
Comparing Scaling Methods for Linux Containers  

Shripad Nadgowda, Sahil Suneja, Ali Kanso 
IBM T.J. Watson Research, NY, USA 

{nadgowda, suneja, akanso}@us.ibm.com 
 
 
 

Abstract—Linux containers are shaping the new era of 
building applications. With their low resource utilization 
overhead and lightweight images, they present an appealing 
model to package and run applications. The faster boot time of 
containers compared to virtual/physical machines makes them 
ideal for auto-scaling and on-demand provisioning. Several 
methods can be used to spawn new containers. In this paper we 
compare three different methods in terms of start time, resource 
consumption and post-start performance. We discuss the 
applicability, advantages and shortcomings of each method, and 
conclude with our recommendations.     

Keywords—Linux containers, checkpoint and restore, live 
migration, performance analysis. 

 

I. INTRODUCTION 
Linux containers have emerged as a technology with a 

multitude of use cases that span from sharing the infrastructure 
resources [47], to implementing platform-as-a-service [48], to 
simply using them to manage applications that are deployed in 
virtual machines (VMs) [49]. In this study, we focus on 
containers as a means to conveniently package and port 
applications to different platforms  

In an elastic deployment model, where demand drives the 
number of instances an application may have, auto-scaling 
application instances runs into a time-to-scale (TTS) issue. 
With horizontal scaling1, a long TTS, such as with VMs, either 
causes a period of suboptimal performance while waiting for 
new instances to become ready, or  demands predictive 
measures to spawn new instances ahead of time. Containers 
have a much smaller start-time, and therefore are a better fit for 
on-demand application scaling with a significantly reduced 
TTS.  

However, the start time does not necessarily mean that the 
application’s process(es) within the container is (are) ready. In 
this study, we distinguish between the container start-time and 
its application readiness latency. We use start-time to refer to 
the time needed to get a container up and running, and 
readiness latency to also include the time it takes for the 
application within the container to load and initialize before it 
is ready to provide its intended functionality. For example, an 
in-memory database2 would first have to read configuration 
data as well as its internal tables from disk, load them into 
memory, and carry out its initialization steps, before it is ready 

                                                             
1

In horizontal scaling the number of instance is changed as opposed to 
vertical scaling where the resources allocated to a given instance are changed. 
2

For simplicity, we use the terms database and database management system 
(DBMS) interchangeably  

to serve any queries. In such cases, as we will show later, the 
readiness latency can be significantly higher than the start time.  

 Thus, even with low-TTS instantiations, performance 
scaling may lag. If, however, a new instance can be created 
while avoiding the application initialization costs, it instantly 
becomes available for service. Furthermore, if it gets access to 
a warm runtime cache state from the outset, without having to 
go through a cache warming phase, it may be able to provide 
peak service instantaneously, resulting in a truly low TTS.  

 To validate these conjectures, in this paper we compare 
three methods of scaling containers: 

• Cold-scale: using the traditional method of starting 
containers from an original image. The application 
process(es) inside the container will be instantiated after 
the container set up. 

• Warm-scale: using a pre-processing step in which a 
container’s application is allowed to initialize, and then 
checkpointed into what we call as a warm-image. Any 
new instance of the corresponding application is then 
created from this warm-image. 

• Hot-scale: based on live-cloning of a running container in 
order to create another instance of the same type. The 
newly created instance will have the exact state of the 
already running instance, including its caches, except it 
will have a new identity (instance name, network 
configuration, etc.) 

In our experiments we observed that warm-scaled 
containers improve the readiness of an application, with 
minimum storage overhead. Hot-scaled containers better 
readiness along with application throughput, although they 
could impose performance implications at the source instance 
and a significant storage overhead. We also observed that the 
hot-scale method has worst performance if the container is 
already memory-thrashing. All these performance tradeoffs and 
overheads need to be duly considered for selecting the right 
scaling method.  

 This paper is organized as follows: in Section II we present 
a brief background on containers, scaling and checkpointing. In 
Section III we present the technical and semantic differences 
between our scaling methods. In Section IV we present the 
results of our experiment-based comparison of the scaling 
methods. We survey the literature for related work in Section 
V. Finally, we conclude and discuss our future work in Section 
VI. 



II. BACKGROUND 

A. Linux Containers 
Linux containers are perceived as a lightweight 

virtualization technology, and are often compared to virtual 
mahcines. In fact, containers do not emulate the physical 
resources. Instead, containers act like process level wrappers 
that isolate the application and account for its resource 
comsumption. Containers leverage the Linux namespaces [50]  
for isolation (e.g., network, process ID, mount points, etc.) and 
control groups (cgroups) [51] to limit and account for the 
resources (such as CPU, memory and disk I/O) consumed by 
its processes. A container is spawned based on an image. An 
image is an immutable filesystem and a set of parameters to 
use when instantiating the conainer at runtime. Such image 
may include the executable files of the process(es) (in the 
container’s root file system once started). It can also point to 
volumes that are mounted to the container when it is 
instantated. There exist several container runtimes tor 
managing a container’s life-cycle (creation, update and 
deletion) such as LCX, Docker, rkt and OpenVZ amongst 
others [52]. In this study, we use the Open Container Initiative 
specification-compliant runC [53] implementation of the 
popular Docker container runtime. 

 

B. Horizontal Scaling 
Horizontal scaling is a response to workload variation by 

scaling in/out the number of instances of a given application 
[54]. The process of scaling is significantly simplified with the 
use of virtual machines and containers, since the application 
and its environment is captured in an image that is easily 
restored. Automated scaling (auto-scaling) features are 
typically expressed by rules and policies defined by the 
application’s owner. The monitoring features of a system will 
detect the violation of those rules and trigger an auto-scaling 
event. Auto-scaling typically involves adding/removing new 
instances as well as auto-configuring the load-balancer to 
reflect those changes. In this study, we achieve ‘warm’ and 
‘hot’ container scaling, as introduced in Section I, via 
(container’s) process checkpoint and restore as described next. 

 

C. Checkpoint and Restore 
Amongst the various existing process checkpoint and 

restore techniques in Linux [55], we use a popular user-mode3 
implementation in CRIU (Checkpoint and Restore in User-
Space) [56]. CRIU enables checkpointing a running process as 
a collection of files (pagemap, open files, open sockets, etc.), 
which can later be used to restore and resume the process’ 
operations from the point in time it was frozen at. The 
checkpoint procedure relies heavily on /proc file system where 
CRIU fetches the information it needs concerning files 
descriptors, pipes parameters, memory maps etc. For the 
restore step, CRIU reads the dump files generated in the 
checkpoint phase, forks the process, and then restores its 
resources  (memory, sockets, credentials, timers, etc.).  

                                                             
3

The changes needed in the Linux kernel to support kernel-mode CR where 
not included in upstream Linux. Therefore, we opted not to use them. 

We use CRIU with Docker-runc to enable checkpointing a 
container’s processes, which then forms the basis for warm-
scale and hot-scale provisioning, described in detail in Section 
III. We use the base stop-and-checkpoint approach in our 
experiments. Other flavors supported by CRIU include 
incremental, iterative, and post-copy checkpointing.   

III. CONTAINER SCALING METHODS 
Stateful applications can have a lengthy initialization phase. 
For instance, we measured the start up latencies for a 
containarized MySQL and ElasticSearch to be 7.5 and 7 
seconds respectively, while the container start up time is below 
1 second. This Section illustrates how we orchestrate a new 
instance initialization based on three different scaling methods 
causing different initialization times. We use the Docker 
container runtime and CRIU-based container checkpointing.  

 i) Cold-scale: In this method, we instantiate an application 
container from its base image using the default Docker run 
command. Although the first execution will fetch several base 
image layers from the Docker hub [57], in our experiments we 
assume the base image exists on the target node. The 
application initialization latency is then the amount of time it 
takes for the application to get ready following its container 
instantiation. 

ii) Warm-scale: In this method, as a pre-processing step, we 
first start an application container as in Cold-scale. Once it is 
initialized and the application is ready, we use CRIU to take a 
memory checkpoint of the container. CRIU persists this 
checkpoint in a set of files together comprising a mem-dump. 
Any filesystem changes made by the application itself during 
initialization (e.g. creation of database init files, configuration 
file changes, etc.) are persisted in the container’s rootfs 
directory. Thus, for consistency, we also capture the 
container’s rootfs state, quiesced right after the checkpoint. 
This, together with the mem-dump collectively constitutes a 
warm-image4, which is used to provision a new application 
container instance using CRIU-restore. This then allows a new 
instance in Warm-scale to avoid the application initialization 
latency. 

iii) Hot-scale: Instead of booting from a post-init checkpoint 
as in Warm-scale, a new instance in Hot-scale is created on-
demand as a live clone of an already running container (the 
source). With hot-scale, the new instance also gets access to 
the runtime caches of the source container, which may help it 
attain peak performance quickly (see Section IV-3). In this 
mode, we use CRIU’s remote page-server model to generate a 
mem-dump of the source container directly at the target host’s 
memory (using tmpfs as an in-memory mounted file system). 
The rootfs disk state would also need to be checkpointed for 
access by the new instance, after which the source container 
can be resumed. In our experiments, we used a data federation 
framework from Cargo[45] to enable consistent rootfs access 
for both container instances (which is sufficient due to the 
read-only nature of our test workload, i.e. the instances are not 

                                                             
4 Alternatively, a data cache could also be incorporated as part of the warm-
image, after an anticipatory identification and preloading of important data. 



modifying the state on disk). The rootfs together with the 
mem-dump then constitutes the hot-image, which is what the 
new instance gets provisioned with using CRIU-restore. 
 

IV. EXPERIMENTS AND COMPARISON 
We compare the three scaling methods along the following 
three dimensions: 

 

(i) Instance size- total size of the base image including 
both disk and memory states 

 

(ii) Readiness latency- total time to get a new application 
instance up and running 

 

 (iii) Post-init performance- runtime performance of a 
newly created application instance 

 We used MySQL and ElasticSearch as our test 
applications, due to similar performance tradeoffs for the 
different scaling methods for both, and the lack of space we 
present results for only the former here onwards. 

A. Testbed Setup 
We conducted our experiments on Ubuntu 16.04 LTS 
machines, each configured with 4 CPUs, 4 GB memory and 
25GB disk with ext4 filesystem. The machines were 
configured with the Docker container runtime v1.12.5, and 
CRIU v2.8 for checkpoint-restore. As one of our test 
applications, we selected one of the most popular database 
applications from Docker hub- MySQL 5.7.15. We used the 
standard Yahoo Cloud Serving Benchmark (YCSB)[46] 
benchmarking tool to measure MySQL performance under 
different workload patterns.  

 The test workload consisted of 400K database read 
operations, generated using two request distributions, namely 
(i) Zipfian- for popularity-based long tail access, and (ii) 
Uniform- for uniformly random access pattern.  The workload 
was run against a 200MB database table size, consisting of 
50K records, each 4K in size. To evaluate the behavior of 
scaling methods under different operating states of an 
application, we explicitly enabled the query cache 
configuration for the MySQL engine. We defined two extreme 
operating states for an application namely (i) memory-resident- 
when all workload data fits in memory (query cache = 
256MB), and (ii) memory-thrashing - when only part of the 
data can reside in memory at any given point (query cache = 
128MB). For each workload-type, we recorded the average 
latency and throughput observed by the YCSB client. Each 
experiment was performed atleast 3 times to ensure 
consistency in the results.  

B. Results  
We present the comparison results here, and discuss our 
observations on these results later in section IV-C, while 
considering all performance implications together.  

1. Instance Size 
We define instance size to refer to the base image size for the 
application container. For cold-scale instantiation, this refers 
to the regular base image hosted and pulled from the Docker 
hub, which for MySQL is around 400MB. For warm-scale 

booting, the size of the warm-image increases to 520MB. And 
for hot-scale live cloning, the size of the hot-image was 
recorded as 920MB for memory-resident application 
configuration, and 790MB for the memory-thrashing state (the 
difference is consistent with the cache size configuration: 256 
versus 128 MB).  
 

2. Readiness Latency 
We define readiness latency as the time from container 
instantiation until an application is ready to provide its service, 
after having completed its initialization operations. We 
measured the readiness latency in both cases −when the 
instance image resided on disk, or in memory (tmpfs). For 
cold-scale instantiation, the average readiness latency for 
MySQL was measured to be 7.5 seconds. The image location 
(on disk or in-memory) had a negligible impact. For warm-
scale provisioning, the application readiness latency is the 
same as the container restore time, since the application is 
restored to its initialized state. This was measured to be 300ms 
and 400ms on average, for in-memory and on-disk hosting 
respectively. The readiness latency for the hot-scale method 
includes both −the checkpoint time at the source host, and the 
restore-time at target host. As shown in Table I. it ranges 
between 900ms to ~1.3s for the different combinations of 
image hosting locations (network bandwidth was ensured not 
to be a bottleneck)  

TABLE I.  CHECKPOINT-RESTORE TIMES FOR HOT-SCALING 

3. Post-init Performance 
Once initialized and ready for service, we ran the YCSB test 
workloads, as described in Section IV-A, against our database 
application. Figures 1 (a) - (d) show the performance of the 
newly instantiated MySQL container, for the different 
operating states and access patterns. The plots show time series 
of the response latency for incoming requests (the relative 
trends for throughput curves are similar to the latency plots, 
and are thus omitted for brevity). The data points also include 
the readiness latency, most easily observed for the cold-scale 
method by its null performance for the first few seconds.  

 The first general observation we make is that the runtime 
performance for cold-scale and warm-scale methods is similar 
for all workloads and operating states, except for the higher 
readiness latency for the former.  

 The benefits of hot-scale provisioning can be seen in 
Figures 1(a) and 1(b), where for a memory-resident application 
state, a newly created instance can immediately start serving 
requests with low latencies. This is due to its already-warm 
cache at instantiation, a hot-scale instance does not have to go 
through a cache warming phase that causes higher service 
latency for its competitors. Furthermore, the total execution 
time for the YCSB run is also lower for hot-scale instance- 
14.4s vs. 18.1s, indicating a 25% higher throughput. In the case 

 Local  
on-disk 

Local  
in-memory 

Remote  
on-disk 

Remote  
in-memory 

Checkpoint 0.58s 0.45s 0.91s 0.9s 
Restore 0.7s 0.47s - - 



of memory-resident setting, similar results were observed for 
both zipfian and uniform access distributions. 

TABLE II.  MEMORY THRASHING OVERHEAD 

query-cache 
stats 

             Zipfian             Uniform 

Cold-scale Hot-scale Cold-scale Hot-scale 

Cache inserts 137K 143K 219K 231K 

Cache hits 262K 256K 180K 168K 

Cache prunes 114K 145K 197K 232K 

 

  The memory-resident setting is only one facet of hot-scale 
provisioning. When an application operates under a memory-
thrashing state, we observed that it performs worse than its 
competitors as shown in the Figures 1(c) and 1(d). The initial 
service latency is higher for cold-scale and warm-scale 
provisioned containers during the cache warming phase 
(between 0-2s). Then, relatively low latencies are recorded 
until the cache becomes full (between 2-10s). Thereafter, 
increasingly high latencies are noticed due to memory 
thrashing. On the other hand, for hot-scaling, this thrashing 
state gets captured in its mem-dump, and the new instance 
directly gets restored with such memory thrashing. As a result, 
we notice high latencies from the beginning of its instantiation. 

The total execution time and throughput for the YCSB run 
against this hot-scale instance is worse by 46% for Zipfian and 
64% for uniform access pattern, as compared to the other 
scaling techniques. To further substantiate the thrashing 
overhead, we collected the actual query-cache stats from the 
MySQL engine.  

As shown in Table II, more cache pruning occurs for the hot-
scale method in a memory-thrashing application state, which 
deteriorates runtime performance. 

 

3.1   Impact on Source Instance 
      Unlike cold-scale and warm-scale approaches, an instance 
created via hot-scaling is dependent on its source container’s 
state at the time of its instantiation. The source application may 
observe operational disruption during a hot-scale instantiation, 
with the performance impact depending upon the cloning 
efficiency. During checkpointing, CRIU freezes the complete 
process tree of the container for consistency. Thus, as seen 
from the Figures 2(a) and 2(b), during checkpointing the 
source’s throughput drops to zero and latency increases by 
300%. This is for base CRIU stop-and-checkpoint approach, 
and a lower impact may be observed with its other 
checkpointing flavors such as incremental or iterative clone 
that adds additional overhead depending on the frequency of 

0

0.5

1

1.5

2

0
1.

25 2.
5

3.
75 5

6.
25 7.

5
8.

75 10
11

.2
5

12
.5

13
.7

5 15
16

.2
5

17
.5

18
.7

5 20
21

.2
5

22
.5

23
.7

5

L
at

en
cy

 (s
)

Time (s)

Cold-scale Warm-scale Hot-scale

0

0.5

1

1.5

2

2.5

3

0
1.

25 2.
5

3.
75 5

6.
25 7.
5

8.
75 10

11
.2

5
12

.5
13

.7
5 15

16
.2

5
17

.5
18

.7
5 20

21
.2

5
22

.5
23

.7
5

L
at

en
cy

 (s
)

TIme (s)

Cold-scale Warm-scale Hot-scale

0

0.5

1

1.5

2

2.5

0
1.

95 3.
9

5.
85 7.

8
9.

75
11

.7
13

.6
5

15
.6

17
.5

5
19

.5
21

.4
5

23
.4

25
.3

5
27

.3
29

.2
5

31
.2

33
.1

5
35

.1
37

.0
5

L
at

en
cy

 (s
)

Time (s)

Cold-scale Warm-scale Hot-scale

0

1

2

3

4

0
2.

85 5.
7

8.
55

11
.4

14
.2

5
17

.1
19

.9
5

22
.8

25
.6

5
28

.5
31

.3
5

34
.2

37
.0

5
39

.9
42

.7
5

45
.6

48
.4

5
51

.3
54

.1
5

L
at

en
cy

 (s
)

Time (s)

Cold-scale Warm-scale Hot-scale

(a) Memory-resident Zipfian distribution (b) Memory-resident Unfirm distribution

(c) Memory-thrashing Zipfian distribution (d) Memory-thrashing Uniform distribution

Figure 1. Runtime performance comparison for Cold-scale, Warm-scale and Hot-scale  methods



iterations. Another option is to use post-copy, which may 
impact the performance on the destination due to memory 
misses caused by accessing pages that have not been copied yet 
to the destination.  

C. Observations and Recommendations 
        In this section, we consider all the evaluated performance 
parameters together to draw general conclusions. For warm-
scale provisioning, the size of the image was about 25% larger 
than the base image in cold-scale’s case, and it delivers the 
same steady-state runtime performance as the latter. But its 
value comes from hiding the application initialization delay 
and a near-constant readiness latency that is less than 1 second 
compared to 7.5 seconds with cold-scale. Therefore, especially 
for short-lived containers where readiness latency is critical, 
warm-scale provisioning is more suitable. For example, on 
serverless platforms [43,44] where user actions are required to 
be executed in real-time in response to an event, they can be 
hosted in warm-scaled containers. Similarly, for IoT (Internet 
of Things) workloads [58] warm-scale containers are better 
match. 
 

        For the hot-scale method, the image size is a function of 
the amount of memory being used by a container. In our 
experiments, we measured it to be almost 100% larger than 
the base image. And it has about 2x readiness latency as 
compared to warm-scaling. But at runtime it delivers 25% 
higher throughput than its competitor. Thus, for containers 
where attaining a steady-state throughput quickly is critical, 
hot-scaling should be employed. For instance, while scaling an 
application for load-balancing, it is desirable to have a newly 
added instance operating at highest performance immediately. 
Similarly for scaling a Hadoop cluster running data intensive 
map-reduce task, or an HTTP web server hosting static pages.  
 

        In hot-scale provisioning, the running state of the source 
application is shared with the target instance, along with any 
data. Thus, from a security aspect hot-scaling should be 
limited to intra-tenant container scaling, while warm-scale can 
be used (cautiously) in a multi-tenant environment (especially 
for applications that do not require authentication and 

authorization). Also, as discussed in Section 3.1, another 
aspect, which needs to be considered, is the performance 
implication on the source application instance. This may vary 
depending on the CRIU checkpoint mode used during hot-
scaling. This scaling method is ideal for migrating an 
application, where the source instance is to be 
decommissioned post-scaling, while the application keeps 
running at scale with minimal disruption. E.g., when migrating 
a container to a different physical machine with better 
performing hardware. 
 

        Finally, the most important take-away is: “hot-scale is 
not always as hot”. If you hot-scale a container while it is 
thrashing for low memory, then the new instance enters the 
thrashing state sooner. Thus, it is important to monitor and 
understand the operating state of a container for hot-scaling.  

V. RELATED WORK 
 Existing container scaling techniques employ a start-from-
scratch / cold-scale approach [1,2,3,5,7], while we also explore 
warm-scaling so as to avoid the application initialization 
latency [36]. While warm-scaling uses checkpointing for 
obtaining a container snapshot to base a new instance from, 
checkpoints have traditionally been used to provide fault 
tolerance / high availability at various abstraction levels- 
application runtimes [27-33], containers [4], VMs [9, 10, 18-
21] and others [34,35]. In addition, checkpointing has also 
been employed as a means to suspend or consolidate idle 
systems [23, 24, 25, 37].  
 

        In this study, we also compare a hot-scaling 
methodology, where new container instances are created by 
live-cloning running containers. In the VM domain, such 
cloning-based instance creation has been employed for 
dynamic server scaling [41, 42, 17], parallel worker forking 
[12] and speeding up system testing [38]. Fast scaling can also 
be achieved by image-based techniques such as caching [15], 
p2p streaming [13], and lazy fetching [26].  
 

        While instance creation from snapshot also exists in the 
VM domain [39], they do not focus on warm-scale's 

0
5
10
15
20
25
30
35

0

1.
5 3

4.
5 6

7.
5 9

10
.5 12

13
.5 15

16
.5 18

T
hr

ou
gh

pu
t (

ko
ps

/s
)

Time (s)

(a) Throughput Overhead (a) Latency Overhead

Figure 2. Runtime performance overhead for source container during hot-scale live cloning

0.00

0.50

1.00

1.50

2.00

0
1.
15 2.
3

3.
45 4.
6

6.
55 7.
7

8.
85 10

11
.1
5

12
.3

13
.4
5

14
.6

15
.7
5

16
.9

L
at

en
cy

 (s
) 

Time (s)



motivation of avoiding application initialization latency. A 
similar approach is also proposed in [14], but to minimize OS 
re-initialization latency during VM restart. Scaling via 
replication is also hinted upon in [6] for Tomcat application 
server containers. Other related work in the VM domain that 
comes closest to our motivation includes the proposal in [22], 
Twinkle [11], Dolly [8], and Jump-Start Cloud [16]. In [22], 
the authors propose using VM image caches in order to speed 
up concurrently booting VMs. However, they do not consider 
the application ready time that this study focuses on. Twinkle 
[11] speeds up VM instantiation by minimizing the VM 
snapshot size to consist of the working set of memory pages. 
In our case, the container snapshot size is significantly smaller 
than for VMs (application-only vs. application + OS), hence 
we focus on minimizing the application startup time. Unlike 
Twinkle, we also examine the effect of a warm cache on a 
new instance’s performance. Dolly [8] proposes a database 
provisioning system based on VM cloning, where new 
instances are provisioned based on snapshots and paused 
VMs. Again, our analysis is different in that we do not see the 
need to use paused containers, since the restore time of a 
container is not significant. Moreover, we demonstrate that 
depending on the workload and the application parameters, 
starting from a clone may not always be beneficial for 
performance. In Jump-Start Cloud [16], an adaptive snapshot 
replication technique is proposed for high availability while 
considering the available resources. Whereas, we are not 

biased towards a single technique such as snapshotting, and 
objectively compare three different options.  
        It should be noted that in our experiments we use 
MySQL only as an example of a stateful application.  By 
running a read-only workload against it, we bypass database 
consistency concerns which is not a focus of this paper. Live 
cloning a database node or restoring from checkpoint is not 
trivial, and may involve database resynchronization and 
transaction rollbacks for consistency [5, 8, 40].  

VI. CONCLUSION AND FUTURE WORK 
With the context of auto-scaling and on-demand provisioning, 
we compared three different techniques for container scaling- 
cold, warm and hot scaling. While differentiating the container 
start time from its application readiness, we compared the 
three approaches in terms of their readiness latency, image 
size and post-init performance. We discussed the applicability, 
advantages and shortcomings of each method, and highlighted 
performance tradeoffs and overheads which need to be 
considered for selecting the right scaling method.  Going 
forward, we wish to further validate our observations with 
other applications, in addition to the MySQL and 
ElasticSearch containers. Finally, we believe if the Unikernel 
technology gains more maturity and adoption in building 
microservices, then Unikernel VMs should be compared to 
containers in terms of the performance of auto-scaling.   
 

REFERENCES 
 

[1] Hoenisch, Philipp, Ingo Weber, Stefan Schulte, Liming Zhu, and Alan 
Fekete. "Four-Fold Auto-Scaling on a Contemporary Deployment 
Platform Using Docker Containers." In International Conference on 
Service-Oriented Computing, pp. 316-323. Springer Berlin Heidelberg, 
2015. 

[2] Steinholt, Ravn Kristinesønn. "A study of Linux Containers and their 
ability to quickly offer scalability for web services." Master’s thesis, 
Univeristy of Oslo, 2015. 

[3] Kukade, Priyanka P., and Geetanjali Kale. "Auto-Scaling of Micro-
Services Using Containerization." International Journal of Science and 
Research (IJSR), Volume 4 Issue 9, September 2015. 

[4] Li, Wubin, Ali Kanso, and Abdelouahed Gherbi. "Leveraging linux 
containers to achieve high availability for cloud services." In Cloud 
Engineering (IC2E), 2015 IEEE International Conference on, pp. 76-83. 
IEEE, 2015. 

[5] Kang, Hui, Michael Le, and Shu Tao. "Container and microservice 
driven design for cloud infrastructure devops." In Cloud Engineering 
(IC2E), 2016 IEEE International Conference on, pp. 202-211. IEEE, 
2016. 

[6] He, Sijin, Li Guo, Yike Guo, Chao Wu, Moustafa Ghanem, and Rui 
Han. "Elastic application container: A lightweight approach for cloud 
resource provisioning." In 2012 IEEE 26th International Conference on 
Advanced Information Networking and Applications, pp. 15-22. IEEE, 
2012. 

[7] de Abranches, Marcelo Cerqueira, and Priscila Solis. "An algorithm 
based on response time and traffic demands to scale containers on a 
Cloud Computing system." In Network Computing and Applications 
(NCA), 2016 IEEE 15th International Symposium on, pp. 343-350. 
IEEE, 2016.  

[8] Cecchet, Emmanuel, Rahul Singh, Upendra Sharma, and Prashant 
Shenoy. "Dolly: virtualization-driven database provisioning for the 
cloud." In ACM SIGPLAN Notices, vol. 46, no. 7, pp. 51-62. ACM, 
2011. 

[9] Chan, Hoi, and Trieu Chieu. "An approach to high availability for cloud 
servers with snapshot mechanism." In Proceedings of the Industrial 
Track of the 13th ACM/IFIP/USENIX International Middleware 
Conference, p. 6. ACM, 2012. 

[10] Nicolae, Bogdan, and Franck Cappello. "BlobCR: efficient checkpoint-
restart for HPC applications on IaaS clouds using virtual disk image 
snapshots." In Proceedings of 2011 International Conference for High 
Performance Computing, Networking, Storage and Analysis, p. 34. 
ACM, 2011. 

[11] Zhu, Jun, Zhefu Jiang, and Zhen Xiao. "Twinkle: A fast resource 
provisioning mechanism for internet services." In INFOCOM, 2011 
Proceedings IEEE, pp. 802-810. IEEE, 2011. 

[12] Lagar-Cavilla, Horacio Andrés, Joseph Andrew Whitney, Adin Matthew 
Scannell, Philip Patchin, Stephen M. Rumble, Eyal De Lara, Michael 
Brudno, and Mahadev Satyanarayanan. "SnowFlock: rapid virtual 
machine cloning for cloud computing." In Proceedings of the 4th ACM 
European conference on Computer systems, pp. 1-12. ACM, 2009. 

[13] Zhang, Zhaoning, Ziyang Li, Kui Wu, Dongsheng Li, Huiba Li, Yuxing 
Peng, and Xicheng Lu. "VMThunder: fast provisioning of large-scale 
virtual machine clusters." IEEE Transactions on Parallel and Distributed 
Systems 25, no. 12 (2014): 3328-3338. 

[14] Goodson, Garth Richard, Sai Susarla, and Kiran Srinivasan. "System 
and method for fast restart of a guest operating system in a virtual 
machine environment." U.S. Patent 8,006,079, issued August 23, 2011. 

[15] Razavi, Kaveh, and Thilo Kielmann. "Scalable virtual machine 
deployment using VM image caches." In Proceedings of the 
International Conference on High Performance Computing, Networking, 
Storage and Analysis, p. 65. ACM, 2013. 

[16] Wu, Xiaoxin, Zhiming Shen, Ryan Wu, and Yunfeng Lin. "Jump‐start 
cloud: efficient deployment framework for large ‐ scale cloud 
applications." Concurrency and Computation: Practice and Experience 
24, no. 17 (2012): 2120-2137. 

[17] Mior, Michael J., and Eyal de Lara. "Flurrydb: a dynamically scalable 
relational database with virtual machine cloning." In Proceedings of the 
4th Annual International Conference on Systems and Storage, p. 1. 
ACM, 2011.  



[18] Cui, Lei, Zhiyu Hao, Chonghua Wang, Haiqiang Fei, and Zhenquan 
Ding. "Piccolo: A Fast and Efficient Rollback System for Virtual 
Machine Clusters." In Parallel Processing (ICPP), 2016 45th 
International Conference on, pp. 87-92. IEEE, 2016. 

[19] Hou, Kai-Yuan, Mustafa Uysal, Arif Merchant, Kang G. Shin, and 
Sharad Singhal. Hydravm: Low-cost, transparent high availability for 
virtual machines. HP Laboratories, Tech. Rep, 2011. 

[20] Cully, Brendan, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm 
Hutchinson, and Andrew Warfield. "Remus: High availability via 
asynchronous virtual machine replication." In Proceedings of the 5th 
USENIX Symposium on Networked Systems Design and 
Implementation, pp. 161-174. 2008. 

[21] Tamura, Yoshi. "Kemari: Virtual machine synchronization for fault 
tolerance using domt." Xen Summit (2008). 

[22] Warszawski, Eduardo, and Muli Ben-Yehuda. "Fast initiation of 
workloads using memory-resident post-boot snapshots." U.S. Patent 
Application 14/930,674, filed November 3, 2015. 

[23] Zhang, Liang, James Litton, Frank Cangialosi, Theophilus Benson, 
Dave Levin, and Alan Mislove. "Picocenter: Supporting long-lived, 
mostly-idle applications in cloud environments." In Proceedings of the 
Eleventh European Conference on Computer Systems, p. 37. ACM, 
2016. 

[24] T. Knauth and C. Fetzer. DreamServer: Truly on-demand cloud services. 
In Proceedings of International Conference on Systems and Storage 
(SYSTOR’14), 2014. 

[25] T. Knauth, P. Kiruvale, M. Hiltunen, and C. Fetzer. Sloth: SDN-enabled 
activity-based virtual machine deployment. In  Proceedings of the Third 
workshop on Hot Topics in Software Defined Networking 
(HotSDN’14), 2014 

[26] Harter, Tyler, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, 
and Remzi H. Arpaci-Dusseau. "Slacker: fast distribution with lazy 
Docker containers." In 14th USENIX Conference on File and Storage 
Technologies (FAST 16), pp. 181-195. 2016. 

[27] Cao, Tuan, Marcos Vaz Salles, Benjamin Sowell, Yao Yue, Alan 
Demers, Johannes Gehrke, and Walker White. "Fast checkpoint 
recovery algorithms for frequently consistent applications." In 
Proceedings of the 2011 ACM SIGMOD International Conference on 
Management of data, pp. 265-276. ACM, 2011. 

[28] Stellner, Georg. "CoCheck: Checkpointing and process migration for 
MPI." In Parallel Processing Symposium, 1996., Proceedings of 
IPPS'96, The 10th International, pp. 526-531. IEEE, 1996.  

[29] Bronevetsky, Greg, Daniel Marques, Keshav Pingali, and Paul Stodghill. 
"Automated application-level checkpointing of MPI programs." In ACM 
Sigplan Notices, vol. 38, no. 10, pp. 84-94. ACM, 2003. 

[30]  Zheng, Gengbin, Lixia Shi, and Laxmikant V. Kalé. "FTC-Charm++: 
an in-memory checkpoint-based fault tolerant runtime for Charm++ and 
MPI." In Cluster Computing, 2004 IEEE International Conference on, 
pp. 93-103. IEEE, 2004. 

[31] Lahiri, Tirthankar, Amit Ganesh, Ron Weiss, and Ashok Joshi. "Fast-
Start: quick fault recovery in oracle." In ACM SIGMOD Record, vol. 
30, no. 2, pp. 593-598. ACM, 2001. 

[32]  Ni, Xiang, Esteban Meneses, and Laxmikant V. Kalé. "Hiding 
checkpoint overhead in HPC applications with a semi-blocking 
algorithm." In 2012 IEEE International Conference on Cluster 
Computing, pp. 364-372. IEEE, 2012. 

[33] Rezaei, Arash, Giuseppe Coviello, Cheng-Hong Li, Srimat Chakradhar, 
and Frank Mueller. "Snapify: capturing snapshots of offload 
applications on Xeon Phi manycore processors." In Proceedings of the 
23rd international symposium on High-performance parallel and 
distributed computing, pp. 1-12. ACM, 2014. 

[34] Laadan, Oren, Dan Phung, and Jason Nieh. "Transparent checkpoint-
restart of distributed applications on commodity clusters." In 2005 IEEE 
International Conference on Cluster Computing, pp. 1-13. IEEE, 2005. 

[35] Russinovich, Mark, and Zary Segall. "Fault-tolerance for off-the-shelf 
applications and hardware." In Fault-Tolerant Computing, 1995. FTCS-
25. Digest of Papers., Twenty-Fifth International Symposium on, pp. 67-
71. IEEE, 1995. 

[36] SPEC Cloud™ IaaS 2016 Benchmark. 
http://spec.org/cloud_iaas2016/docs/designoverview.pdf. (Accessed 
January, 2017) 

[37] Bila, Nilton, Eyal de Lara, Kaustubh Joshi, H. Andrés Lagar-Cavilla, 
Matti Hiltunen, and Mahadev Satyanarayanan. "Jettison: efficient idle 
desktop consolidation with partial VM migration." In Proceedings of the 
7th ACM european conference on Computer Systems, pp. 211-224. 
ACM, 2012. 

[38] J. Zhi, S. Suneja, and E. De Lara. The case for system testing with swift 
hierarchical vm fork. In Proceedings of the 6th USENIX Conference on 
Hot Topics in Cloud Computing, HotCloud’14, pages 19–19, 2014. 

[39] VMware. Understanding Clones. https://www.vmware. 
com/support/ws5/doc/ws_clone_overview.html. (Accessed January, 
2017) 

[40] Depoutovitch, Alex, and Michael Stumm. "Otherworld: giving 
applications a chance to survive OS kernel crashes." In Proceedings of 
the 5th European conference on Computer systems, pp. 181-194. ACM, 
2010. 

[41] Vrable, Michael, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, 
Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. "Scalability, 
fidelity, and containment in the potemkin virtual honeyfarm." In ACM 
SIGOPS Operating Systems Review, vol. 39, no. 5, pp. 148-162. ACM, 
2005. 

[42] Bryant, Roy, Alexey Tumanov, Olga Irzak, Adin Scannell, Kaustubh 
Joshi, Matti Hiltunen, Andres Lagar-Cavilla, and Eyal De Lara. 
"Kaleidoscope: cloud micro-elasticity via VM state coloring." In 
Proceedings of the sixth conference on Computer systems, pp. 273-286. 
ACM, 2011.  

[43] Amazon Lambda https://aws.amazon.com/lambda/. (Accessed January, 
2017) 

[44] IBM Bluemix OpenWhisk https://www.ibm.com/cloud-
computing/bluemix/openwhisk. (Accessed January, 2017) 

[45] Cargo: Container storage migration 
https://developer.ibm.com/open/openprojects/cargo/. (Accessed January, 
2017) 

[46] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. 
(2010, June). Benchmarking cloud serving systems with YCSB. In 
Proceedings of the 1st ACM symposium on Cloud computing (pp. 143-
154). ACM 

[47] IBM Bluemix Container Service. https://www.ibm.com/cloud-
computing/bluemix/containers. (Accessed January, 2017) 

[48] Red Hat OpenShift Container Platform. 
https://www.openshift.com/container-platform/features.html 

[49] Google Cloud Platform. Container-Optimized Google Compute Engine 
Images. https://cloud.google.com/compute/docs/containers/ 
container_vms. (Accessed January, 2017) 

[50] Namespaces. Linux Programmer's Manual. man7.org/linux/man-
pages/man7/namespaces.7.html. (Accessed January, 2017) 

[51] Linux control groups. Linux Programmer's Manual. 
man7.org/linux/man-pages/man7/cgroups.7.html.  

[52] CoreOS. Rkt vs. other projects. https://coreos.com/rkt/docs/latest/rkt-vs-
other-projects.html. (Accessed January, 2017) 

[53] Linux Foundation. runC by Open Container Initiative. https://runc.io. 
(Accessed January, 2017) 

[54] M. Michael, J. E. Moreira, D. Shiloach and R. W. Wisniewski, "Scale-
up x Scale-out: A Case Study using Nutch/Lucene," 2007 IEEE 
International Parallel and Distributed Processing Symposium, Long 
Beach, CA, 2007, pp. 1-8. 

[55] CRIU: Comparison to other CR projects. 
https://criu.org/Comparison_to_other_CR_projects. (Accessed January, 
2017) 

[56] CRIU. Main Page. https://criu.org. (Accessed January, 2017) 
[57] Docker Hub. https://hub.Docker.com. (Accessed January, 2017) 
[58] IBM. IBM Watson IoT Platform. https://www.ibm.com/internet-of-

things/iot-solutions/watson-iot-platform. (Accessed January, 2017) 

 


