
Cryptomining Detection in Container
Clouds Using System Calls and Explainable

Machine Learning
Rupesh Raj Karn , Prabhakar Kudva , Hai Huang,

Sahil Suneja, and Ibrahim (Abe) M. Elfadel , Senior Member, IEEE

Abstract—The use of containers in cloud computing has been steadily increasing.With the emergence of Kubernetes, themanagement of

applications inside containers (or pods) is simplified. Kubernetes allows automated actions like self-healing, scaling, rolling back, and

updates for the applicationmanagement. At the same time, security threats have also evolvedwith attacks on pods to performmalicious

actions. Out of several recent malware types, cryptomining has emerged as one of themost serious threats with its hijacking of server

resources for cryptocurrencymining. During application deployment and execution in the pod, a cryptomining process, started by a hidden

malware executable can be run in the background, and amethod to detectmalicious cryptomining software running inside Kubernetes pods

is needed.One feasible strategy is to usemachine learning (ML) to identify and classify pods based onwhether or not they contain a running

process of cryptomining. In addition to such detection, the system administrator will need an explanation as to the reason(s) of theML’s

classification outcome. The explanationwill justify and support disruptive administrative decisions such as pod removal or its restart with a

new image. In this article, we describe the design and implementation of anML-based detection system of anomalous pods in a Kubernetes

cluster bymonitoring Linux-kernel system calls (syscalls). Several types of cryptominers images are used as containers within an

anomalous pod, and severalMLmodels are built to detect such pods in the presence of numerous healthy cloud workloads. Explainability is

provided usingSHAP, LIME, and a novel auto-encoding-based scheme for LSTMmodels. Seven evaluationmetrics are used to compare

and contrast the explainablemodels of the proposedML cryptomining detection engine.

Index Terms—Cryptomining, docker, kubernetes, containers, machine learning, explainability, pod, anomaly

Ç

1 INTRODUCTION

IN CLOUD computing, containers are operating-system-
level virtualization abstractions for running isolated sys-

tems on a host using a single kernel. A container image is a
lightweight, stand-alone, executable package that includes
sufficient components such as code, system tools, system
libraries, and settings to run cloud applications. The use of
containers in cloud computing has grown significantly. To
provide cloud service elasticity and timely response, various
commercial clouds service providers such as Amazon, Goo-
gle, IBM, andMicrosoft are investingmore into the micro-ser-
vice instantiation using containerized environments.
Renowned containerizing tools include Docker, Kubernetes,
and OpenVZ. In this paper, we use Kubernetes, an open-
source system for the automated deployment, scaling, and
management of applications inside containers. It provides
capabilities for load balancing, storage orchestration,

automated roll-outs and rollbacks, batch execution, self-heal-
ing, horizontal and vertical scaling on the top of containers [1].

The advancement in container technology has in turn trig-
gered several cyber security threats. To counter them, several
types of cyber-attack detection schemes are available to
secure applications in containers [2], [3]. But all of these
approaches assume that the underlying container’s image is
healthy with botnets injecting faults in running containers.
But unfortunately, this is not always the case as an attacker
can replace a healthy container image with an infected one,
which can run undetected under traditional cyber-security
detectors. Recent reports [4], [5], [6] indicate that Dockerhub
has foundmany of its images were being usedmaliciously to
mine for cryptocurrencies. Since the Docker image can be
accessed without authentication, attackers have used it to
deploy cryptojacking malware. The infected Docker images
were subsequently removed from the Docker repository.
These miners hijack the container, sharing the computing
resources (CPU and memory) between deployed applica-
tions and miners. In an extreme case, mining operations use
most of the pod’s compute resources so that only a fraction
of resources is available for legitimate applications whose
performance will be necessarily degraded. McAfee malware
protection software has reported that new families of miners
were found to attack Microsoft Windows and Mac OS, with
mining attacks increasing by 29 percent between the fourth
quarter of 2018 and the first quarter of 2019 [7]. The Nanshou
campaign [8] has found that over 50,000 servers belonging to
companies in the healthcare, telecommunications, media,

� Rupesh Raj Karn and Ibrahim (Abe) M. Elfadel are with the Center for
Cyber-Physical Systems, Khalifa University, Abu Dhabi, UAE.
E-mail: {rupesh.karn, ibrahim.elfadel}@ku.ac.ae.

� Prabhakar Kudva, Hai Huangh, and Sahil Suneja are with IBM Research,
Yorktown Heights, NY 10598. E-mail: {kudva, haih, suneja}@us.ibm.com.

Manuscript received 27 Jan. 2020; revised 25 July 2020; accepted 30 Sept.
2020. Date of publication 6 Oct. 2020; date of current version 22 Oct. 2020.
(Corresponding author: Ibrahim (Abe) M. Elfadel.)
Recommended for acceptance by J. Lange
Digital Object Identifier no. 10.1109/TPDS.2020.3029088

674 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4682-4457
https://orcid.org/0000-0002-4682-4457
https://orcid.org/0000-0002-4682-4457
https://orcid.org/0000-0002-4682-4457
https://orcid.org/0000-0002-4682-4457
https://orcid.org/0000-0003-0854-8612
https://orcid.org/0000-0003-0854-8612
https://orcid.org/0000-0003-0854-8612
https://orcid.org/0000-0003-0854-8612
https://orcid.org/0000-0003-0854-8612
https://orcid.org/0000-0003-3220-9987
https://orcid.org/0000-0003-3220-9987
https://orcid.org/0000-0003-3220-9987
https://orcid.org/0000-0003-3220-9987
https://orcid.org/0000-0003-3220-9987
mailto:rupesh.karn@ku.ac.ae
mailto:ibrahim.elfadel@ku.ac.ae
mailto:kudva@us.ibm.com
mailto:haih@us.ibm.com
mailto:suneja@us.ibm.com

and IT sectors were hijacked for cryptomining. As per the
Kaspersky lab, in 2018 the number of cryptomining attacks
increased by more than 83 percent with respect to the previ-
ous year [9]. Cryptominers prevent the deployed application
from using full container resources. Before deploying, boot-
ing or running the desired application, it is therefore crucial
to perform the health checks on the container base image. In
this work, we design an ML-based cryptomining container
detection framework using syscalls as a monitoring mecha-
nism. The cryptomining anomaly detection is based on the
principle of establishing an application behavior baseline
and then evaluating subsequent events against this baseline.
Anything “too far” from this baseline can be regarded as
anomalous and should be investigated.We use several statis-
tical and rule-based ML algorithms, and back up their detec-
tion results with several explainability tools to investigate
the cause of theML outcomes. TheseML algorithms are then
compared in terms of their performancemetrics.

1.1 Cryptomining Signatures

Cryptocurrency mining malware refers to software devel-
oped to use the computer’s resources for cryptocurrency
mining without a user’s explicit permission. Attackers have
attempted to profit from cryptocurrency mining by harness-
ing the processing power of a large numbers of computers,
smartphones and other electronic devices.

The detection of cryptocurrency malware has been
performed by generating its signatures in terms of power con-
sumption, network traffic behavior, operating system pro-
cesses, and patterns in hardware performance counters. In
[10], an anatomy of the browser-based cryptomining is pre-
sented, in which the attacker infects a web page with Java-
Script code that auto-executes when the web page is loaded
by the victim’s browser. The attacker takes advantage of the
browser to activate the necessary JavaScript mining module.
The term ”illegal leverage” states that javascript is usedmaxi-
mally and forcibly taking full privilege without the victim’s
consent for a mining operation. The unauthorized execution
of JavaScript can therefore be used as a signature for crypto-
mining malware in this scenario. If the browser behavior is
measured using any profiling metrics (e.g., syscalls or proces-
sor/memory metrics like instruction per clock cycle, CPU uti-
lization, virtual memory page faults, context switches, etc.) a
definite pattern of those metrics is marked for the legitimate
and healthy operation. If the browser is hijacked by the mining
operation, a significant deviation is shown by such profiling
metric. Such a deviation is called a mining signature of the
browser. In theWindows operating system,mining is run as an
executable file in memory that establishes an alteration in the
system registry. In this scenario, the monitoring of registry can
signal the presence of malware. Network signature extraction
is also possible because mining programs contact the central
botnet server to register its presence and to download relevant
files depending on the architecture of the victim’s system. The
network transactions generate significant network traffic before
the actual cryptomining begins. Tracing such traffic is relatively
easy because the communication is unencrypted. In [11], the
cryptominer signature is extracted in terms of power consump-
tion for IoT devices. The energy consumption patterns of vari-
ous processes on the victim’s processor are monitored to
differentiate malicious miners from non-malicious

applications. In [12], performance counters on the victim’s pro-
cessor are used to assist in profiling various mining algorithms
and generating their signatures. The performance counters are
collected by the profiling tool perf and include number of page
faults, executed instructions, and cache misses. Experiments
with several mining algorithms result in completely different
CPU/GPU signatures between mining and non-mining appli-
cations. Other findings include similar signatures for different
implementations of the same mining algorithm and overlap-
ping signatures for various miners despite implementing dif-
ferent proof-of-work algorithms. It is claimed in [12] that there
is unique common signature among all the miners that set
them apart from other healthy workloads such as SPEC CPU,
CloudSuite, Parboil, andRodinia.

1.2 Motivation

In public cloud computing services, access to the hardware
resources is typically not available to the customer. Instead,
the Linux-kernel system calls at the operating system level
can be used as a proxy to signal the possibility of threat in a
running container. The system call (syscall) is the fundamen-
tal interface between an application and the Linux kernel. A
syscall is generated every time the application interacts with
the Linux-kernel. Cryptominers have to repeatedly run a core
Proof-of-Work (PoW) algorithm that the currency is based on
[12]. Such repeated runs would result in the repeated occur-
rence of particular patterns for certain syscalls. System call
monitoring helps to track such patterns, and any unantici-
pated change in the patterns of an application can signal the
presence of a threat in the container. Under this scenario, an
unusual syscall pattern can be used as an alert for cryptomin-
ing. Prior research that uses syscalls and behavioral models as
detection mechanism include [13], [14] while research using
neural networkmodels include [15], [16], [17].

Most of the anomaly detection models are considered as
black-boxes where no information is returned to the user
regarding the cause of the anomaly classification. Yet, this
information must be transparent to the system administrator
who will need an explainable classification model in order to
take the appropriate action. An explainable model generates
an auditable set of explanations that describe key factors asso-
ciated with the prediction. It can recommend the critical sig-
nals that need to be carefully monitored or recommend
specific actions such as increasing the sampling frequency to
get finer-grain details of the event that is responsible for the
anomaly. It can also explain the association among the signals
which are needed to manage the false prediction rate. The
best use of such association rules is in fault tracing where
impact at one podmight be due to some event in another pod,
which cascades in some manner to a third pod, and so on.
Explanations obtained from machine learning models help
trace key features or sequences and eventually detect the root
cause. In this work, a methodology is formulated and imple-
mented to detect cryptominer anomalies using system calls as
proxies for mining events and using an explainable machine
learning (ML)model as the cryptomining detector.

2 PROBLEM STATEMENT AND CONTRIBUTIONS

Several methods to analyze syscall patterns are available
[18], [19], [20]. A method that provides the best accuracy

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 675

across cryptominers needs to be identified along with the
best possible explanation for such identification. One such
method is described in [18] where a histogram of syscalls is
created to find the distribution of distinct syscalls in each
time window. Another method is given in [19] where the
semantics of each syscall is interpreted to detect infected
pods. A flow-graph analysis is used in [20] to deduce the
relationships between different syscalls and generate appli-
cation signatures. A Markov chain [21] is mostly used to
graph the syscalls as a sequence of events in which the prob-
ability of each event depends only on the state attained in
the previous event. Similarly, in [22], a weighted directed
graph is built using syscalls for Android malware detection.
Such graph is used as a malware signature and is compared
with other container syscalls graphs to detect the anomaly.
These state-of-the-art methods suffer from the following
disadvantages:

1) They require a significant amount of manual inter-
vention to analyze and interpret syscall semantics.

2) They are difficult to use in the analysis of applica-
tions that produce a large number of distinct syscalls
in a small time window.

3) They are, by and large, platform-dependent. For exam-
ple a change in image versions from 32-bit to 64-bit, or
in the operation system type (e.g., UBUNTUDEBIAN,
REDHAT) causes the predictionmodel to change.

We explore the use of explainable ML of syscalls to classify
anomalous containers. Machine learning models have the
ability to handle large data (syscalls in this case) and produce
a model in comparatively smaller time than graphical meth-
ods. They remove the human intervention required in inter-
preting syscalls as in opcode analysis. Also, it ismore effective
than signature-based anomaly detection. In such detection,
the “longest continuous matching syscalls sub-sequence” is
extracted from all the cryptominers to get the signature of
anomalous pods. Such signature extraction requires extensive
computational resources. Instead of finding the exact signa-
ture of anomalies, standard MLs are capable of finding a sub-
signature with comparatively less computing resources.
These sub-signatures create a baseline or boundary which is
sufficient to precisely classify anomalous pod behavior from
normal ones. Such sub-signature is also used by explainable
tools to produce a reasonable justification to support ML’s
classification outcome. Machine learning models are also
capable of pursuing progressive learning and classification.
As the platforms for a few of the containers change, themodel
can progressively learn the characteristics of the new version
while still maintaining the classification accuracy of the older
versions [23], [24], [25], [26].

To fulfill the above requirements, a methodology for
anomaly detection through system calls in the Kubernetes
pods is proposed, designed, and implemented as depicted
in Fig. 1. Several types of cryptominer images are used in
the creation of anomalous pods. Proxies based on Linux-
kernel syscalls are extracted and compared against healthy
applications that exhibit similar domain behavior as the
cryptominers. Four different ML algorithms are used for
classifying a given pod as either a crypto-hijacked or a nor-
mal pod. These algorithms are compared in terms of accu-
racy, runtime, and resource utilization.

We have conducted a thorough comparison between our
methodology and those in the literature that we have sum-
marized in Table 1.

This paper makes the following specific contributions:

1) Design and implementation of a novel automated
cryptomining pod detection in a Kubernetes cluster.

2) Development and implementation of real-time, sys-
call extraction methods for Kubernetes pods.

3) Implementation of statistical and rule-based ML
models to detect anomalous pods.

4) Implementation of two statistical explainability mech-
anisms forMLmodels: one using open-source compo-
nents and anotherwith home-grown software.

5) Comparative analysis of explainable ML implemen-
tations with their differences quantified using well-
defined performance metrics.

As for the organization of this paper, it is as follows. Sec-
tion 3 describes a methodology where different types of cryp-
tominers and workloads are explained along with the tools
used in the experiments. The details of syscall collection in
two container platforms are given in Section 4. Implementa-
tion of the proposed methodology using three types of data-
sets is performed in Section 5 where feature extraction, ML
implementations, and their cross-validation accuracies are
described. The use of explainable tools to describe the out-
comes of the ML models is given in Section 6. A summary of
the ML results in terms of accuracy and performance is given
in tabular format in Section 7. In Section 8, a set of syscalls
unique to cryptomining and normal applications are dis-
cussed to verify the ML classification operation. Finally, the
paper concludes in Section 9.

3 PROPOSED METHODOLOGY

The setup shown in Fig. 1 has been implemented in Kuber-
netes. Minikube [39], [40] is used to create a single-node
Kubernetes cluster on an Ubuntu 16.04 virtual machine.
Eight different types of cryptomining containers are used.
They are bitcoin [41], bytecoin [42], dash [43], litecoin [44],
ethereum [45], zcash [46], ripple [47] and Vertcoin [48].
These miners are chosen so as to account for variety of

Fig. 1. Block diagram of cryptominer pod detection.

676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

mining algorithms under the detection framework of Fig. 1.
For instance, they include SHA256, cryptonight, X11, Lyr-
a2RE, and Equihash, which is meant to provide maximum
coverage across the Proof of Work algorithm space as
pointed out in [12] and [49]. Cryptominers are known to be
CPU intensive as has been verified by inspecting the CPU
usage of mining containers (command: docker stats < con-
tainer-id>). One method for detecting cryptominers may be
based on CPU usage or usage rate. Although it is a good
first-order metric, some healthy application might be CPU-
intensive and show significant changes in CPU usage, creat-
ing false alerts or in the worst case, triggering the disabling
of an important healthy workload. Syscalls provide a sec-
ond-order metric. To enable an environment that supports

CPU-intensive, healthy application pods, containers are cre-
ated that are dedicated to such heavy computational loads
as picture classification using deep learning [50], MySQL
performance testing [51], Cassandra stress [52] workloads,
Apache Spark from CloudSuite [53], map-reduce model in a
single-node Hadoop cluster [54], Docker bench for security
[55], a graph analytics benchmark [56], and a media stream-
ing benchmark [57]. These workloads are selected to cover a
broad range of applications, including cloud benchmarks,
scientific computing, AI simulations, data mining, graph
analytics, and internet search. Since we have 8 miners, we
have selected only 8 benign applications to match up the
number of infected and healthy containers in our frame-
work. This is in order to avoid inference problems related to

TABLE 1
Literature Comparison

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 677

data imbalances. Syscalls are collected for all these healthy
application pods along with those of the cryptomining-
hijacked pods.

The list of syscalls for each pod is converted into a set of
frames by n-gram [58], [59]. There are other standard
approaches like the principal component analysis (PCA)
used in [60] to extract the ML features from syscalls
sequence for malware detection. PCA is known to be com-
putationally intensive and therefore unsuitable for real-time
detection. To reduce the complexity of data formatting and
feature extraction, we use the n-gram method. The n-gram
frames are split into a training and validation set as per the
standard ML convention (ratio of 70 : 30). These frames are
considered as samples while the n-grams are considered as
features for the ML model inputs. The modeling setup is
shown diagrammatically in Fig. 2. Four different ML meth-
ods are used: vanilla feed-forward neural network [61],
feedback recurrent neural network (RNN) [62], decision
tree [63], and XgBoost ensemble learning [64]. Both neural
network models use statistical formulation to build the
model while decision tree and XgBoost use rule-based for-
mulation to learn the model. These MLs have been fre-
quently used for anomaly detection (as seen in Table 1) and
provide wide coverage of the machine learning methods
used in practice. We have therefore used them in our cryp-
tomining detection framework as well. Explainable model
building algorithms are used so that enough information is
produced by the model for effective mining malware detec-
tion. This information is required by developers and system
administrators to analyze the results and get confidence
into the accuracy of the ML-predicted anomaly as well as
understanding of the system level rationale of pod classifi-
cation. For the vanilla neural network and the decision tree
model, an explanation tool LIME Local Interpretable Model-
agnostic Explanations) [65], [66] is used. For the feedback
RNN, an auotencoder [67] is used. For the ensemble learn-
ing model, the Python package SHAP (SHapley Additive
exPlanations) [68], [69] is used. Such tools are open-source
and have been widely used for image recognition, text iden-
tification, sentiment analysis, banking fraud and detection,
among many other applications. However, they have not
been used in the case of container cloud anomaly detection.
To the best of our knowledge, this paper is the first to make
such use of them.

As shown in Fig. 1, upon detection of a cryptomining-
hijacked pod and the provision of an explanation regarding
pod classification to the administrator, the methodology per-
forms automated actions including disable, delete, rollback,
and restart, based on previously specified rules. One of the

possible rules may be to restart the pod first to inspect
whether the mining operation is removed. If the restart
doesn’t help, the next action could be a rollback to use the
base image of the container. A rollback failure confirms that
the base image is itself infected. In this case, the action should
be either a temporary disable of the pod or a permanent
removal from the cluster. Likewise, several rules can be gener-
ated taking into account the cluster management constraints
and business decisions. Once the application is set to be
hosted in the cloud, a key problem for the applicationmanag-
ers is how to implement and manage such rules and actions
on their legacy systems in support of business operations. The
use ofML inference for managing the infected containers is an
important topic for future research. In this paper, we focus on
the machine learning and explainability aspects of the crypto-
mining detection framework.

4 SYSCALLS COLLECTION AND ANOMALY

DETECTION CHALLENGES

4.1 System Calls Collection for Kubernetes

TheLinuxperformance profiling tool perf [70] is used to collect
syscalls traces. The scripts for syscall collection on docker con-
tainers are known and easily available in the literature but lit-
tle information is available regarding collection of syscalls on
Kubernetes pods. In this paper, we explain the steps and
scripts that need to be used in theDocker andKubernetes con-
text for syscalls collection. In the 64� bit Linux-kernel, there
are 313 distinct syscalls made during the execution of each
program [71]. The docker images of miners and applications
described in Section 3 are used to create a Kubernetes-YAML
file. They are deployed in a cluster using the Kubernetes API
“kubectl create -f < yaml file name> ”. After deployment, “perf”
is run to collect the raw syscalls in every timewindow. Syscall
collection in the Docker platform is simple but in Kubernetes,
extra steps have to be followed. The scripts for both platforms
are shown in the appendix attached to this paper, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2020.3029088.
These scripts will help anyone who wants to extract syscalls
from Kubernetes pods with open-source perf tool. Apart from
perf, there are several other tools such as strace and ptrace that
one can use for syscalls collection using scripts similar to the
perf ones. A standard tool Sysdig [72] has been consistently
used by researchers to collect syscalls for container cloud. It
has been primarily used in Kubernetes clusters and for micro-
service monitoring. However, Sysdig is not completely open-
source as its premium version requires a licenses for installa-
tion and use. On the other hand, open-source tools such as

Fig. 2. Block diagram of syscalls processing using machine learnings.

678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3029088
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3029088

perf, strace, and ptrace are pre-installed in the Linux operating
system and can be effectively used without incurring any
additional costs.

4.2 Issues in Syscalls Collection

During syscalls collection, several issues are encountered,
especially in relation to the performance of the detection
framework when it is deployed in cloud clusters. These
issues are scalability, storage overhead, runtime overhead,
and security monitoring.

1) Scalability: Given that the proposed solution is
designed for container clouds, the scalability of the
monitoring approach is a potential concern. The sys-
calls are collected periodically in a round-robin fash-
ion for all containers. The syscalls collection period
for a given container is linearly proportional to the
number of containers in the cluster. Consider there
are N containers to monitor and that at each con-
tainer, the syscalls are collected with a sampling
interval of Dt then the period Tpod of syscalls polling
at each pod is given by

Tpod ¼ NDt: (1)

The polling interval at each pod increases linearly
with N . Since mining is a long-term activity that is
usually run for days (as opposed to short-term mal-
ware), a sampling interval of Dt of 1 minute is typi-
cally sufficient. Moreover, a polling interval of (NDt)
is also sufficient to detect mining activities. Polling
policies can be designed to accelerate syscalls collec-
tion, including pod interleaving, random pod sam-
pling, and event-driven monitoring [73].

2) Storage Overhead: Syscall monitoring is known to
have a significant storage overhead. Many research-
ers have used heuristics to minimize storage over-
head based on the bloom or cuckoo filters [74]. Such
overhead depends on the nature of the workload. To
better quantify such aspects, syscalls are collected
with a sampling interval of Dt ¼ 1 minute across
legitimate and mining applications. The size of the
raw syscalls file and the syscalls sequence length are

shown in Table 2. The dynamic range of these two
figures of merit is rather large. Specifically, Bitcoin,
Bytecoin, and Cassandra have significant storage
overhead. As a result, the proposed miner detection
framework of Fig. 1 may end up using a significant
amount of storage for certain workloads that can be
accommodated using network storage resources of
the cloud cluster. Storage needs may be controlled
by decreasing the period Dt of syscalls sampling.
Here also, dynamic policies of storage control may
be defined but they are outside the scope of this
paper. On a related score, the execution of the ‘perf’
tool also consumes significant amounts of memory.
But such memory usage can be mitigated using the
C-group of the cluster node [75] and by the applying
a dynamic resource provisioning policy to the con-
tainers [76] .

3) Runtime Overhead: Syscalls monitoring is also known
to have significant runtime overhead. The overuse of
the tool perf can slow down process execution in any
given container. The slowdown of job completion
has led to limiting syscalls extraction to a smaller
subset. Another control knob is to increase the moni-
toring span (NDt). To show these aspects quantita-
tively, workloads have been randomly selected and
their job completion times measured twice, once
without collecting syscalls and once with syscalls
collection. The differences in runtime and overhead
percentage are shown in Table 3. In our implementa-
tion, the runtime overhead with syscalls is approxi-
mately 5 percent. Given the advantages of miner
detection in the container cloud, we believe such
overhead to be reasonable.

4) Security Monitoring: The container monitoring tool
perf is run on the host server where all the containers
are deployed. It should be noted that there can be
more than one host server in the cloud cluster. Con-
tainer security can be compromised in several ways,
including opening to any internet traffic, having
more than one port number for traffic feed, having
no access credentials or compromising such creden-
tials. If access credentials are compromised, an
attacker can build a tunnel path from one container
to another and reach up to the host server where perf
is running. An attacker can then run malicious code
on the host server to kill the perf process itself. With
this, no syscalls will be generated any more for any
of the containers. But as per our setup in Fig. 1, sys-
calls are being collected with a fixed sampling

TABLE 2
Raw Syscalls File Size and the Generated Sequence Length

Pod name Syscall raw file
size (MB)

Syscalls
length

Average interval
between syscalls (s)

Bitcoin 554 2038829 0.000029
Bytecoin 134 481466 0.00012
Vertcoin 8 28850 0.00207
Dashcoin 18 61634 0.00097
Litecoin 83 290657 0.000206
Deeplearning 22 77981 0.000769
Mysql 5 14756 0.00406
Cassandra 246 910472 0.0000658
Hadoop 480 1656599 0.0000362
Graph
Analytics

113 270981 0.000221

For each of the workloads, syscalls are collected with a one-minute sampling
interval. The average time interval between syscalls is calculated by dividing
the sampling interval with the syscalls length.

TABLE 3
Runtime Overhead in Syscalls Collection

Pod name Workload’s job completion time (s) Overhead (%)

Without With syscalls T2�T1
T1

syscalls ‘T1’ ‘T2’ �100%

Docker-bench 30 31 3.33
Hadoop 81 84 3.7
Spark 18 20 11.11
Graph-analytics 933 944 1.11

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 679

interval across all containers in the cluster in round-
robin fashion. Within a sampling period, if there are
no syscalls generated then no data is passed to the
ML model inference engine. The ML model would
be idle, which would raise an alert to the system
administrator for the inspection of containers. The
fact that none of the containers generated syscalls,
even though they are all active and running applica-
tions, is deemed a confirmation that the monitoring
system is faulty. An alert for such a hijack of the
monitoring system should therefore be added in
the ”automated actions” list of Fig. 1. The details of
the container management policies as a result of this
alert should be mapped while taking into account
the cluster management constraints and business
decisions as discussed in Section 3.

4.3 Anomaly Detection Challenges in Cloud

Anomaly detection is an effective way of helping adminis-
trators of cloud platforms to monitor, analyze, and improve
cloud behavior. However, given their large-scale, complex
architectures and their design for resource sharing, cloud
platforms pose severe challenges to accurate anomaly detec-
tion. Here, we elaborate on such challenges in the specific
context of virtual-machine and container clouds.

1) Virtual-machine clouds: Virtual machines (VMs)
ensure security mainly by isolation but at the cost of
running a complete operating system (OS). Since
VMs are bulky, more than one core application is
run in a VM to lower storage and compute costs.
Security enhancements such as network firewalls
and smaller VM images are difficult to implement,
given the need to take into account the superset of
all application activities. With the broader set of VM
core applications, the anomaly detection framework
needs complex machine learning with a wide spec-
trum of feature sets. Such a complex model needs
time-consuming tuning for its large set of hyper-
parameters, which results in a comparatively longer
time in the training process. Also, such a model may
be susceptible to a high rate of false positives.

2) Container clouds: Unlike VMs, containers are light-
weight objects, having ample resources to run a single
core program. Compared to VM, containers do not
have to run a complete OS, and therefore the container
image is based on a much smaller collection of pack-
ages and binaries. At a small scale where only few con-
tainers are to be monitored with each running a
reduced number of known binaries and packages, the
anomaly can be detected by simply verifying that only
previously existing binaries are executed in those con-
tainers. To capture the activities of few applications
per container, the MLmodel can be made simple with
fewer features extracted for training and detection. As
a result, training and detection runtime is relatively
shorter than in VMs. Because the ML model is com-
pact, the rates of false positives and false negatives are
likely to be smaller aswell.

In a VM, it is typically challenging to effectively define
the total set of application events. On the other hand, in a

single-application container, it is possible to define a mini-
mal set of event markers for automating interactions. Fur-
ther, Kubernetes provides fine-grained controls related to
service-to-service messaging. Such controls provide addi-
tional indicators to help distinguish malicious from benign
behavior and detect violations security policies. In sum-
mary, container clouds are more amenable to anomaly
detection than VM clouds.

5 MACHINE LEARNING IMPLEMENTATION

In this section, we describe the various ML models used for
pod classification.

5.1 Feature Extraction

The first ML step is feature generation from raw syscall
sequences. These syscall sequences are stored in a Python dic-
tionary. For each pod, syscalls are collected for 1minute dura-
tion in the round-robin fashion. Since Dt ¼ 1 minute and
N ¼ 16 (8 miners þ 8 healthy workloads), the syscalls moni-
toring span is NDt ¼ 16 minutes. The size of the raw file and
the syscall sequence length for some of those pods are shown
in Table 2, in which the last column also lists the average
elapsed time between syscalls occurrences for each pod. Note
that it is not possible to differentiate between mining and
benign applications using these time intervals. If such timing
information is added as a feature for ML training, it would
confuse themodel and result in lower detection accuracy. Fur-
thermore, adding the timing information would extend the
length of the feature vector and in turn increase the detection
computational complexity. It will also increase the training
time. We have therefore considered only the syscall sequence
and dropped any other arguments such as timing informa-
tion, stackmemory address, and kernel name.

To generate ML features, the syscalls sequences are
processed by the non-overlapping n-grams described in
Section 3. As an example, consider the syscalls sequence
f1; 4; 2; 6; 12; 34; 12; 65; 34; 21; 7; 3; 5; . . . :g. With the non-
overlapping n-gram method for n ¼ 5, several frames are
extracted such that frame1 ¼ f1; 4; 2; 6; 12g, frame2 ¼
f34; 12; 65; 34; 21g, frame3 ¼ f7; 3; 5; ::; ::g and so on. Note
that these frames are different from those of the overlapping
n-grams where the frames are frame1 ¼ f1; 4; 2; 6; 12g,
frame2 ¼ f4; 2; 6; 12; 34g, frame3 ¼ f2; 6; 12; 34; 12g and so
on. The overlapping n-grams create several repeated frames
across the sequences. These repetitions increase training
complexity without any significant improvement in model
accuracy. Further, redundancies in the dataset often result
in model overfitting, longer training time, and larger mem-
ory/disk storage without any advantage in model perfor-
mance. For these reasons, non-overlapping n-grams have been
used in this work. Experiments are run with different values
of n. An exemplary result for the feedback RNN model is
shown in Fig. 3. For different values of n, the model perfor-
mance (in terms of metrics to be discussed below) remains
approximately constant between n ¼ 25 and n ¼ 45. The
representative value n ¼ 35 is therefore used in all our other
experiments because it is the value of maximum recall rate
over all n’s. The particular behavior at n ¼ 50 corresponds
to the central challenge in machine learning, namely, over-
fitting, where the gap between the training error and

680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

validation error is too large, which is indeed the case at n ¼
50. Over-fitting can be controlled by altering the number of
neurons in the hidden layers. Models with excess neurons
can over-fit by memorizing properties of the training set
that do not serve them well on the validation set. The anom-
aly at n ¼ 50 is also an example of a local maximum for the
loss function, where the model has an error peak that disap-
pears after n ¼ 55.

Table 4 illustrates the differences in ML evaluation met-
rics between frames generated from overlapping and non-
overlapping n-grams for the above RNN model where n ¼
35. As can be observed, the training time is much larger in
overlapping n-grams without any significant improvement
in ML evaluation metrics.

The 0 label is assigned to normal application frames and the
1 label to cryptominer frames. All the frames are concatenated
into a single Python dataframe having a column size of 35.
This dataframe is transformed into two matrices: an X matrix
containing features and a Y matrix containing labels. These
matrices are divided into training and validation sets in the
ratio of 70 : 30.

5.2 Machine Learning Evaluation Metrics

For the evaluation of the trained model, standard machine
learning metrics are used. They are as follows:

1) Accuracy: This is the percentage of correctly classified
dataframes in the given test dataset.

2) Loss: This is the average difference between the
model output and the label at the end of the training
phase across all training data samples. This metric is
used for the statistical ML models.

3) Precision: This is a measure of exactness or quality of
model prediction. Mathematically,

Precision ¼ True positives

True positivesþ False positives
: (2)

The true positives are data samples that are classified
as positive by the model and they actually are posi-
tive (i.e they are correctly classified). The false posi-
tives are data samples that are classified as positive
by the model but they are actually negative (i.e they
are incorrectly classified).

4) Recall: This is a measure of completeness or quantity
of model prediction. Mathematically,

Recall ¼ True positives

True positivesþ False negatives
: (3)

False negatives are data samples that are classified as
negative by the model but they are actually positive
(i.e they are incorrectly classificated).

5) F1 score: This is the harmonic mean of the precision
and the recall. It is a metric that combines both preci-
sion and recall and provides insight into the balance
between false negatives and false positives classifica-
tion of the model. Mathematically,

F1 score ¼ 2� precision� recall

precisionþ recall
: (4)

When false positives and false negatives are close to
zero, both the precision and the recall are closer to 1
and hence the F1score is 1. In the worst case, the F1-
score is 0, which means that the model is not per-
forming any correct classification.

6) Cohen’s kappa (k): This is a statistical metric that is
used to measure the observed agreement between
two classifiers with respect to the case when the
agreement is due to chance. This metric can effec-
tively handle both multi-class and imbalanced class
datasets. In this paper, Cohen’s kappa is used to
evaluate ML model performance when the number
of frames for miners and normal applications are
unbalanced. Mathematically,

k ¼ po � pe
1� pe

; (5)

where, po is the observed agreement, and pe is the
expected agreement based on chance, which gives
the performance of a classifier that simply guesses a
class at random according to the frequency of each
class [77] in the dataset. Values of k equals 0 or less
indicate random guessing is a better classifier than
the ML model, which means that the ML model is
useless.

7) ROC AUC: ROC stands for Receiver Operating Char-
acteristics and AUC stands for the Area Under the

Fig. 3. Feedback RNNmodel evaluation on the validation set for different
values of n in n-grams.

TABLE 4
Differences Between Overlapping and Non-Overlapping

n-Grams for the RNN Model

Attribute Overlapping Non-overlapping

of normal frames 4748978 135686
of anomalous frames 6188383 176811
Training accuracy 81.45 % 79.99 %
Validation accuracy 80.10 % 78.90%
Loss 0.376 0.4315
F1-score 0.845 0.8358
Precision 0.776 0.7374
Recall 0.935 0.9371
Cohens k 0.604 0.5491
ROC AUC 0.903 0.8669
Training time (s) 895 31

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 681

Curve. The ROC is based on a cumulative probabil-
ity distribution while the AUC measures the degree
of separability between classes. [78]. The higher the
AUC, the better the ML model is at predicting 00s as
00s and 10s as 10s.

5.3 First ML Model: Decision Tree

Decision trees are commonly used for classification and
regression problems. After training, the model architecture
has a tree-like structure where each node represents a data
feature, each link or branch represents a rule or decision,
and each leaf represents an outcome (categorical label in
case of classification or analog value in case of regression).
For training the model with the training dataframes consist-
ing of miners and healthy applications, the model’s parame-
ters are kept at their default values as set by the Python-
SKlearn library. After training, the training data achieves a
classification accuracy of 99.6 percent while the validation
data achieves an accuracy of 97.1 percent. The model evalu-
ation details are shown in Table 5.

5.4 Second ML Model: Ensemble Learning

Statically-tuned Ensemble Machine Learning (EML) is
known to provide better predictive accuracy than a single
learning model [79]. In EML, several base learners are built,
each of which is given a piece of data and the final result of
the model is computed by the ensemble of the outcome of
each base learner. During ensemble process, different data
subsets are drawn from the training set and each subset is
used to train a different base learner classifier. Each of the
base learners uses different sets of parameters to create dif-
ferent learning rules over the training subset, thus leading
to learning ensembles. AdaBoost and XgBoost are known to
be powerful EML models. In this paper, XgBoost is used
where the Python parent library provides independent
XgBoost installable EML modules [80]. Similar to the deci-
sion tree model, during training experimentation, the EML
model parameters are kept at their default values as set by
the Python-XgBoost library. The classification accuracy
obtained with this model is 89.3 percent for the training set
and 89.4 percent for the validation set. The model evalua-
tion details are shown in Table 5.

5.5 Third ML Model: Feed-Forward
Vanilla Artificial Neural Network

The first Artificial neural network (ANN)model has been cre-
ated with feed-forward vanilla architecture. Feed-forward
ANN is a network that has no loops (output is inserted into
the input as feedback). The information flows in a simple for-
ward direction. There can be either shallow hidden layers or
deep layers. This work uses shallow layers. The main advan-
tage of ANN, in general, is that they provide many hyper-
parameters that can be tuned to build an accurate model. We
have performed several experiments using Python�Keras
and TensorFlow to arrive at the right set of hyper-parameters
and obtain a training accuracy of 81.1 percent and a validation
accuracy of 79.7 percent with other evaluation metrics shown
in Table 5. The hyper-parameter values are as follows: Num-
ber of hidden layers = 2, Number of units at input = 35, Num-
ber of units in the first and second hidden layers = 30 and 10
respectively, Initialization = Uniform, Optimization = Adam,
Activation for hidden layer = Relu, Activation for output =
Sigmoid. We have used an open-source neural architecture
search (NAS) tool called autokeras [https://autokeras.com/]
to determine the ANN hyper-parameters. Autokeras produ-
ces the numbers of hidden layers and nodes along with sev-
eral other hyper-parameters that correspond to the most
accurate model within the given ranges. This model has been
further engineered by tuning the number of neurons in each
hidden layer separately. The results are shown in Figs. 4 and
5. For each plot, the values of the other hyper-parameters are
kept constant while tuning the number of neurons. There is
hardly any noticeable change in accuracy and other evalua-
tion metrics. The ANN model has always performed more
poorly than the rule-based decision tree and the XgBoost
ensemble learning.

5.6 Fourth ML Model: Feedback
Recurrent Neural Network

Given the dynamic, time-series nature of syscalls, it is natural
to consider Recurrent Neural Networks [62] as a learning
framework, and more specifically their embodiments in Long
Short-Term Memory (LTSM) cells [81]. Indeed, since the sys-
calls sequence is time-series data, it is obvious to use the
LSTM RNN model. The repeated run of different proof-of-
Work algorithms in miners create several syscalls patterns

TABLE 5
Machine Learning Evaluation Summary for the Validation Set

Metrics Decision XgBoost Feed-forward Feedback

tree ensemble vanilla ANN RNN

Validation (%) 97.1 89.4 79.7 78.9
Training (%) 99.6 89.3 81.1 79.99
Loss - - 0.3898 0.4315
Precision 0.97 0.9 0.7461 0.7374
Recall 0.97 0.89 0.9703 0.9731
F1-score 0.97 0.9 0.8405 0.8358
Cohens k 0.9403 0.7808 0.5674 0.5491
ROC AUC 0.9701 0.8838 0.8885 0.8669

The first line in the table gives the validation accuracy while the second line
gives the training accuracy. These evaluation results are for the syscalls frames
collected in one time window where Dt ¼ 1 minute and N ¼ 16. For all the
experiments, n ¼ 35 in n-grams has been used for the feature generation.
Value of loss is only available for statistical model.

Fig. 4. Vanilla ANN model performance on the validation set versus the
number of neurons in the first hidden layer.

682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

https://autokeras.com/

whose relationships over time can be extracted using the
LSTMRNNmodel. The results of applying LSTMRNN to the
cryptomining problem are shown in Table 5. The training
accuracy is 79.99 percent while the validation accuracy is
78.90 percent. The hyper-parameter values are as follows:
Number of hidden layers = 1, Number of units at input = 35,
Number of LSTMunits in the hidden layers = 80, Initialization
= Uniform, Optimization = Adam, Activation for LSTM layer
= ReLU, Activation for output = Sigmoid. Autokeras does not
support RNN. So, we used our own search strategy through a
custom script.We built severalmodels sequentially by sweep-
ing the number of nodes, hidden layers, activation functions,
and optimizers and selected the one that produces the best
value of evaluation metrics. There are standard tools similar
to autokeras like Google’s AutoML and Raytune that performs
hyper-parameters tuning and architecture search. For this
work, we have used our own scripts with the intent of devot-
ing another publication to the exploration of, and compari-
sons with, other architecture search tools. Fig. 6 shows the
performance of the LSTM model when the number of LSTM
units in the hidden layer is swept from 20 to 200 units. There
is hardly any noticeable change in the accuracy and other
evaluation metrics for this hyper-parameter over the sweep-
ing range. The conclusion is that the LSTM RNN, like the
vanilla ANN model, performs poorly in comparison to the
rule-based decision tree and XgBoost ensemble learning
models.

6 MACHINE LEARNING EXPLAINABILITY

In this section, we describe the various tools used to derive
rational explanations of the ML outcomes. In the context of
this work, explainability is needed to answer such questions
as: Why did the ML classify a particular pod as a miner?
How does the syscalls sequence change from one pod to
another? Which feature has the greatest impact on miner
prediction? Is there any way to visualize the ML outcome
apart from plotting the evaluation metrics? The explainabil-
ity tools that we will describe below represent an attempt at
addressing some of these questions.

6.1 SHAP for XgBoost

SHAP [68], [69] is a software tool to explain the output of any
ML model. In this work, SHAP is used to explain the

classification result of XgBoost EML. SHAP uses the “additive
feature attribution methods” where the explanation is
expressed as a linear regression of the feature indicator func-
tions. SHAP converts the original ML features ðxiÞ into binary
variables ðziÞ to indicate whether feature xi is present in the
input dataset or not. Such z0is form the interpretable dataset of
the original features x0

is. Mathematically,

gðzÞ ¼ f0 þ
XN

i¼1

fizi; (6)

where, N is the training samples size, gðzÞ is a surrogate
model of the ML model loss function, fðxÞ and is used for
explanation, and the fi’s are the regression weights reflect-
ing the contributions of the features to the output. Unlike
traditional least-square linear regression, the fi’s are com-
puted using the game-theoretical Shapley values [82].

Graphically, SHAP produces a plot indicating how the
training dataset features drive the ML model output away
from a base value. The plot further quantifies the relation-
ships between the dataset features and the ML output for
each training sample. The base value is the output of gðzÞ,
which is typically the average of the model output over the
entire training dataset. The plots of three samples, two for
the cryptominer and one for the normal application, are
shown in Fig. 7 where Fn denotes the feature number
within the dataset (note that from the Section 5.1, the dataset
feature size is 35). A model output is labeled 1 (crypto-
miner) when the gðzÞ is higher than the base value and 0
(normal) when it is lower. A set of features that push the
gðzÞ outcome higher than the base value are shown in red
while those push towards lower value is shown in blue. To
illustrate the clear difference between a cryptominer and a
normal application classifications, 5000 samples are ran-
domly chosen from the Vertcoin cryptominer and the
MySQL application syscalls frame. Plots similar to Fig. 7 are
generated for all the 5000 samples, stacked horizontally,
and rotated 900 clockwise to reveal the explanation. The
resulting graphs for the Vertcoin and the MySQL are shown
in Figs. 8 and 9, respectively. The intersection between the
red and blue regions lies above the base value for the Vert-
coin cryptominer and below the base value for the MySQL
database.

Fig. 6. Feedback RNN model performance on the validation set with
changing the number of LSTM units in hidden layer.

Fig. 5. Vanilla ANN model performance on the validation set versus the
number of neurons in the second hidden layer.

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 683

Fig. 7. Model explanation using SHAP.

Fig. 8. Model explanation using SHAP for the Vertcoin cryptominer. The data frames from 0 to 5000 are along the X-axis. Model output is along the
Y -axis. The profile of output values across these frames is at the intersection of the blue and red regions. The curve is plotted in descending order of
output values across 5000 frames.

Fig. 9. Model explanation using SHAP for the MySQL application.

684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

In the scenario when we are given the sequence of syscalls
from an unknown pod and asked to classify the pod (normal
versus cryptominer), we can proceed as follows. First the
frames are extracted from the syscall sequences using the
method of Section 3. Next, one of the four MLmodels is used
for classification. Typically, a threshold of 60-70 percent is
used for the number of frames with a classification above the
base value to declare the entire frame sequence as cryptomin-
ing. In our work, we use the more aggressive threshold of 75
percent, which translates into amore accurate and robust pre-
diction of the pod category. Here, for the demonstration pur-
pose, we have displayed the use of SHAP for XgBoost only,
but the SHAP explainability can also be provided for the other
MLmodels accordingly.

6.2 LIME for Neural Network and Decision Tree

LIME [66] is another tool to explain ML classification. It can
be applied to any ML model. LIME is based on perturbing
the input data to the model and tracking the resulting pre-
diction changes. Like in SHAP, the LIME requires an inter-
pretable coding of data features using the actual features of
the classification model. One possible coding for mining
classification is a binary vector indicating the presence or
absence of a particular syscall. Let’s denote the classification
ML model as fðxÞ with the input feature vector x, which is
the original representation whose prediction outcome needs
to be explained. The x is associated with a binary interpreta-
tion vector x0, whose components indicate the presence or
absence of a features in x. The explanation vector x0 is asso-
ciated the explainable model gðx0Þ whose value is also
binary. The model g is built using uniform sampling from a
neighborhood of x0. The sampled vector is denoted z0 and
can be considered a perturbation of the interpretable vari-
able x0 . The localized model gðz0Þ is built to recover the vec-
tor in the original representation z and obtain the label fðzÞ
for the explanation. Let the pxðzÞ be a proximity distance
between the original representation x and z and let
Lðf; g;pxÞ denote the loss function for using g to approxi-
mate f . One possible expression for the loss function is [66],

Lðf; g;pxÞ ¼
X

z;z0
pxðzÞðfðzÞ � gðz0ÞÞ2; (7)

where gðz0Þ ¼ wT
g z

0 is a linear regression in the interpretation
vector z0. LIME has been extensively illustrated in [66] using
image and cloud datasets. In this paper, we illustrate its
uses for cryptominer anomaly detection.

LIME is available as an independent Python-installable
package from https://github.com/marcotcr/lime. The code
takes the classifier and data as input and returns the proba-
bility distribution of the label. We apply the LIME approach
to the feed-forward ANN and the decision tree model. The
Python library Scikit-learn is used to build and train a vanilla
multi-layer perceptron ANN and a decision tree model as
per the details given in Section 5.5. The prediction results
are fed into the LIME tool to deduce explanations. Using
the feature values for a particular record, LIME’s probabilis-
tic algorithm computes the class probabilities and selects for
interpretation of the class with the highest probability. The
plots for the cryptominer and the normal application classi-
fications are shown in Fig. 10 for the ANN model and
Fig. 11 for the decision-tree model. The features in blue rep-
resent the contribution to the prediction probability of the
0 label (normal application) and those in orange represent
the 1 label (cryptomining). In the plot, only the top ten fea-
tures are shown.

Note that the explainability value is solely dependent on
machine learning outcomes. When the same input data
sample is fed into the machine learning model, both SHAP
and LIME give the same explainability result. A promising
approach that is specific to explainability in a neural net-
work model is to use node sensitivity and hidden-layer rele-
vance criteria [83]. The approach has been implemented for
image datasets using a layer-wise relevance propagation
algorithm (see www.heatmapping.org) where a heat map is
generated to explain the classification of certain image cate-
gories. We are currently investigating the use of such
method in the context of anomaly detection.

For the decision tree model, the explanation of the classi-
fication result is mostly obtained by visualizing the binary-
tree structure of the model. In such tree, each node splits the
incoming data according to the values of some feature vari-
able. The decision tree is widely adopted as an explainable
model because the tree is easily interpretable. This is espe-
cially useful when the feature space is different from the
raw data space. The tree visualization tool Graphviz [84] is

Fig. 11. Explanation of the decision tree model using LIME. The 0 label is
for normal applications, 1 for cryptominers.

Fig. 10. Explanation for the vanilla ANN model using LIME. The 0 label is
for normal applications, 1 for cryptominers.

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 685

https://github.com/marcotcr/lime
www.heatmapping.org

used to generate such a graphical representation of deci-
sion-making splits. However, since this work uses the
n-gram technique to generate frames of syscalls sequence,
all the ML features are themselves syscalls. Therefore a
graphic representation of the decision tree has little added
value. Such a representation is meaningful in case of anom-
aly detection in cyber-security where network traces are
used, and each ML feature has its own definition and rele-
vance in the networking domain. Justification of the ML
result is obtained by tracing the leaves and nodes of the
decision tree through such extracted networking features.

6.3 Autoencoder for Feedback
Recurrent Neural Network

An autoencoder [85] is a generative neural network model
that learns a representation (or encoding) of the dataset in
unsupervised learning fashion. Encoded data are fed to the
decoder to recreate the original input dataset. The encoder
and decoder together create autoencoders where back-
propagation is applied to tune theweights such that the target
value is equal to the inputs. In neural-network classification,
an autoencoder can be thought of as the part of the hidden
layer up to the input layer (generally the midpoint of the
model), from which the reconstruction of the input data is
possible. The output of this hidden layer is the compressed
representation of the input. In this work, we have used an
LSTM RNN for the encoder and decoder to generate model
explainability for the RNN of Section 5.6. Probing the output
from the hidden layer of the RNN creates the encoder part
shown in Fig. 12. TheRNNstructure from the input to the out-
put of the encoder, X, is the same as in the classifier as is
shown in Figs. 12 and 13. Combining both of these RNN’s
through a repeat vector for all the 35 features so as to

[None, 80] with [None, 35, 80] creates a composite LSTM
RNN model that has a single encoder and two decoders, one
for reconstruction of the input and one for its classification.

The performance of an autoencoder model is evaluated
based on the model’s ability to recreate the input sequence.
Validation of the autoencoder model also validates the
upstream half of the classifier model which, in turn, further
strengthens the trust in the classifier’s outcome. The flow-
chart of the LSTM classification and explainability processes
is shown in Fig. 14. During the training phase, the recon-
structed outputs from the decoder are considered as the sig-
natures, Sminer and Snormal, for the mining and healthy
applications, respectively. Such signatures are saved for
explainability. A given batch of syscalls frames from an
unspecified pod is fed into the trained composite model. If
the classifier predicts more than half of the frames as miners
then the pod is classified as a miner, i.e., yRNN ¼ 1. For
explainability, the output of the reconstructor denoted by
yautoencoder is evaluated. Such output should match the min-
er’s signature Sminer, i.e Syautoencoder ¼ Sminer. If the result of
yRNN and yautoencoder align then the composite model is
treated to be working precisely and the explanation for the
miner prediction is received from the Sminer and yautoencoder.

In our experiments, the composite RNNmodel is trained as
per the following specification: Number of hidden layers = 2,
Number of input units = 35, Number of LSTMunits in each of
the hidden layers = 80 and 50, Initialization = Uniform, Opti-
mization = Adam, Activation = ReLU , Mini-batch size = 64,
Epochs = 10. The autoencoder loss curve in every epoch dur-
ing the training process is shown in Fig. 15. Convergence is a
major issue with autoencoder design, especially when the
dataset size is large, and the centroids of the various classes
have significant variance. Also, when convergence is
achieved, it is often the case that it is at a local minimum of the
loss function. Such difficulties impact the quality of the
explainability method. More details about improving the

Fig. 12. Structure of LSTM RNN classifier.

Fig. 13. Structure of LSTM autoencoder.

Fig. 14. Flowchart showing the classification and explainability process
of the composite LSTM model.

686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

autoencoder-based explainability method will be given in a
future publication. Fig. 16 shows two examples of sequence
reconstruction using the LSTMRNNautoencoder.

7 MACHINE LEARNING PERFORMANCE

COMPARISON

The selected ML models are compared in terms of accura-
cies, training-prediction time, and the compute resource
usage. The results are shown in Table 6. The compute
resource is measured in terms of CPU and memory. The
model is built on a 4-core, memory-optimized, Amazon
EC2 instance m5d:xlarge [86]. CPU and memory usages are
obtained using the LINUX commands htop and free -m. The
commands htop and free are used to profile the code at run
time and therefore their outputs include percentages of the
CPU/memory overhead. However such relative overhead
would be the same for all the ML models because the train-
ing and inference of all the models are performed using the
very same platform, operating system, programming lan-
guage, and experimental environment. The utilization is
measured by sampling the CPU and memory usage every
second, and taking the maximum value attained during the
training phase. The table shows a CPU usage higher than
100 percent because the instance is multi-core, and the sam-
pled value refers to the percentage usage of all the 4 CPUs,
which is 4� 100 ¼ 400%. Comparing these metrics across
all the ML models, the rule-based decision tree and XgBoost
models have much shorter runtimes than the ANN and
RNN models. In terms of resource usage, the rule-based
models are less compute-intensive because they don’t

require complex algorithms such as stochastic gradient
descent or back-propagation to train the model but they do
require extensive memory resources to save all the training
rules. Further, the evaluation Table 5 suggests that rule-
based models are more accurate than statistical models. As
for explainability, the SHAP and LIME tools are to be recom-
mended pending more research on the autoencoder-based
explainability, especially in relation to autoencoder conver-
gence and optimality.

8 SYSCALLS ANALYSIS AND DISCUSSION

8.1 Syscalls Analysis for Workloads

Denote the sets of unique syscalls for allminers and all normal
healthyworkloads byWminer andWnormal, respectively. In this
paper, these sets are the unions of the individual syscalls sets
of the 8mining applications and 8 normal applications

Wminer ¼ Wminer1 [Wminer2 [. . . : [Wminer8 (8)

Wnormal ¼ Wnormal1 [Wnormal2 [. . . : [Wnormal8 : (9)

Note that the syscalls that are in Wminer but not in Wnormal

provides the miner syscall signature. Similarly, the syscalls
that are in Wnormal but not in Wminer provides the healthy
syscall signature. Using the set-theoretic difference, these
syscalls signature sets are denoted as

Sigminer ¼ Wminer �Wnormal (10)

Signormal ¼ Wnormal �Wminer: (11)

When the signature sets are non-empty, they greatly con-
tribute to the accuracy of the machine learning models in
classifying the normal and anomalous pods. On the other
hand, there are syscalls that are common to both the miner
and healthy application pods for which we use the notation

Sigconfuse ¼ Wminer \Wnormal: (12)

Because they confuse the machine learning models. The set
of syscalls that are common to all the miners captures the
similarities among the proof-of-work algorithms of the min-
ers. Similarly, the set of syscalls that are common to all the
healthy application captures the similarities among the sys-
calls sequences of the healthy applications. For the work-
loads used in this paper, these ”similarity” sets are denotedFig. 16. Autoencoder sequence reconstruction.

TABLE 6
Machine Learning Performance Comparison

Machine Accuracy Training Prediction Resource
Learning (%) Time(sec) Time(sec) Usage

Decision 97.1 2.743 0.0197 CPU : 97%
Tree Mem : 243MB

XgBoost 89.4 18.723 0.2499 CPU : 165%
EML Mem : 367MB

Feed-forward 79.7 35.133 2.001 CPU : 335%
vanilla ANN Mem : 182MB

RNNwith LSTM 78.9 1340 7.632 CPU : 385%
Autoencoder Mem : 242MB

Fig. 15. Autoencoder training loss function.

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 687

Simminer ¼ Wminer1 \Wminer2 \ . . . : \Wminer8 (13)

Simnormal ¼ Wnormal1 \Wnormal2 \ . . . : \Wnormal8 : (14)

All the collected syscalls are processed with Python scripts
to determine the above sets of syscalls. Accordingly, we get
the following for the cardinalities of these sets:

jWminerj ¼ 100; jWnormalj ¼ 116

jSigminerj ¼ 12; jSignormalj ¼ 28

jSimminerj ¼ 7; jSimnormalj ¼ 1

jSigconfusej ¼ 88:

jSimnormalj ¼ 1 suggests that all the cloud benchmarks con-
sidered in this work are very different. On the other hand,
jSimminerj ¼ 7 suggests that there is similarity among the
proof-of-work algorithms of the miners that helps the
machine learning models achieve precise classification.

From a system administrator viewpoint, the more ML
explanations, the better, especially when disruptive deci-
sions are required such as disabling, deleting, or creating a
new image. The set-theoretic analysis can provide an addi-
tional input for setting up management policies in support
of the actions that are performed through the Kubernetes
API kubectl as mentioned in Fig. 1. As examples, we list the
following results for some of the syscalls sets defined above:
Sigminer = {288, 98, 35, 293, 263, 264, 47, 23, 25, 187, 285, 286};
Signormal = {131, 267, 140, 160, 162, 40, 43, 53, 57, 186, 62, 63,
192, 268, 204, 84, 213, 88, 90, 58, 95, 100, 229, 234, 109, 111,
112, 115}; Simminer = {1, 3, 228, 41, 42, 55, 202}, Simnormal =
{1}. The reader is referred to [71] for a detailed description
of the syscalls.

8.2 Discussion

Based on the above results, jSigminerj ¼ 12 indicates that
there are 12 syscalls that are executed by the miners without
appearing in any of the call sequences of the legitimate
healthy workloads. Such syscalls can be used to create a sec-
comp profile [87] of the pod, which provides a control mech-
anism whereby a process is killed if it attempts to call one of
the seccomp syscalls. Typically, in a container cloud, each
container (or each set of similar containers in a Kubernetes
pod) will have a specific seccomp profile, which will deter-
mine the syscalls that the application inside the container is
allowed to make. For tenants that have decent security
hygiene, the seccomp profile will limit the allowed syscalls
so that only designated workloads can execute. With very
high likelihood, generic malware, including cryptominers,
will not be able to execute in the first place as the syscalls
needed for mining will be blocked in the seccomp profile. As
a result, cryptominers can be effectively detected through
the seccomp policies and terminated without the need of
MLs. One example of such approach is the Falco tool [88] by
Sysdig [72] where the mining rules are written in a yaml file.
These rules are based on the usage of a fixed set of com-
mands and port numbers used by miners which are ulti-
mately mapped to a subset of the syscalls. However, in a
highly sensitive production environment, relying on pre-
defined mining detection policies may not be sufficient.
This is especially the case when the profiles of legitimate
workloads change or new workloads are added that require

syscalls from the Sigminer subset. If the seccomp profile is
used for miner detection, the healthy application might get
terminated, which is very detrimental to the cloud service
in the production environment. The situation is even worse
when an attacker uses a new type of cryptominer corre-
sponding to a new proof-of-work algorithm. New types of
syscalls are likely to be encountered with the possibility that
Wminer ¼ Wnormal while Sigminer ¼ ;; Signormal ¼ ;. Under
such a scenario, it’s the pattern of syscalls sub-sequences
that differentiates the miners from the healthy applications.
Such sub-sequence patterns are effectively extracted by
machine learning algorithms to produce precise classifica-
tion models.

In any type of anomaly detection framework, there is
always the question of an adversary that makes some ran-
dom syscalls to obfuscate malicious mining and throw off
the classifier. It is also the case, that ML models for anom-
aly detection are trained under “legitimate” anomalies
(e.g., well defined syscalls sequences) rather than adversar-
ial attacks. If adversaries know that the cloud manager
would be looking for a mining signature based on syscalls,
they can simply introduce random syscalls in the work-
load, which would affect machine learning inference.
To counter such adversarial attacks, it is important that
training sets include randomized syscalls sequences that
would mimic confusion and obfuscation attacks. During
operation, the deployed ML should continuously track the
syscalls sub-sequence pattern of cryptominers and continu-
ously update the inference engine. Machine learning is
capable of learning such patterns progressively over time
using such algorithms as [23], [24], [25], [26] where older
trained tasks of the model remain intact while learning the
new ones. A few examples to counter an adversary are
given in [89], [90], [91], [92] which can be applied within
our framework as well.

Ideally, the data for training and testing should be sam-
pled from the same distribution. But there could be some
rare data samples that may be newly encountered for some
benign or minor applications which could be at high vari-
ance with the training set. In a cloud environment, applica-
tions are dynamic, and as a result, monitoring signals have
time-dependent values. In particular, some new syscalls
emerge out and become highly frequent while some other
syscalls that have been most active can become occasional
or can disappear for a while. In Other applications, syscalls
may remain steady. In such circumstances, the testing data
will contain new syscalls frames which are different from
those of the training set. To maintain model detection accu-
racy, the detection engine should be updated dynamically
using a progressive learning algorithm [24], where instead
of discarding the old model and training a fresh model
from scratch with both old and new syscalls, only the new
syscalls frames are used to update the existing model. Such
learning is pursued in a comparatively shorter time than
training a brand new model from scratch. Further, in pro-
gressive learning, the inference accuracy based on old train-
ing data remains preserved, which is helpful in case the
application rolls back to its earlier behavior. The reader may
refer to [93] where we have illustrated the use of progres-
sive learning using the synaptic intelligence paradigm [24]
for cyber-security attack classification.

688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

9 CONCLUSION

In this paper, an automated pod anomaly detection setup is
demonstrated in a Kubernetes cluster to detect cryptomin-
ing applications using explainable ML models. The explain-
ability aspect is important for system administrators who
must grasp the system-level rationales to support disruptive
administrative decisions such as pod removal from a clus-
ter. Several types of cryptomining algorithms may be used
to launch an anomalous pod but the patterns of cryptomin-
ing system calls have common features that facilitate anom-
alous pod identification and discrimination against other
CPU-intensive applications such as deep-learning, MySQL,
Cassandra, Hydoop etc. Three explainable tools and four
ML model have been implemented using syscall n-grams as
data features. The syscalls frames from such n-grams
achieve an aggregate anomaly prediction accuracy of more
than 78 percent. Further, a comparative study of ML
explainability among the four models has been performed
with the tree decision model found to be the most precise
achieving accuracy of more than 97 percent, SHAP and
LIME are most efficient while LSTM autoencoder being least
amenable to automated explanation extraction because of
longer training time and convergence instability.

ACKNOWLEDGMENTS

The first and last authors would like to thank IBM Research
for hosting them at the IBM T. J. Watson Research Center,
Yorktown Heights, NY, during the preparation of this man-
uscript. This work has been conducted under the frame-
work of a Joint Study Agreement, No. W1463335, between
IBM Research and Khalifa University, Abu Dhabi, UAE.

REFERENCES

[1] Accessed: Aug. 16, 2018. [Online]. Available: https://kubernetes.
io/

[2] A. S. Abed, C. Clancy, and D. S. Levy, “Intrusion detection system
for applications using linux containers,” in Proc. Int. Workshop
Secur. Trust Manage., 2015, pp. 123–135.

[3] M. Mattetti, A. Shulman-Peleg, Y. Allouche, A. Corradi, S. Dolev,
and L. Foschini, “Securing the infrastructure and the workloads
of linux containers,” in Proc. IEEE Conf. Commun. Netw. Secur.,
2015, pp. 559–567.

[4] Accessed: Aug. 16, 2018. [Online]. Available: https://www.
bleepingcomputer.com/news/security/17-backdoored-docker-
images-removed-from-docker-hub/

[5] Accessed:Aug. 16, 2018. [Online].Available: https://arstechnica.com/
information-technology/2018/06/backdoored-images-downloaded-
5-million-times-finally-removed-from-docker-hub/

[6] Accessed: Aug. 16, 2018. [Online]. Available: https://news.
ycombinator.com/item?id=17309883

[7] Accessed: Jun. 07, 2020. [Online]. Available: https://www.mcafee.
com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.
pdf

[8] Accessed: Jun. 07, 2020. [Online]. Available: https://www.
guardicore.com/2019/05/nansh0u-campaign-hackers-arsenal-
grows-stronger/

[9] Accessed: Jun. 07, 2020. [Online]. Available: https://threatpost.
com/threatlist-cryptominers-dominate-malware-growth-in-2018/
139448/

[10] A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, “Crypto
mining attacks in information systems: An emerging threat to
cyber security,” J. Comput. Inf. Syst., vol. 60, pp. 297–308, 2020.

[11] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K. R. Choo,
“Detecting crypto-ransomware in IoT networks based on energy
consumption footprint,” J. Ambient Intell. Humanized Comput.,
vol. 9, pp. 1141–1152, 2018.

[12] R. Tahir et al., “Mining on someone else’s dime: Mitigating covert
mining operations in clouds and enterprises,” in Proc. Int. Symp.
Res. Attacks Intrusions Defenses, 2017, pp. 287–310.

[13] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu,
and E. Kirda, “A quantitative study of accuracy in system call-
based malware detection,” in Proc. Int. Symp. Softw. Testing Anal.,
2012, pp. 122–132.

[14] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu, “Shadow attacks:
Automatically evading system-call-behavior based malware
detection,” J. Comput. Virology, vol. 8, no. 1/2, pp. 1–13, 2012.

[15] X. Xiao, Z. Wang, Q. Li, S. Xia, and Y. Jiang, “Back-propagation
neural network on Markov Chains from system call sequences: A
new approach for detecting android malware with system call
sequences,” IET Inf. Secur., vol. 11, no. 1, pp. 8–15, 2016.

[16] D. �Ceponis and N. Goranin, “Evaluation of deep learning methods
efficiency for malicious and benign system calls classification on the
AWSCTD,” Secur. Commun. Netw., vol. 2019, 2019, Art. no. 2317976.

[17] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences and
LSTM,”Multimedia Tools Appl., vol. 78, no. 4, pp. 3979–3999, 2019.

[18] A. S. Abed, T. C. Clancy, and D. S. Levy, “Applying bag of system
calls for anomalous behavior detection of applications in linux
containers,” in Proc. IEEE GlobecomWorkshops, 2015, pp. 1–5.

[19] H. Liang, Q. Hao, M. Li, and Y. Zhang, “Semantics-based anomaly
detection of processes in linux containers,” in Proc. Int. Conf. Iden-
tification Inf. Knowl. Internet Things, 2016, pp. 60–63.

[20] A. Desnos, E. Petrova, A. Boulgakov, R. Neal, and Z. Mithra,
“Flow-graph analysis of system calls for exploit detection,” Tech.
Discl. Commons, Jun. 2018.

[21] M. Salehi and M. Amini, “Android malware detection using Mar-
kov Chain model of application behaviors in requesting system
services,” CoRR, vol. abs/1711.05731, 2017. [Online]. Available:
http://arxiv.org/abs/1711.05731

[22] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4MalDroid: A deep
learning framework for Android malware detection based on
linux kernel system call graphs,” in Proc. IEEE/WIC/ACM Int.
Conf. Web Intell. Workshops, 2016, pp. 104–111.

[23] A. A. Rusu et al., “Progressive neural networks,” 2016,
arXiv:1606.04671.

[24] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through
synaptic intelligence,” in Proc. Mach. Learn. Res., 2017, vol. 70,
p. 3987.

[25] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proc. Nat. Acad. Sci. United States of America, vol. 114,
pp. 3521–3526, 2017.

[26] C. Fernando et al., “PathNet: Evolution channels gradient descent
in super neural networks,” CoRR, vol. abs/1701.08734, 2017.
[Online]. Available: http://arxiv.org/abs/1701.08734

[27] R. Tahir, M. Caesar, A. Raza, M. Naqvi, and F. Zaffar, “An anom-
aly detection fabric for clouds based on collaborative VM
communities,” in Proc. 17th IEEE/ACM Int. Symp. Cluster Cloud
Grid Comput., 2017, pp. 431–441.

[28] E. Ates et al., “Taxonomist: Application detection through richmoni-
toring data,” in Proc. Eur. Conf. Parallel Process., 2018, pp. 92–105.

[29] P. Dimotikalis, “Memory forensics and bitcoin mining malware,”
Int. Hellenic Univ. Repository, 2016.

[30] S. Arnautov et al., “SCONE: Secure linux containers with intel
SGX,” in Proc. 12th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2016, vol. 16, pp. 689–703.

[31] M. Dimja�sevi�c, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation
of Android malware detection based on system calls,” in Proc.
ACM Int. Workshop Secur. Privacy Analytics, 2016, pp. 1–8.

[32] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of machine learning classifiers for mobile malware detection,” Soft
Comput., vol. 20, no. 1, pp. 343–357, 2016.

[33] M. Melis, D. Maiorca, B. Biggio, G. Giacinto, and F. Roli,
“Explaining black-box android malware detection,” in Proc. 26th
Eur. Signal Process. Conf., 2018, pp. 524–528.

[34] P. Mishra, K. Khurana, S. Gupta, and M. K. Sharma, “VMAnalyzer:
Malware semantic analysis using integratedCNNand bi-directional
LSTM for detecting VM-level attacks in cloud,” in Proc. 12th Int.
Conf. Contemporary Comput., 2019, pp. 1–6.

[35] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao, “SEISMIC:
Secure in-lined script monitors for interrupting cryptojacks,” in
Proc. Eur. Symp. Res. Comput. Secur., 2018, pp. 122–142.

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 689

https://kubernetes.io/
https://kubernetes.io/
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://news.ycombinator.com/item?id=17309883
https://news.ycombinator.com/item?id=17309883
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.guardicore.com/2019/05/nansh0u-campaign-hackers-arsenal-grows-stronger/
https://www.guardicore.com/2019/05/nansh0u-campaign-hackers-arsenal-grows-stronger/
https://www.guardicore.com/2019/05/nansh0u-campaign-hackers-arsenal-grows-stronger/
https://threatpost.com/threatlist-cryptominers-dominate-malware-growth-in-2018/139448/
https://threatpost.com/threatlist-cryptominers-dominate-malware-growth-in-2018/139448/
https://threatpost.com/threatlist-cryptominers-dominate-malware-growth-in-2018/139448/
http://arxiv.org/abs/1711.05731
http://arxiv.org/abs/1701.08734

[36] D. Stopel and B. Bernstein, “Runtime detection of vulnerabilities
in an application layer of software containers,” U.S. Patent App.
15/278,700, Apr. 6, 2017.

[37] D. Draghicescu, A. Caranica, A. Vulpe, and O. Fratu, “Crypto-
mining application fingerprinting method,” in Proc. Int. Conf.
Commun., 2018, pp. 543–546.

[38] D. Carlin, P. O’Kane, S. Sezer, and J. Burgess, “Detecting crypto-
mining using dynamic analysis,” in Proc. 16th Annu. Conf. Privacy
Secur. Trust, 2018, pp. 1–6.

[39] Accessed: Oct. 12, 2018. [Online]. Available: https://github.com/
kubernetes/minikube

[40] C. McEniry, “Kubernetes: Hit the ground running,” in Proc. USE-
NIX Symp. Netw. Syst. Des. Implement., 2017.

[41] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
amacneil/docker-bitcoin

[42] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
RafalSladek/bytecoin-docker

[43] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
berrywallet/bitcore-node-dash-docker

[44] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
sreekanthgs/litecoin-docker

[45] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
ethereum/go-ethereum

[46] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
zcash/zcash

[47] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
ripplerm/ripple-wallet

[48] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
lukechilds/docker-vertcoind

[49] Accessed: Aug. 12, 2019. [Online]. Available: https://www.
investopedia.com/tech/most-important-cryptocurrencies-other-
than-bitcoin/

[50] F. Chollet et al., “Keras: Deep learning library for theano and
TensorFlow,” 2015. [Online]. Available: https://keras. io/k

[51] Accessed: Oct. 15, 2018. [Online]. Available: https://github.com/
geertvanheusden/mysql-stress-test

[52] Accessed: Oct. 15, 2018. [Online]. Available: https://github.com/
geertvanheusden/mysql-stress-test

[53] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
parsa-epfl/cloudsuite/blob/master/docs/commons/spark.md

[54] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
big-data-europe/docker-hadoop

[55] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
docker/docker-bench-security

[56] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
parsa-epfl/cloudsuite/blob/master/docs/benchmarks/graph-
analytics.md

[57] Accessed: Aug. 16, 2019. [Online]. Available: https://github.com/
parsa-epfl/cloudsuite/blob/master/docs/benchmarks/media-
streaming.md

[58] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-
gram-based detection of new malicious code,” in Proc. 28th Annu.
Int. Comput. Softw. Appl. Conf., 2004, vol. 2, pp. 41–42.

[59] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning
for classification of malware system call sequences,” in Proc. Aus-
tralasian Joint Conf. Artif. Intell., 2016, pp. 137–149.

[60] J. Zhang, K. Zhang, Z. Qin, H. Yin, and Q. Wu, “Sensitive system
calls based packed malware variants detection using principal
component initialized multilayers neural networks,” Cybersecur-
ity, vol. 1, no. 1, 2018, Art. no. 10.

[61] S. S. Haykin et al., Neural Networks and Learning Machines/Simon
Haykin.New York, NY, USA: Prentice Hall, 2009.

[62] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,”
NIPS Workshop Deep Learn., 2014.

[63] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with muta-
tion operator for feature selection using decision tree applied to
spam detection,” Knowl.-Based Syst., vol. 64, pp. 22–31, 2014.

[64] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 785–794.

[65] Accessed: Sep. 26, 2018. [Online]. Available: https://github.com/
marcotcr/lime

[66] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
Explaining the predictions of any classifier,” in Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. DataMining, 2016, pp. 1135–1144.

[67] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt,
“Spatio-temporal convolutional sparse auto-encoder for sequence
classification,” in Proc. Brit. Mach. Vis. Conf., 2012, pp. 1–12.

[68] Accessed: Sep. 26, 2018. [Online]. Available: https://pypi.org/
project/shap/

[69] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individual-
ized feature attribution for tree ensembles,” 2018, arXiv: 1802.03888.

[70] A. C. De Melo, “The new linux ‘perf’ tools,” Slides from Linux Kon-
gress, vol. 18, pp. 1–42, 2010.

[71] Accessed: Oct. 12, 2018. [Online]. Available: https://filippo.io/
linux-syscall-table/

[72] Accessed: Sep. 05, 2019. [Online]. Available: https://sysdig.com/
[73] M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and

B. Robu, “Feedback autonomic provisioning for guaranteeing per-
formance in MapReduce systems,” IEEE Trans. Cloud Comput.,
vol. 6, no. 4, pp. 1004–1016, Fourth Quarter 2018.

[74] Accessed:Aug. 12, 2019. [Online]. Available: https://medium.com/
techlog/cuckoo-filter-vs-bloom-filter-from-a-gophers-perspective-
94d5e6c53299

[75] Accessed: Aug. 12, 2019. [Online]. Available: https://www.
linuxjournal.com/content/everything-you-need-know-about-linux-
containers-part-i-linux-control-groups-and-process

[76] S. Mousavi, A. Mosavi, A. R. V�arkonyi-K�oczy, and G. Fazekas,
“Dynamic resource allocation in cloud computing,” Acta Poly-
technica Hungarica, vol. 14, no. 4, pp. 83–104, 2017.

[77] S. M. Vieira, U. Kaymak, and J. M. Sousa, “Cohen’s kappa coeffi-
cient as a performance measure for feature selection,” in Proc. Int.
Conf. Fuzzy Syst., 2010, pp. 1–8.

[78] A. P. Bradley, “The use of the area under the ROC curve in the
evaluation of machine learning algorithms,” Pattern Recognit.,
vol. 30, no. 7, pp. 1145–1159, 1997.

[79] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey
on ensemble learning for data stream classification,” ACM Com-
put. Surv., vol. 50, no. 2, 2017, Art. no. 23.

[80] Q. Zhang, “Modern models for learning large-scale highly skewed
online advertising data,” Dept. Statist., 2015.

[81] Y. Wang and F. Tian, “Recurrent residual learning for sequence
classification,” in Proc. Conf. Empir. Methods Natural Lang. Process.,
2016, pp. 938–943.

[82] I. Kononenko et al., “An efficient explanation of individual classifi-
cations using game theory,” J. Mach. Learn. Res., vol. 11, no. Jan,
pp. 1–18, 2010.

[83] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,”
2015, arXiv:1506.06579.

[84] V. Ivan�cevi�c, N. Igi�c, B. Terzi�c, M. Kne�zevi�c, and I. Lukovi�c,
“Decision trees as readable models for early childhood caries,” in
Proc. Intell. Decision Technol., 2016, pp. 441–451.

[85] S. Amiriparian, M. Freitag, N. Cummins, and B. Schuller,
“Sequence to sequence autoencoders for unsupervised represen-
tation learning from audio,” in Proc. DCASE Workshop, 2017,
pp. 17–21.

[86] Accessed: Oct. 12, 2018. [Online]. Available: https://aws.amazon.
com/ec2/instance-types/

[87] Accessed: Sep. 05, 2019. [Online].Available: https://www.wikiwand.
com/en/Seccomp

[88] Accessed: Sep. 05, 2019. [Online]. Available: https://sysdig.com/
blog/detecting-cryptojacking-with-sysdigs-falco/

[89] Accessed: Sep. 05, 2019. [Online]. Available: https://resources.
infosecinstitute.com/category/enterprise/threat-hunting/threat-
hunting-process/threat-hunting-techniques/detecting-adversaries/
#gref

[90] W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware detection
in adversarial settings: Exploiting feature evolutions and confu-
sions in Android apps,” in Proc. 33rd Annu. Comput. Secur. Appl.
Conf., 2017, pp. 288–302.

[91] O. Suciu, S. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” IEEE Secur. Privacy Workshops, pp. 8–14,
May 2019, doi: 10.1109/SPW.2019.00015.

[92] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly,
“Adversarial deep learning for robust detection of binary encoded
malware,” in Proc. IEEE Security Privacy Workshops, 2018,
pp. 76–82.

[93] R. Karn, P. Kudva, and I. Elfadel, “Criteria for learning without
forgetting in artificial neural networks,” in Proc. IEEE Int. Conf.
Cogn. Comput., 2019, pp. 90–97.

690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/amacneil/docker-bitcoin
https://github.com/amacneil/docker-bitcoin
https://github.com/RafalSladek/bytecoin-docker
https://github.com/RafalSladek/bytecoin-docker
https://github.com/berrywallet/bitcore-node-dash-docker
https://github.com/berrywallet/bitcore-node-dash-docker
https://github.com/sreekanthgs/litecoin-docker
https://github.com/sreekanthgs/litecoin-docker
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/zcash/zcash
https://github.com/zcash/zcash
https://github.com/ripplerm/ripple-wallet
https://github.com/ripplerm/ripple-wallet
https://github.com/lukechilds/docker-vertcoind
https://github.com/lukechilds/docker-vertcoind
https://www.investopedia.com/tech/most-important-cryptocurrencies-other-than-bitcoin/
https://www.investopedia.com/tech/most-important-cryptocurrencies-other-than-bitcoin/
https://www.investopedia.com/tech/most-important-cryptocurrencies-other-than-bitcoin/
https://keras. io/k
https://github.com/geertvanheusden/mysql-stress-test
https://github.com/geertvanheusden/mysql-stress-test
https://github.com/geertvanheusden/mysql-stress-test
https://github.com/geertvanheusden/mysql-stress-test
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/commons/spark.md
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/commons/spark.md
https://github.com/big-data-europe/docker-hadoop
https://github.com/big-data-europe/docker-hadoop
https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/graph-analytics.md
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/graph-analytics.md
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/graph-analytics.md
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/media-streaming.md
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/media-streaming.md
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/media-streaming.md
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://pypi.org/project/shap/
https://pypi.org/project/shap/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://sysdig.com/
https://medium.com/techlog/cuckoo-filter-vs-bloom-filter-from-a-gophers-perspective-94d5e6c53299
https://medium.com/techlog/cuckoo-filter-vs-bloom-filter-from-a-gophers-perspective-94d5e6c53299
https://medium.com/techlog/cuckoo-filter-vs-bloom-filter-from-a-gophers-perspective-94d5e6c53299
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.wikiwand.com/en/Seccomp
https://www.wikiwand.com/en/Seccomp
https://sysdig.com/blog/detecting-cryptojacking-with-sysdigs-falco/
https://sysdig.com/blog/detecting-cryptojacking-with-sysdigs-falco/
https://resources.infosecinstitute.com/category/enterprise/threat-hunting/threat-hunting-process/threat-hunting-techniques/detecting-adversaries/#gref
https://resources.infosecinstitute.com/category/enterprise/threat-hunting/threat-hunting-process/threat-hunting-techniques/detecting-adversaries/#gref
https://resources.infosecinstitute.com/category/enterprise/threat-hunting/threat-hunting-process/threat-hunting-techniques/detecting-adversaries/#gref
https://resources.infosecinstitute.com/category/enterprise/threat-hunting/threat-hunting-process/threat-hunting-techniques/detecting-adversaries/#gref
http://dx.doi.org/10.1109/SPW.2019.00015

Rupesh Raj Karn received the bachelor’s degree
in electronics engineering from the Sardar Val-
labhbhai National Institute of Technology, Surat,
India, in 2011, themaster’s degree inmicrosystems
engineering from the Masdar Institute of Science
and Technology, Abu Dhabi, UAE, in 2015, and the
PhD degree from Khalifa University, UAE, in 2019.
He is a postdostcoral fellow at Khalifa University,
Abu Dhabi, UAE. His doctoral thesis title was
“Machine Learning Methods for the Automated
Management of Cloud Computing Workloads”.

During his graduate work, he interned with the IBM T. J. Watson Research
Center, Yorktown Heights, NY, in Summer 2018 and in Summer and Fall
2017. He received the Best Paper Award at the International Conference
on Cognitive Computing (ICCC), Milan, Italy, July 2019, and was twice the
recipient of a Best Paper Award at the UAE Graduate Student Research
Conference (GSRC), in 2018 and 2019. His research interests include AI
andmachine learning, cyber security, TinyML, data analysis, cloud comput-
ing, and power and thermalmodeling for servers and datacenters.

Prabhakar Kudva received the PhD degree in
computer science from the University of Utah, Salt
Lake City, Utah, in 1995. He is a research staff
memberwith the IBMT. J.WatsonResearch, York-
town Heights, New York, where he currently leads
several projects in the areas of enterprise data cen-
ters, cloud computing for business intelligence and
analytics, PaaS, and CaaS. He has received sev-
eral IBM awards for high-value patents and out-
standing technical achievements as well as the
IEEE Region 1 Award for Outstanding Contribu-

tions to the Design Automation of Resilient Chips and Systems. He was on
the adjunct faculty of Yale University, NewHaven, Connecticut and Colum-
bia University, NewYork.

Hai Huang received the BSE degree in computer
science and engineering (CSE) from the Ohio
State University, Columbus, Ohio, in 2000, and
the MS and PhD degrees in computer science
and engineering from the University of Michigan,
Ann Arbor, Michigan, in 2006. He is currently a
research staff with the Cloud Computing Depart-
ment, IBM Research. His research interests
include cloud computing, operating systems, dis-
tributed systems management, software testing,
and anomaly detection.

Sahil Suneja received the bachelor’s and master’s
degree in computer science and engineering from
Indian Institute of Technology, Kanpur, India, in
2010, and the doctorate degree in computer sci-
ence from theUniversity of Toronto, Canada, 2016.
He is a research staff member at IBM Research
New York, working with the Cloud Computing
team. His research interests lie broadly in the fields
of AI, cloud computing, virtualization, and parallel
and high performance computing. His secondary
interests include wireless networking and mobile
computing.

Ibrahim (Abe) M. Elfadel (Senior Member, IEEE)
received the PhD degree from the Massachusetts
Institute of Technology, Cambridge, Massachu-
setts, in 1993. He is currently a professor of electri-
cal engineering and computer science at Khalifa
University, Abu Dhabi, UAE. Between May 2014
and Jan 2019 he was the program manager of
TwinLabMEMS, a joint collaborationwithGLOBAL-
FOUNDRIES and the Singapore Institute of Micro-
electronics on micro-electromechanical systems.
Between May 2013 and May 2018, he was the

founding co-director of the Abu Dhabi Center of Excellence on Energy-Effi-
cient Electronic Systems (ACE4S). Between November 2012 and October
2015, he was the founding co-director of Mubadala’s TwinLab 3DSC, a joint
research center on 3D integrated circuits with the Technical University of
Dresden, Germany. He also headed the Masdar Institute Center for Micro-
systems (iMicro) from November 2013 until March 2016. From 1996 to
2010, he was with the corporate CAD organizations at IBM Research and
the IBM Systems and Technology Group, Yorktown Heights, New York,
where he was involved in the research, development, and deployment of
CAD tools and methodologies for IBM’s high-end microprocessors. His cur-
rent research interests include IoT platform prototyping; energy-efficient
edge and cloud computing; IoT communications; power and thermal man-
agement of multi-core processors; low-power, embedded digital-signal
processing; 3D integration; and CAD for VLSI, MEMS, and Silicon Photon-
ics. He is the recipient of six invention achievement awards, one Outstand-
ing Technical Achievement Award and one Research Division Award, all
from IBM, for his contributions in the area of VLSI CAD. He is the inventor or
co-inventor of 50 issued US patents with several more pending. In 2014, he
was the co-recipient of theD. O. Pederson Best Paper Award from the IEEE
Transactions on Computer-Aided Design for Integrated Circuits and Sys-
tems. In 2018, he received (with Prof. Mohammed Ismail) the SRCBoard of
Director Special Award for “pioneering semiconductor research in Abu
Dhabi.” He is the lead co-editor of three books: “ 3D Stacked Chips: From
Emerging Processes to Heterogeneous Systems,” Springer, 2016, “The
IoT Physical Layer: Design and Implementation,” Springer, 2019, and
“Machine Learning in VLSI CAD,” Springer, 2019. Between 2009 and
2013, He served as an associate editor of the IEEE Transactions on Com-
puter-Aided Design. He is currently serving as an associate editor of the
IEEETransactions on VLSI Systems and on the editorial board of theMicro-
electronics Journal (Elsevier). He has also served on the Technical Program
Committees of several leading conferences, including ISCAS, DAC,
ICCAD, ASPDAC, DATE, ICCD, ICECS, and MWSCAS. He was the gen-
eral co-chair of the IFIP/IEEE 25th International Conference on Very Large
Scale Integration (VLSI-SoC 2017), AbuDhabi, UAE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

KARN ET AL.: CRYPTOMINING DETECTION IN CONTAINER CLOUDS USING SYSTEM CALLS AND EXPLAINABLE MACHINE LEARNING 691

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

