, and calculate the cross-entropy loss. We
note that GGNN and Transformer are trained independently,
and each model does its back-propagation and updates weights
without interaction.
D. Ensemble Learning

As shown in Figure 1, in the Training Stagr we inde-
pendently train two distinct neural architectures, GGNN and
Transformer, to force them to learn the diverse aspects of
vulnerable patterns. In the Inference Stage, we aim at com-
bining the knowledge of both models to make comprehensive
predictions on previously unseen data. To this end, we propose
an ensemble approach to aggregate the predictions from both
models. Concretely, as shown in Figure 1, we input the
vectorized code graph into both well-trained models, and
they will output the transformed node representations Hg ,
Htr (Section III-C) and then the vulnerability scores, Sg and
Str are computed. To aggregate the predictions, we calculate
ensemble vulnerability scores, Sen, for all nodes by averaging:
Sen = 0.5∗Sg+0.5∗Str, and then the node with the highest
ensemble score will be the predicted vulnerable node. We note
that the averaging for ensemble scores can be weighted, but
further heuristics need to be introduced to decide the weights
for different models.

The ensemble approach is technically straight-forward, but
works quite well in practice. In Section V, we show the
effectiveness of VELVET’s ensemble and empirically demon-
strate that GGNN and Transformer models are indeed learning
diverse aspects of vulnerable patterns, as expected intuitively.

IV. STUDY DESIGN

In this section, we present our datasets and how we train and
test the models with them using distinct evaluation metrics.

A. Datasets

We conducted experiments with the two datasets, JULIET
(a synthetic dataset) and D2A (a real-world dataset), which
include statement-level vulnerability annotations. Concretely,
each sample is a function, and the vulnerable location is the
statement that directly exposes the vulnerability (e.g., Line
146 in Listing 1). Every sample in the dataset has one single
vulnerable statement and is written in the C language. Note
that, there are some other existing C-language vulnerability
datasets [6], [12], [13], [40] that annotate vulnerabilities only
at the function level. Since our goal is to localize vulnerabil-
ities at the statement level, we cannot use them.
Synthetic Dataset (JULIET): The JULIET Test Suite [24] is
a synthetic dataset containing intentional flaws to test static
analysis tools. The test cases in the dataset have vulnerabil-
ities covering 118 different Common Weakness Enumeration
(CWE) classes [25] and well-annotated location information.
We extracted around 24,000 vulnerable functions with cor-
responding faulty locations, and also 26,000 non-vulnerable
functions without any vulnerable statements.

Although synthetic datasets provide large amounts of data
to train large models [6]–[8], [41], they fail to capture the
complexity of real-world data and tend to restrain the model

to simple vulnerable patterns [13]. To overcome this issue, we
also apply the recently published D2A dataset.
Real-world Dataset (D2A): It is challenging and expen-
sive to collect real-world vulnerabilities with well-annotated
statement-level information, so such datasets are rare. Zheng
et al. recently published the D2A dataset [23] which they
collected from multiple C/C++ projects such as OpenSSL
and LibTIFF, which are core components of cloud services.
These projects have also been studied by many existing
security-related works [21], [42], but without providing the
annotations we need. Zheng et al. collected vulnerabilities
using static program analysis and differential analysis. Com-
pared to existing datasets, D2A preserves more details such
as function-call traces and locations that trigger the vulnera-
bilities. The authors also spent much manual effort to ensure
the accuracy of D2A’s labels and location information.

In this work, we derive our real-world dataset from D2A,
and we end up with approximately 2,500 unique functions
with annotated vulnerable locations and 2,500 non-vulnerable
counterparts in total. Our dataset contains 9 main vulnerability
types covering 18 CWE types. Table I shows the details. The
longest function spans 1269 lines of source code, where it
would be very challenging for developers to locate the vulner-
able statement even if they know the function is problematic.

Even though both datasets have roughly the same number of
vulnerable and non-vulnerable functions, our work focuses on
statement-level localization, and at the statement granularity
both datasets are actually super imbalanced, aligning well
with the relative rareness of vulnerabilities [13], [43].
TABLE I: Distribution of vulnerability types in the datasets. Column
1&2 show how the vulnerability types in D2A map to the correspond-
ing CWEs in JULIET. Column 3&4 show the respective proportions
of the type occurrences. Noted that JULIET covers more vulnerability
types than D2A.

D2A Type JULIET Type JULIET (%) D2A (%)

Integer Overflow CWE190-191, 194-197 21.9% 56.3%

Buffer Overrun CWE121-122, 124-127 25.0% 30.8%

NullPtr Dereference CWE476 0.7% 4.9%

Memory Leak CWE401 2.0% 0.9%

Dead Store CWE563 1.0% 1.3%

Divide by Zero CWE369 1.6% 0.3%

Null Dereference CWE690 1.9% 3.0%

Uninitialized Value CWE457 1.6% 1.9%

Use After Free CWE416 0.4% 0.6%

B. Model Pre-Training & Fine-Tuning
a) Migration From the Synthetic to the Real-world. As

mentioned in Section IV-A, our real-world dataset, D2A, is
much smaller than JULIET due to the high cost of collecting
and annotating the locations of real-world vulnerable state-
ments. Given D2A’s small size, the usual same-dataset train-
test scheme would likely cause the models to overfit.

In this work, we adopt a workflow designed to alleviate
this concern of data inadequacy by pre-training VELVET on
a large amount of synthetic data and fine-tune it on the

5

limited real-world data. We first sufficiently train models on
synthetic data with a relatively large learning rate and then
fine-tune the pre-trained models on real-world data with a
smaller learning rate. The intuition behind this design is:
the ample synthetic data has already exposed a portion of
the practical vulnerability distribution, so we ask models to
first understand this part with adequate samples, and then
keep learning other (more complex) parts when fed with
what would otherwise be an inadequate set of real samples.
In Section V-D, we experimentally determine that models
successfully leverage this “pre-training + fine-tuning” setting
to migrate the knowledge learned from synthetic data to the
real-world scenario.

b) Training, Validation, and Testing Split. In the synthetic
dataset, JULIET, we split the whole dataset into three parts,
TRAIN/VALID/TEST, with a ratio of 90%:5%:5%. We train
VELVET on the TRAIN split from scratch for 10 epochs and
evaluate the performance on TEST split.

For D2A, to imitate the practical scenario at best where
we learn from previous vulnerabilities, we sort the functions
based on their commit dates. We then train the model on the
past commits and evaluate the performance on the latest ones.
Again, we split the sorted samples into TRAIN/VALID/TEST
with the ratio of 90%:5%:5% (TEST split is made up of
the latest 5%). We fine-tune the trained models from the
synthetic dataset on TRAIN split for 50 epochs and evaluate on
TEST split. We note that the numbers of epochs for training
are carefully selected: we ensure that, in such settings, the
validation loss on VALID split of all the models will no longer
decrease for 3 consecutive epochs.

c) Experimental Configuration Models are configured with
the input hidden dimension of 256, a dropout rate of 0.1.
The learning rate for pre-training is 10−4, and for fine-
tuning is 10−5. We use Gated Graph Neural Network (GGNN)
model [29] with 8 time steps, similarly to several code model-
ing works [4], [12], [13], [15], [17], [18]. For the Transformer,
we use 6 encoder layers, 8 attention heads, while the attention
dimension is 512 and feedforward layers of dimension 2048.
All models are implemented using Tensorflow 2.2.0, CUDA
10.1, and trained using 8GB Nvidia GeForce RTX 2080
SUPER GPU. For data processing, our machine takes 26.8
seconds to generate every 1000 CPGs, and takes 60.9 seconds
to vectorize them. It takes 32 minutes to train word2vec
embeddings. The model training on JULIET takes 14 hours,
and 24 hours on D2A. These numbers are at par with existing
deep-learning-based vulnerability analysis [12], [13], [17].

C. Evaluation of Statement-level Localization

As we introduced in Section III-A, the model prediction
will be the index of a graph node. To evaluate the localization
performance in a practical scenario, we maintain a mapping
between a node and its corresponding line number in the
source code. We map both the ground-truth node and the pre-
dicted node to their source line number and check whether they
match. We evaluate statement-level localization performance
using the following metrics:

Top-k Accuracy. We use top-k accuracy as one metric to
evaluate the localization quality. We map the top-k predicted
nodes with the highest scores to their source line numbers, and
if at least one of the predictions matches the ground-truth, we
define the prediction as correct.
Prediction Distance. While accuracy is an important metric,
it fails to fully capture realistic aspects of the vulnerability
localization problem. For instance, when a wrongly predicted
location is not too far from the true target, the developer
can still find the vulnerability by glancing at the surrounding
code. In order to evaluate this aspect, we measure how far the
prediction is from the true location. We define the distance
between these two as Prediction Distance and we calculate it
as Distance = |lpred − ltrue|, where lpred is the line number
of the model prediction, and ltrue is the ground-truth.

D. Baselines

Static Analyzers One major motivation of deep-learning-
based vulnerability detection tools is to overcome the draw-
backs of rule-based static analyzers. We use them as baselines
to show the improvement brought by VELVET. We pick
three open-source static analyzers, Infer [44], FlawFinder [45]
and RATS [46]. These are popular and frequently used by
developers and researchers. For example, Infer is widely used
by large enterprises [23], [47] and FlawFinder is integrated
into many open-source code scanners such as GitHub Code
Scanner [48] and Codacy Security Scan [49]. These three static
analyzers are also used as baselines by work on deep-learning-
based vulnerability detectors [6], [7], [14], [41].
Comparing Architectures under VELVET’s framework To
figure out the best neural architecture that can be fit into our
framework for vulnerability localization, we compare different
models by replacing the architecture in the model module
in Figure 1. For example, we compare the ensemble model
with GGNN-only and Transformer-only models in Section
V-A and V-B, resp. Note that the transformer here is a bit dif-
ferent than the commonly used transformer of CodeBert [35],
Roberta [50] etc., where the inputs are token sequences. In
our case, the input consists of pre-processed graph nodes, as
we use node embedding instead of token embedding.
Comparing Aggregation Strategies under VELVET’s
framework VELVET aggregates the information learnt from
global and local contexts as an ensemble. Other re-
searchers have tried different aggregation strategies: Hellen-
doorn et al. [17] propose Graph-Sandwich models, which
stack sequence-based model and graph-based model to cap-
ture the global and local semantics for detecting and fixing
variable-misuse bugs. They also propose GREAT, which inte-
grates edge information of code graphs into the Transformer
model. Dinella et al. [18] propose a graph-based model to
learn bug-fixing edits, where they incorporate a global pointer
mechanism to locate the buggy node. These previous works
share similar insights of aggregating information from diverse
contexts, although for different tasks. We adapted these meth-
ods in our VELVET’s framework to compare different ways
to aggregate global and local information for vulnerability

6

localization. We implement Transformer-sandwich, GREAT,
and the localization part of Hoppity by reusing their open-
source packages [17], [18]. To compare under identical set-
tings, we replace the model part in Figure 1 with the different
architectures and keep all the other parts as-is.

V. RESULTS

We evaluate VELVET with the following research questions:
• RQ1: Evaluating Classification & Localization. Can

VELVET locate vulnerabilities if they are not detected in
advance?

• RQ2: Evaluating Localization. How does VELVET per-
form on fine-grained vulnerability localization?

• RQ3: Evaluating Ensemble Strategy. Is the ensemble
model an effective way to combine global and local context,
compared with existing methods?

• RQ4: Evaluating Fine-tuning Design. What are the contri-
butions of the VELVET’s pre-training & fine-tuning design?

A. RQ1: Evaluating Classification & Localization

Motivation. First, we check how well VELVET can locate
vulnerable statements in a most realistic setting, where we
do not know in advance whether the functions are vulnerable.
This mimics a typical static analysis setting, where the static
analyzer aims to find vulnerable lines. This experiment can be
thought of as Classification & Localization, where VELVET
will classify a function as vulnerable/non-vulnerable and then
locate the statement within the vulnerable function.

In this first RQ, we focus on the comparison between VEL-
VET and the rule-based static analyzer baselines. We prioritize
this discussion, since we aim at leveraging data-driven ap-
proaches to improve the quality of static analyzers in general,
to further alleviate developers’ debugging efforts. To compre-
hensively evaluate the effectiveness of our approach, we com-
pare three variants of VELVET with static analyzers: VELVET-
ENSEMBLE, VELVET-GGNN, VELVET-TRANSFORMER.
Methodology. As mentioned in Section III-A, to fit non-
vulnerable functions into our framework, we add a dummy
node with index of 0 to every sample regardless of its
vulnerability. If the sample is non-vulnerable, then the ground-
truth will be 0, the index of the dummy node; otherwise the
ground-truth will still be the index of the vulnerable node.
Thus we successfully fit the vulnerability localization and
the non-vulnerable function identification tasks into the same
multi-class classification framework. We evaluate this task in:
1) Multi-class prediction: The most intuitive metric is class-

prediction accuracy in the multi-class classification setting,
and we refer to it as Prediction Accuracy for further discus-
sion. This setting is specific to our node-based classification
and not applicable to static analyzers.

2) Vulnerability Classification: To evaluate VELVET’s ability
to detect vulnerabilities at function level, we define the
predictions that point to the dummy node as non-vulnerable
and otherwise as vulnerable. Note this setting is coarse-
grained—if a vulnerable node has ground-truth x(x > 0),
but the model predicts non-dummy node y(y > 0), where

x 6= y, we still regard the prediction as correct in this
setting. Thus, this setting basically evaluates whether there
is a vulnerable node anywhere in the function body.

3) Vulnerability Localization: This is evaluated by top-1 accu-
racy, as we discussed in Section IV-C, where we evaluate
VELVET’s ability to correctly predict vulnerable state-
ments. We will not discuss this accuracy for RATS, since it
tends to identify the root-cause location of a vulnerability
(e.g., line 16 of Listing 1), yet our datasets annotate the
location where the vulnerability occurs (e.g., line 146 of
Listing 1). Thus, RATS has very bad accuracy (nearly 0%)
on our datasets. On the contrary, we confirmed that Infer
and FlawFinder share our approach to location annotation.

Result: VELVET significantly outperforms static analyzers,
reducing false positives and false negatives. Table II shows
the results when training the model on the combination of
vulnerable and non-vulnerable functions. All variants under
our VELVET framework outperform static analyzers by a large
margin, in three settings and on both datasets. The best-
performing VELVET-ENSEMBLE achieves 99.6% localization
accuracy on JULIET and 30.1% on D2A, while the rule-based
static analyzers, at best, only achieve 36.9% and 6.7%, re-
spectively. Our data-driven approach also reported many fewer
false positives (FP) and false negatives(FN) compared with the
static analyzers. In the function-level vulnerability detection
setting, the precision/recall/f1 of the VELVET variations are
significantly higher than all baseline static analyzers. The
results empirically validate that VELVET can help alleviate
developers’ concerns regarding the FP/FN issues of rule-based
static analyzers.

We further analyze VELVET’s neural architecture module to
figure out the best model for static analysis. Compared with the
single GGNN and Transformer, the ensemble approach wins
for Prediction Accuracy, F1 and localization accuracy by a
clear margin. The results, in general, reveal the effectiveness
of the ensemble approach for combining two distinct architec-
tures. Interestingly, we notice that Transformer beats the en-
semble model by less than 1% for classification accuracy. This
is likely because the global view of the Transformer model
enables it to have better performance on the more general
vulnerability detection task, but this advantage is diluted by
the local GGNN model when combining the two models. This
leaves us an interesting question about how to improve the
ensemble methodology when two models make contradictory
predictions. We discuss a solution in Section V-C.

B. RQ2: Evaluating Localization

Motivation. After realizing the advantages of VELVET, we
are curious about the best-suited neural architecture for our
primary goal, vulnerability localization. Thus, we further iso-
late this task by checking the efficiency of VELVET variants
only on the vulnerable samples. In other words, we check
how efficiently VELVET can identify a vulnerable statement
given the function containing the statement is known to have
a vulnerability. This mimics the scenario that by using some
other off-the-shelf tools (e.g., Devign [12]), we already know

7

TABLE II: Results when jointly training models on vulnerable and non-vulnerable functions. As discussed in Section V-A, Pred Acc. is
the Prediction Accuracy, Vul-CLS indicates the Vulnerability Classification setting, and Vul-LOC Acc. is the top-1 localization accuracy.

Approach
JULIET D2A

Pred Vul-CLS Vul-LOC Pred Vul-CLS Vul-LOC

Acc. Acc. Precision Recall F1 Acc. Acc. Acc. Precision Recall F1 Acc.

VELVET-ENSEMBLE 99.5% 99.6% 99.9% 99.3% 99.6% 99.6% 51.1% 58.9% 76.2% 48.1% 59.0% 30.1%
VELVET-GGNN 93.6% 94.2% 99.9% 89.0% 94.2% 98.5% 45.5% 56.7% 73.2% 39.1% 51.0% 19.6%
VELVET-TRANSFORMER 99.3% 99.6% 99.9% 99.3% 99.6% 99.1% 47.2% 59.3% 70.5% 50.4% 58.8% 29.3%

Infer* N/A 69.4% 41.5% 54.4% 47.1% 36.9% N/A N/A N/A N/A N/A N/A
FlawFinder N/A 58.3% 36.6% 51.0% 42.6% 8.6% N/A 48.7% 53.3% 6.0% 10.7% 6.7%
RATS N/A 59.3% 36.5% 46.4% 40.9% N/A N/A 45.8% 47.9% 16.4% 24.2% N/A

*We do not compare with Infer on D2A, since Zheng et al. [23] used Infer during data collection. Thus, it is unfair to compare with Infer on D2A.

which functions are vulnerable. However, a C/C++ function
may contain hundreds of lines of code, so it requires signif-
icant human effort to pinpoint the vulnerable location before
attempting to fix it. To this end, for this RQ we only train the
model on the vulnerable functions of our datasets.
Result-A: Ensemble model shows the best performance on
localization. As shown in Table III, the ensemble approach
wins against the single models, GGNN and Transformer, on
both datasets for different metrics. For the JULIET dataset,
the benefits are not as pronounced since learning vulnerable
patterns in this synthetic dataset is a relatively easy task for
all models. For D2A, the difference is more noticeable: by
incorporating both global and local context learned by the
two different architectures, VELVET-ENSEMBLE improves the
top-1 accuracy of single VELVET-GGNN by around 29.0%
and VELVET-TRANSFORMER by 9.5%. We also check the
vulnerability types and find VELVET is effective in locating
integer overflow, buffer overrun, and null-pointer deferences,
which aligns with the dominant types in the training data (Ta-
ble I). We also notice that the localization accuracy increases
compared with those in Table II when isolating the localization
task. The reason is, such an isolated training setting enables
models to focus on learning the vulnerable triggering locations
and thus decrease the overall difficulty of learning to predict
the vulnerable nodes. This implies that if a fairly good function
vulnerability detector is available, training a localizer with
only vulnerable samples will be a better choice.
TABLE III: Test performance of vulnerability localization under
VELVET framework. Top-k represents the localization accuracy for
top-k predictions. Distance represents the average Prediction Dis-
tance between the prediction and the ground-truth.

VELVET
Juliet D2A

Top-1 Distance Top-1 Top-3 Distance

Ensemble 99.6% 0.04 43.6% 63.9% 7.0
GGNN 98.1% 0.10 33.8% 54.9% 9.7
Transformer 99.4% 0.06 39.8% 62.4% 8.0

Further, VELVET gives us a decent Prediction Distance,
indicating that the vulnerabilities can be located within a 7-line
window around the ground-truth vulnerable statements. The
ensemble setting not only beats the baselines but, overall, it is a
respectable scope-reducer for debugging as the average length
of a D2A function is 80.3 lines and a significant fraction of
D2A functions have hundreds of source lines.
Result-B: Transformer learns the global context, while

GGNN captures the local context. We have empirically
demonstrated that global and local context together can im-
prove vulnerability localization. We further investigate the
performance of VELVET-GGNN and VELVET-TRANSFORMER
on the 133 (most recent) vulnerabilities in D2A-TEST —
GGNN and Transformer are manifesting complementary ca-
pacities to localize the vulnerability. Due to the repetition and
simplicity of certain vulnerable patterns, two models locate 37
vulnerabilities in common; besides these, GGNN can further
locate 8 individual vulnerabilities and Transformer alone can
locate 16.

We inspect the concrete samples that one model correctly
predicts but the other fails. We compute the average function
length of the model-specific correct predictions. As expected,
Transformer’s correct predictions have a larger function length
than for GGNN: GGNN’s correct predictions include func-
tions with, on average, 27.75 lines and 138.0 graph nodes;
for Transformer’s correct predictions, however, the functions
include 48.38 lines and 288.6 graph nodes, on average, which
are 74.3% longer in lines and 109.1% larger in nodes than
GGNN. We further conduct statistical test to make sure that the
longer average value is not caused by extremely large outliers.
This result supports our intuition that Transformer has a better
global view and is more effective in processing larger code
graphs, whereas GGNN focuses more on the local contexts of
code snippets. We also show two concrete vulnerabilities in
D2A-TEST: Listing 2&3. Both can be located by the ensemble
approach, but the single model fails on one of them. Listing
2 has a larger size and the global contexts of out, mtmp and
outlen are necessary to identify buffer overflow. In contrast,
Listing 3 is much smaller and the variable dependencies are
mostly in the surrounding lines.
Listing 2: Buffer Overrun vulnerability from D2A. VELVET-
ENSEMBLE and VELVET-TRANSFORMER can localize this vulner-
ability at line 42 while VELVET-GGNN fails.

// project: openssl (commit sha: 0211740)
// file: crypto/ec/ecdh_kdf.c
1 int ecdh_KDF_X9_63(...)
2 {...
18 for (i = 1;; i++) {
19 unsigned char mtmp[EVP_MAX_MD_SIZE];

...
32 if (outlen >= mdlen) {
33 if (!EVP_DigestFinal(mctx, out, NULL))
34 goto err;
35 outlen -= mdlen;
36 if (outlen == 0)
37 break

8

...
42 memcpy(out, mtmp, outlen); ...
69 }

Listing 3: Integer Overflow vulnerability from D2A. VELVET-
ENSEMBLE and VELVET-GGNN can localize this vulnerability at line
19 while VELVET-TRANSFORMER fails.

// project: ffmpeg
// sha: 4bd869e
// libavcodec/aacdec.c
1 static int read_audio_mux_element(...)
2 {
3 int err;
4 uint8_t use_same_mux = get_bits(gb, 1);

...
14 if (latmctx->audio_mux_version_A == 0) {
15 int mux_slot_length_bytes =

read_payload_length_info(latmctx, gb);
...

19 else if (mux_slot_length_bytes * 8 + 256 <
get_bits_left(gb)) { ...

25 return 0;
26 }

C. RQ3: Evaluating Ensemble Strategy

Motivation. We have shown the effectiveness of the ensemble
model for comprehensively understanding the global and
local contexts, compared with the single model. However,
the ensemble approach is not the only way to achieve this
aggregation for code modeling tasks, as discussed in Sec-
tion IV-D. We incorporate the alternate aggregation strategies
to better evaluate the ensemble approach. We train the models
in two settings: first, we only include the vulnerable samples
to reveal the localization performance (Vul-only), and then
we expand the data to contain both vulnerable and non-
vulnerable functions (Hybrid). To evaluate performance, we
use the Prediction Accuracy defined in Section V-A.
TABLE IV: Comparison of Prediction Accuracy between our en-
semble method and the existing models.

Model JULIET D2A

Vul-only Hybrid Vul-only Hybrid

VELVET-ENSEMBLE 99.6% 99.5% 43.6% 51.1%
VELVET-GGNN 98.1% 93.6% 33.8% 45.5%
VELVET-TRANSFORMER 99.4% 99.3% 39.8% 47.2%
VELVET-TRANSSANDWICH 99.2% 99.0% 41.4% 49.8%
VELVET-GREAT 99.1% 98.8% 36.8% 41.6%
VELVET-HOPPITY 98.8% 98.1% 35.3% 32.5%

Result-A: VELVET’s ensemble strategy outperforms ex-
isting models that aggregate global and local contexts.
As shown in Table IV, the ensemble approach manifests a
more powerful learning capacity compared with the exist-
ing models we studied. VELVET-ENSEMBLE beats all other
competitors for both vulnerability-only and hybrid settings on
both datasets. Specifically, on the real-world D2A, VELVET-
ENSEMBLE illustrates the generalization of the ensemble ap-
proach to understand the complicated real-world vulnerable
patterns, compared with the three re-implemented existing
works. This result shows empirically that the ensemble model
is a more direct and effective way to combine global and
local knowledge than stacking distinct models, since the
stack of models will still share learned insights during train-
ing, which may prevent them from learning more diversity.

However, compared with the single GGNN and Transformer,
the Transformer-sandwich model still reports overall better
results with a clear margin on D2A. This also suggests the
significance of incorporating distinct model designs to capture
varied aspects of code.
Result-B: Ensemble of more models alleviates the disagree-
ment among models and further improves performance.
Our main goal is to showcase the advantages of ensemble
learning with local and global information, so we initially
use one global model and one local model to conceptually
illustrate the effectiveness. However, as mentioned in Section
V-A, Transformer and GGNN sometimes make contradictory
predictions and the dominant model is not always correct.
Consequently, such disagreements harm the ensemble’s per-
formance. We provide a solution to alleviate this concern:
adding more models of the same architecture to the ensemble.
As a proof-of-concept, we enlarge VELVET-ENSEMBLE to
contain two Transformer and two GGNN models by varying
the initialization seeds, and we compare the 4-model variant
of VELVET with the 2-model one in both Vul-only and Hybrid
settings on D2A. Table V shows 4-model VELVET is a clear
winner and it can also beat all baselines in previous RQs. The
results further show the effectiveness of the ensemble approach
and indicate VELVET’s potential practical deployment.
TABLE V: Performance of adding one more GGNN and one
more Transformer model to the VELVET-ENSEMBLE. The newly
added models are randomly initialized and have exactly the same
configuration with the original ones.

VELVET
D2A Vul-Only D2A Hybrid

Vul-LOC Acc. Pred Vul-CLS Vul-LOC

Top-1 Top-3 Distance Acc. Acc. Acc.

2-model 43.6% 63.9% 7.0 51.1% 58.9% 30.1%
4-model 45.9% 68.4% 6.5 52.4% 60.6% 31.6%

D. RQ4: Evaluating Fine-Tuning Design

Motivation. In Section IV, we introduced the setting of ap-
plying fine-tuning based on the pre-trained JULIET models to
real-world data, to try to address the data inadequacy problem.
In this RQ, we evaluate the rationality and advantages of this
design. Theoretically, we expect the pre-trained JULIET mod-
els to already understand a portion of the real-world vulnerable
patterns, since the synthetic data is designed to imitate the
practical scenario, even as it struggles with the complexity of
the real-world distribution. To understand whether this is the
case, we evaluate the well-trained JULIET models of VELVET-
ENSEMBLE directly on D2A to see how much knowledge has
been directly transferred from the synthetic data. Again, we
use the two same settings, Vul-only and Hybrid, as in Section
V-C for this evaluation.
Result: Pre-training on synthetic data and fine-tuning
on real-world data effectively mitigates the real-world
vulnerability samples inadequacy problem. As shown in
the ”Before” row of Table VI, the pre-trained JULIET model
is already able to correctly localize 12% of D2A test samples,
with an average prediction distance of 14.8 in the Vul-only
setting, and has 16.5% Prediction Accuracy for the Hybrid

9

TABLE VI: Results of VELVET-ENSEMBLE before and after the
fine-tuning on two datasets, with two settings. The “Before” row
means we directly evaluate the well-trained JULIET model on D2A.
The “After” row means the model’s performance after the sufficient
fine-tuning on real-world data.

Fine-Tuning
Vul-only Hybrid

Vul-LOC Distance Pred Vul-CLS Vul-LOC
ACC ACC ACC ACC

Before 12.0% 14.8 16.5% 56.3% 3.8%
After 43.6% 7.0 51.1% 58.9% 30.1%

setting. This result shows that a significant portion of real-
world vulnerable patterns are already well-understood by the
pre-trained JULIET models, providing a great start for fine-
tuning. Also, with its knowledge of tens of thousands of
synthetic samples, the model is less likely to be overfitted
to the relatively small D2A dataset. As a comparison, we
also show the performance after the fine-tuning (i.e., “After”
row in Table VI). We can see that the fine-tuning significantly
improves the performance on the real-world dataset, and even
with just 2.5k vulnerable samples and 2.5k non-vulnerable
samples, the model can show a generalized result in both
Vul-only and Hybrid settings. The results also provide solid
evidence to the rationality of our mitigation of the data inad-
equacy, which hopefully can help researchers move forward
without being too worried about small real-world dataset sizes
for data-driven approaches.

VI. RELATED WORK

Fault Localization. Locating buggy statements with the avail-
able test cases has been well-studied for decades [51]–[60].
Spectrum-based (SBFL) and mutation-based (MBFL) fault
localization are two well-known approaches. SBFL takes each
statement’s coverage information and its test case results
as input, calculates a suspiciousness score, and ranks the
statements’ scores to indicate the most buggy one(s). MBFL
mutates the code by pre-defined rules to evaluate each state-
ment’s actual effects on the pass/fail outcomes of test cases.
VELVET is not directly comparable, since we focus on source
code without test cases and coverage reports.
DL-based Vulnerability Detection. To automatically learn
vulnerable features and patterns directly from source code,
recent work [4], [6]–[8], [12]–[14], [27] applies a wide variety
of deep-learning models. However, most of this work predicts
function-level vulnerability, even for functions containing up
to thousands of lines. Even when developers know a function
is vulnerable, they must spend time to locate the specific
statements to edit. Wang et al. [20] propose GINN, an ad-
vanced GGNN model, and show its ability to localize null
pointer dereferences, among several GINN applications. This
work seems closest to ours but their research direction is
orthogonal: we regard graph-based models in general, ignoring
the subtle differences among variants; we instead study the
complimentary effects between graph-based and sequence-
based models, and leverage this distinction to better localize
vulnerabilities. So for our proof of concept, we just pick the
popular GGNN architecture as baseline.

VII. THREATS TO VALIDITY

Cross Validation. We tried to imitate a pragmatic real-world
scenario, where we train the model on the past vulnerabilities
and test on the latest samples. However, due to the small size
of the D2A-TEST split, the model’s reported results may not be
generalizable. To minimize this threat, we did ten-fold cross-
validation for all baseline models in the setting of Section V-B.
Table VII reveals the same trend that VELVET-ENSEMBLE is
winning by a clear margin on both metrics.

TABLE VII: Ten-fold cross-validation for Section V-B

Vul-LOC Acc Distance

VELVET-ENSEMBLE 39.9% 8.6
VELVET-GGNN 34.4% 9.8
VELVET-TRANSFORMER 37.9% 9.1
VELVET-TRANSSAND 39.3% 9.5
VELVET-GREAT 37.9% 8.7
VELVET-HOPPITY 35.5% 10.1

Cross-project. VELVET focuses on intra-project vulnerable
patterns, since we expect the model to learn from the project’s
history and apply its knowledge to the project’s new commits.
To minimize the threats brought by such settings, we further
study the model’s cross-project performance under the Sec-
tion V-B setting. We pick the D2A Apache-HTTPD project
for evaluation and the other projects for training. The results
show VELVET can achieve 41.8% Vul-LOC accuracy for top-1
and 60.0% for top-5, dropping a bit compared with the intra-
project setting but still very promising.

Data Generalizability. Our results might be biased by
the underlying data collection process, conducted by Zheng
et al. [23]. However, collecting vulnerability data at statement
granularity is hard. We have not found alternative real-world
data with such fine-granular information to fully evaluate
generalizability. To minimize this threat, we also evaluate
VELVET on a synthetic dataset and show it performs better
than static analysis alternatives.

VIII. CONCLUSION

We introduced VELVET, an ensemble model to efficiently
capture local and global code context and understand vulner-
able patterns at the individual statement level. Our evalua-
tion showed that VELVET is effective for two vulnerability
localization tasks on both synthetic and real-world data. Our
designed workflow of pre-training on synthetic data and then
fine-tuning on real-world data provides a practical solution to
the real-world dataset scarcity problem.

ACKNOWLEDGMENT

This work is supported in part by NSF grants CCF-2107405,
CCF-1845893, CCF-1815494, IIS-2040961, DARPA/NIWC-
Pacific N66001-21-C-4018, and IBM. Any opinions, findings,
conclusions, or recommendations expressed herein are those
of the authors and do not necessarily reflect those of the US
Government, NSF, DARPA, or IBM.

10

REFERENCES

[1] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?,” in Proceed-
ings of the 2013 International Conference on Software Engineering,
pp. 672–681, IEEE Press, 2013.

[2] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pp. 248–259, ACM, 2015.

[3] B. Liu, L. Shi, Z. Cai, and M. Li, “Software vulnerability discovery
techniques: A survey,” in 2012 fourth international conference on
multimedia information networking and security, pp. 152–156, IEEE,
2012.

[4] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, “Learning to
map source code to software vulnerability using code-as-a-graph,” 2020.

[5] L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang, and G. Domeniconi,
“Exploring software naturalness through neural language models,” 2020.

[6] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 757–762, 2018.

[7] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” in Proceedings of the 25th Annual Network and Distributed System
Security Symposium (NDSS‘2018), 2018.

[8] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework
for using deep learning to detect software vulnerabilities,” 2018.

[9] B. Li, K. Roundy, C. Gates, and Y. Vorobeychik, “Large-scale identifica-
tion of malicious singleton files,” in Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, pp. 227–238,
ACM, 2017.

[10] D. Maiorca and B. Biggio, “Digital investigation of pdf files: Unveiling
traces of embedded malware,” IEEE Security & Privacy, vol. 17, no. 1,
pp. 63–71, 2019.

[11] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, “Droidsieve: Fast and accurate classification of obfuscated
android malware,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, pp. 309–320, ACM, 2017.

[12] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems, pp. 10197–10207, 2019.

[13] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet?,” 2020.

[14] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM Trans. Softw. Eng. Methodol., vol. 30, Apr. 2021.

[15] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” in International Conference on Learning
Representations, 2018.

[16] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt,
“Learning to represent edits,” in International Conference on Learning
Representations, 2019.

[17] V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber,
“Global relational models of source code,” in International Conference
on Learning Representations, 2020.

[18] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,” in
International Conference on Learning Representations, 2020.

[19] S. K. Dash, M. Allamanis, and E. T. Barr, “Refinym: Using names
to refine types,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2018, (New York, NY,
USA), p. 107–117, Association for Computing Machinery, 2018.

[20] Y. Wang, K. Wang, F. Gao, and L. Wang, “Learning semantic program
embeddings with graph interval neural network,” Proc. ACM Program.
Lang., vol. 4, Nov. 2020.

[21] J. Gao, Y. Jiang, Z. Liu, X. Yang, C. Wang, X. Jiao, Z. Yang, and J. Sun,
“Semantic learning and emulation based cross-platform binary vulner-
ability seeker,” IEEE Transactions on Software Engineering, pp. 1–1,
2019.

[22] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy, pp. 590–604, IEEE, 2014.

[23] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,
A. Morari, and Z. Su, “D2A: A Dataset Built for AI-Based Vulnerability
Detection Methods Using Differential Analysis,” in Proceedings of the
ACM/IEEE 43rd International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP ’21, (New York, NY,
USA), Association for Computing Machinery, 2021.

[24] NIST, Juliet test suite v1.3, 2017. https://samate.nist.gov/SRD/testsuite.
php.

[25] MITRE, Common Weakness Enumeration, 2020. https://cwe.mitre.org/
data/index.html.

[26] Github Repository for This Paper’s data and Code, 2021. https://github.
com/ARiSE-Lab/VELVET.

[27] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2021, (New York, NY,
USA), p. 292–303, Association for Computing Machinery, 2021.

[28] D. Tarlow, S. Moitra, A. Rice, Z. Chen, P.-A. Manzagol, C. Sutton,
and E. Aftandilian, “Learning to fix build errors with graph2diff neural
networks,” 2019.

[29] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2017.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, p. 6000–6010, 2017.

[31] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” in ACL,
pp. 4998–5007, 2020.

[32] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics, 2021.

[33] T. Lutellier, V. H. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
Combining context-aware neural translation models using ensemble for
program repair,” 2020.

[34] Y. Ding, B. Ray, D. Premkumar, and V. J. Hellendoorn, “Patching as
translation: the data and the metaphor,” in 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’20, 2020.

[35] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association
for Computational Linguistics: EMNLP 2020, (Online), pp. 1536–1547,
Association for Computational Linguistics, Nov. 2020.

[36] V. Kovalenko, F. Palomba, and A. Bacchelli, “Mining file histories:
Should we consider branches?,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 202–213,
2018.

[37] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?,” in Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, (New York, NY, USA), p. 485–495,
Association for Computing Machinery, 2009.

[38] joern.io, Joern, 2021. https://github.com/octopus-platform/joern.git.
[39] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured Neural

Summarization,” in International Conference on Learning Representa-
tions (ICLR), 2019.

[40] NIST, National Vulnerability Database (NVD), 2020. https://nvd.nist.
gov.

[41] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: A
deep learning-based fine-grained vulnerability detector,” 2020.

[42] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang, “Leopard:
Identifying vulnerable code for vulnerability assessment through pro-
gram metrics,” in Proceedings of the 41st International Conference on
Software Engineering, ICSE ’19, p. 60–71, IEEE Press, 2019.

[43] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and
M. Harman, “The importance of accounting for real-world labelling
when predicting software vulnerabilities,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, (New York, NY, USA), p. 695–705, Association for Computing
Machinery, 2019.

11

https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://github.com/ARiSE-Lab/VELVET
https://github.com/ARiSE-Lab/VELVET
 https://github.com/octopus-platform/joern.git
https://nvd.nist.gov
https://nvd.nist.gov

[44] C. Calcagno and D. Distefano, “Infer: An automatic program verifier for
memory safety of c programs,” in Proceedings of the Third International
Conference on NASA Formal Methods, NFM’11, (Berlin, Heidelberg),
p. 459–465, Springer-Verlag, 2011.

[45] D. A. Wheeler, FlawFinder. https://dwheeler.com/flawfinder/.
[46] S. S. Inc., Rough Audit Tool for Security, 2013. https://github.com/

andrew-d/rough-auditing-tool-for-security.
[47] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,

P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving
fast with software verification,” in NASA Formal Methods (K. Havelund,
G. Holzmann, and R. Joshi, eds.), (Cham), pp. 3–11, Springer Interna-
tional Publishing, 2015.

[48] GitHub, GitHub Code Security, 2021. https://docs.github.com/en/
code-security.

[49] Codacy, Codacy Security Scan, 2021. https://docs.codacy.com/
repositories/security-monitor/.

[50] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” 2019.

[51] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06),
pp. 39–46, 2006.

[52] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accu-
racy of spectrum-based fault localization,” in Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), pp. 89–98, 2007.

[53] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, Aug.
2011.

[54] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’05, (New York, NY, USA), p. 273–282, Association for
Computing Machinery, 2005.

[55] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation,
pp. 153–162, 2014.

[56] M. Papadakis and Y. Le Traon, “Using mutants to locate ”unknown”
faults,” in 2012 IEEE Fifth International Conference on Software Test-
ing, Verification and Validation, pp. 691–700, 2012.

[57] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults
to localize developer faults for evolving software,” in Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’13, (New
York, NY, USA), p. 765–784, Association for Computing Machinery,
2013.

[58] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” ISSTA 2019, (New
York, NY, USA), p. 169–180, Association for Computing Machinery,
2019.

[59] Z. Zhang, Y. Lei, X. Mao, and P. Li, “Cnn-fl: An effective approach for
localizing faults using convolutional neural networks,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 445–455, 2019.

[60] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and
L. Zhang, “Can automated program repair refine fault localization? a
unified debugging approach,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2020,
(New York, NY, USA), p. 75–87, Association for Computing Machinery,
2020.

12

https://dwheeler.com/flawfinder/
https://github.com/andrew-d/rough-auditing-tool-for-security
https://github.com/andrew-d/rough-auditing-tool-for-security
https://docs.github.com/en/code-security
https://docs.github.com/en/code-security
https://docs.codacy.com/repositories/security-monitor/
https://docs.codacy.com/repositories/security-monitor/

	I Introduction
	II Background
	III Approach
	III-A Velvet's Localization Framework
	III-B Building Vectorized Code Graphs
	III-C Locating Vulnerable Nodes with Ensemble Model
	III-D Ensemble Learning

	IV Study Design
	IV-A Datasets
	IV-B Model Pre-Training & Fine-Tuning
	IV-C Evaluation of Statement-level Localization
	IV-D Baselines

	V Results
	V-A RQ1: Evaluating Classification & Localization
	V-B RQ2: Evaluating Localization
	V-C RQ3: Evaluating Ensemble Strategy
	V-D RQ4: Evaluating Fine-Tuning Design

	VI Related Work
	VII Threats to Validity
	VIII Conclusion
	References

