
Security Analysis of Container Images using Cloud
Analytics Framework

Byungchul Tak1 Hyekyung Kim1 Sahil Suneja2 Canturk Isci2 and Prabhakar Kudva2

1 Kyungpook National University, Daegu, Republic of Korea
2 IBM TJ Watson Research Center, Yorktown Heights, NY, USA

Abstract. Container technology has become an integral part of today’s major IT
services. Although it offers several benefits, it also introduces new challenges for
operating and maintaining secure container environments. One such challenge is
to retain the ability to detect and address the containers’ vulnerabilities and com-
pliance violations. However, designing an effective solution to enable this capa-
bility must be based on the accurate understanding of characteristics observed
from actual container images and instances. To contribute toward this objective,
we have built a general data processing framework, applying the principles of the
state-of-the-art. It is a system that decouples the data collection process from the
analysis so as to allow user to focus more on building new analysis logics rather
than on the tools for monitoring agents. We applied it to the analysis of container
images from the Docker Hub image repository, to learn about their security pos-
ture. In this work we present various interesting findings and new insights from
analyzing the public image corpus. We have learned that more than 92% of the
images contain compliance violations and/or vulnerable packages.

1 Introduction
Container technologies have penetrated deeply into the core of today’s major IT ser-
vices, and its dominance is rapidly expanding. For IT service providers, the adoption
of containers is not any more simply one of several options to consider, but rather an
imperative that determines the survival within highly competitive market. The main ad-
vantages of adopting the container technologies are faster time-to-market, ease of pack-
aging and natural conformity with the dev-ops paradigm. However, such high agility
and flexibility coming from these advantages may work against the goal of operating a
secure container-based cloud. This is because the speed at which vulnerabilities spread
is incomparably faster than that of VMs, due to the ease of access, repackaging and
distribution of container images. It has been recently reported that the security vulnera-
bilities could creep into the container images or container instances without the owners
being aware of them, once nested in an image, and it can quickly spread to the wild [26].

The first step towards addressing the security challenges of a container cloud is to
gain a clear perspective on the current security postures of containers and images. Al-
though there have been investigations and debates about how secure containers are for
production usage [17, 25], we still lack sufficient views on the true nature of container
vulnerabilities and their characteristics. Thus, it is crucial that we first build a crisp
understanding of the actual security state of containers, to be able to design effective
solutions. This would equip users and administrators with knowledge to answer fol-
lowing kind of questions pertaining to containers’ security posture: How many package

2

 Image Name
 Getter

Image names,
Scanned data,

Analysis results

Backend storage

Docker
Hub

query

start

store

pull
store

Compliance Rule Checker

 Vulnerable Package
 Checker

 Security Notice
 Parser

poll & analyze
& store

ING

ICL
Image Crawler

CRC

VPC

SNP

Fig. 1. Overall Architecture

vulnerabilities do typical containers have on average, if there are any, and what are
the most common vulnerabilities? How conforming public container images are to the
well-known best practice rules and what are the most frequently violated ones? How
long does it take until we see that previously detected vulnerabilities of container im-
ages be eliminated? What impact would it have specifically to my system’s security if
containers are used?

In order to find answers to aforementioned critical questions, we have conducted an
extensive analysis of the top 10,000 public container images from DockerHub [15], one
of the most popular container image registry today. We use state-of-the-art introspection
tool- Agentless-system-crawler [19, 1], to pull and scan container images to extract sys-
tem state, such as OS info, file metadata, installed packages, contents of configuration
files, amongst others. Extracted state is then pushed to our event-based, and extensible,
data processing pipeline, which triggers multiple independent analysis components to
operate in parallel, each determining a different aspect of an image’s security posture,
such as software vulnerabilities, as well as compliance to industry best practices.

In this paper, we first introduce the design and implementation of our data process-
ing pipeline for container security analytics. Then we present the analysis results of the
public container images. We find that: (i) There is clear trend towards the use of more
light-weight images and away from traditional base images, (ii) 99% of the images have
more than 5 compliance rule violations on average, with password-related ones in high
frequency and (iii) 92% of the images have 10 vulnerable packages on average.

The rest of the paper is organized as follows. In Section 2, we introduce our data
processing pipeline used in analyzing the container images scanning data. Next, we
present various security analysis results in Section 3. Then, in Section 4, we provide
interpretation and implication of what we have found from the analysis. Section 5 posi-
tions our work with existing works. Finally, we conclude in Section 6.

2 Cloud Analytics Framework Architecture
Figure 1 shows the overall architecture of our data analysis platform. It consists of one
backend storage that plays a central role and five functional components that interact
with it. Functional components, depicted as rounded boxes in the figure, interact only
with the backend storage and there is no direct interaction among functional compo-
nents. They interact with the backend storage by storing data and/or polling new data to
consume. For example, VPC (Vulnerable Package Checker) polls for the newly scanned
image data to appear in the backend storage. Only when new data appear it initiates the

3

vulnerability analysis. Analysis results are stored back to the backend storage. Appear-
ance of this new analysis results can trigger actions in other functional components
which may be polling for it.

Functional components are classified into two groups by how they interact with
the backend storage. In the first group they behave strictly as producers. They collect
and transform information from outside and insert it into the backend storage so that
it would trigger actions on other components. In our architecture, ING (Image Name
Getter) and SNP (Security Notice Parser) fall into this category. ING collects image
names from the Docker Hub and inserts them to the storage, so that the ICL (Image
Crawler) component can determine which images to pull and scan. SNP is responsible
for monitoring new security notices of several Linux distros so that it can be used by
the VPC component to analyze package vulnerabilities.

Components in the second group behave as both consumers and producers. They
look for the appearance of new data in the backend storage through polling, and when it
does, they perform their designated data processing. Generated output is fed back into
the storage and it can, in turn, be consumed by other components which depend on it. In
Figure 1, ICL, VPC, and CRC (Compliance Rule Checker) belong to this second group.
Our design allows us to easily extend the analysis capability by adding new functional
components as consumers of data produced by existing components. This chaining of
components through data dependencies allows higher-order analytics to evolve.

2.1 ING (Image Name Getter)
The Image Name Getter component is responsible for collecting container image names
from the Docker Hub. It makes REST calls to retrieve the web pages containing the
image lists, and parses out the names and tags. ING has the capability to collect the list
of image names in two different styles- category walk mode and sort-by mode.
• Category walk: In this mode, ING first compiles the list of official images by

visiting the ‘explore’ page. It gives us the list of popular official images such as
ngnix, httpd, redis and ubuntu. There are about 100 such official images. ING,
then, put these as keywords into the Docker Hub search interface. Final list of
images and tags are extracted from the result of this search. ING visits the web
page of each category in a round-robin manner to compile the list of images from
the most popular to the least popular.

• Sort-by: In this mode, a user can specify through a REST interface one of the sort
conditions. Supported conditions are ‘all’, ‘stars’ and ‘downloads’. In this study
we have used the ‘downloads’ condition which sorts images by the pull count.
Docker Hub does not provide exact pull counts, but categories such as ”10M+”,
”5M+”, ”1M+”, ”500K+”, ”100K+”, ”50K+” and ”10K+”.

Each image has one or more ‘tags’ associated with it, such as ‘latest’, ’trusty’, ’xenial’,
’slim’, etc., which ING stores as a list with the image name. Although some popular
images have a large number of tags, Docker Hub provides only the latest 100 tags.

2.2 ICL (Image Crawler)
The ICL component performs scanning 3 of container images using the Agentless-
system-crawler tool (or simply crawler). When started, ICL goes into an idle mode

3 We use the terms ‘scan’ and ‘crawl’ interchangeably.

4

Table 1. Compliance Rules

RULE ID CATEGORY DESCRIPTION

A1

SSH

SSH server must not be installed
A2 SSH password-based authentication must be disabled
A3 PermitRootLogin must be disabled
A4 SSH protocol version 2 must be used
B1

Password
Password max age must be 90 days

B2 Minimum password length 8
B3 PASS MIN DAYS should be larger than 1

Permissions

(1)/var/log/wtmp:644, (2)/var/run/utmp:644, (3)/etc/shadow:400,
(4)/etc/group:644, (5)/etc/passwd:644, (6)/etc/profile:744,

C1-C25 (7)/etc/hosts.allow:744, (8)/etc/mtab:700, (9)/etc/sysctl.conf:744,
(file:perm) (10)/etc/fstab:644, (11)/etc/sudoers:644, (12)/bin:755,

(13)/boot:755, (14)/dev:755, (15)/etc:755, (16)/etc/cron.daily:755,
(17)/etc/cron.hourly:755, (18)/etc/cron.monthly:755,
(19)/etc/cron.weekly:755, (20)/etc/crontab:644, (21)/etc/ld.so.conf:644,
(22)/lib:755, (23)/mnt:755, (24)/root:700, (25)/sbin:755,

D1

Others

Umask must be 022 or more restrictive
D2 Auto log-out after 1 hour
D3 READ/WRITE access of /root/.rhosts must be only by root
D4 READ/WRITE access of /root/.netrc must be only by root
D5 Each UID must be used only once
E1 telnet telnet server must not exist
E2 rssh rssh server must not exist
E3 FTP FTP server must not exist

and waits for the REST call that orders the scanning to start. A user can issue either an
auto crawling action or single image crawling via REST interface. In the auto crawling
mode, ICL polls the backend storage to check if new image names and tags have been
inserted by the ING component. If detected, ICL performs a docker pull of the
image, and then initiates the crawling action. ICL can be configured to pull, for a given
image name, all the images with different tags, or it can be configured to just pull one
image that has the most recent tag. We have used the latter since the number of images
to crawl can be excessively many with the former option. Crawled output is stored to
the backend storage for other components to consume.

The crawler can extract a wide variety of state from a container image. Among the
rich set of supported state ‘features’, we have used files, packages, configurations, and
OS features in our platform. The ‘files’ feature gives us the list of all the files and associ-
ated meta-data within the image. The ‘packages’ feature is the list of installed packages
in the image. The ‘configurations’ feature is the contents of several key configurations
files in the image. We use them to determine if the configurations are set correctly ac-
cording to the policy. Lastly, the ‘OS’ feature holds information such as distro names
and OS version.

2.3 CRC (Compliance Rule Checker)
The CRC component’s role is to validate if the images conform to a set of best practice
‘rules’. Best practice or compliance rules, are a set of rules that are known to strengthen
the security of the system. We have compiled compliance rules from several sources [6,
18, 26], as listed in Table 1. Largely, they are grouped into 5 categories - SSH, password,
permission, FTP and ‘others’. The ‘permission’ category specifies the desired security

5

permissions that should be set for critical system files. In order to be considered com-
pliant, a file permission must be equal or stricter than the specified value.

CRC periodically polls the backend storage to check if newly crawled data becomes
available by the ICL. If it is, CRC evaluates the compliance rules against the crawled
data. As a result of the analysis, CRC produces a json result per rule and sends it to
the backend storage. Each json document indicates the rule ID, time of checking, and
whether or not the image is compliant to the corresponding rule.

As of now, we have compiled a list of 40 compliance rules, and we continue to
increase and evolve our compliance rule set. Current rules are mostly about checking
the best practices for Linux-class operating system. However, we plan to add other rules
for different distros in the future. We also plan to add other application-specific rules.

2.4 VPC (Vulnerable Package Checker)
The VPC component checks the images for the existence of packages that contain
known vulnerabilities. In order to detect vulnerable packages for a container image,
VPC takes as input the list of packages which are collected and stored into the backend
storage by the crawler, and the list of published security notices for several Linux dis-
tributions. Collecting the security notices is the responsibility of the SNP component.
VPC simply uses the information to carry out the package version comparison. For each
package from the list of installed packages in an image, VPC searches the security no-
tices for any descriptions with matching package names. Then, it compares the version
number to determine if the installed one is vulnerable. If not, VPC creates a json entry
containing the vulnerable package information and stores it in the backend storage.

2.5 SNP (Security Notice Parser)
SNP is an autonomously running component that periodically scans publicly available
security announcements, and extracts and stores the package vulnerability information
into one of the index in the backend storage. Security announcements contain descrip-
tions of the vulnerabilities, CVE (Common Vulnerability Exposure) IDs, package name,
and the fix version. They are usually made available to public in the form of mailing
lists. These are the sources which SNP monitors:
• DSA (Debian Security Announce):
https://lists.debian.org/debian-security-announce/

• USN (Ubuntu Security Notices):
https://usn.ubuntu.com/atom.xml

https://lists.ubuntu.com/archives/ubuntu-security-announce/

• CeSA (CentOS Security Alerts)
https://lists.centos.org/pipermail/centos-announce/

3 Analysis of Docker Container Images
3.1 OS Distro Composition
We first look at the popularity of OS distributions the container images are based-off
of. Table 2 lists 21 names we found in the order of their occurrence frequencies across
all images and Table 3 shows the average number of files and packages in each. In
Table 3 distros with less that 10 occurrences are omitted since average would not be
meaningful with too small a population. The three most popular distros turn out to be

6

Table 2. OS Distro names found in the images sorted by percentages

Rank OS Distro Count Percent

1 debian 3189 31.7%
2 alpine 2896 28.8%
3 ubuntu 2634 26.1%
4 centos 766 7.6%
6 scratch 207 2.1%
5 buildroot 202 2.0%
7 fedora 67 0.7%
8 opensuse 32 0.3%
9 ol(Oracle Linux) 20 0.2%

Rank OS Distro Count Percent

10 arch 15 0.1%
11 photon 11 0.1%
12 rhel 11 0.1%
13 amzn 7 0.1%
14 sles 6 0.1%
15 gentoo 3 0.0%
16 clear-linux-os 2 0.0%
17 slackware,linuxmint,mageia

euleros,kali → appeared once

Table 3. Average number of files and packages per distros

OS Distro Avg Files Avg Packages

debian 26k 275
alpine 8.5k 36
ubuntu 31.3k 317
centos 29.9k 287
scratch 6.4k 0
buildroot 2.2k 0

OS Distro Avg Files Avg Packages

fedora 26.2k 261
opensuse 31.7k 225
ol(Oracle Linux) 21.1k 196
arch 54k 241
photon 7.2k 62
rhel 10.8k 186

alpine, debian and ubuntu. Combined, they make up more than 87% of all the container
images. We can see that the ‘alpine’ image, which is relatively a new addition to the
Linux distros, is placed at the second position, closely chasing the ‘debian’ images. It
is also noteworthy that well-known distros such as centos, rhel and fedora are underuti-
lized by a big margin. The distro labeled as ‘scratch’ is an image that does not contain
files that can be considered as part of the OS. These are the images created from the
empty rootfs and usually contains only the application files. We have also found five
distro names that appeared only once in our list. But this does not mean only one image
exist in the Docker Hub. There are many derived image from them, but they were not
popular enough to be scanned by us. To understand their characteristics, we look at the
file counts and package counts next.

3.2 Package and File Counts
Figure 2 shows the relative position of images within the 2-D space spanned by the num-
ber of files and the number of packages. The reason behind alpine’s popularity is easy
to spot from this figure. Compared to the ‘ubuntu’ distro, ‘alpine’ has 4 times smaller
file counts and 8 times smaller package counts. These observations seem to suggest that
alpine may be a better fit towards higher storage efficiency and faster deployment cy-
cles. This widespread adoption of the lightweight alpine runtime, is promising for other
runtime minimization approaches in the container ecosystem [14, 16, 23, 20].

Other distros with comparable number of files as alpine are ‘vmware photon’, ‘rhel’,
and ‘mageia’. However, they vary in the number of packages installed inside. While
‘alpine’ has less than 40 installed packages, ‘mageia’ has close to 200 packages. The
images labeled as ‘scratch’ contain no packages, and only a small number of files.
These custom images seem to have been built by adding only a few binaries, libraries
and some configuration files, to the scratch base image, which is an empty rootfs, rather
than from one of the general purpose OS images, such as ‘ubuntu’ or ‘debian’.

7

alpine

debian

ubuntu

centos

buildroot scratch

fedora

opensuse
ol

vmware photon

amzn

sles rhel

slackware

kali

arch

mageia

0

50

100

150

200

250

300

350

0 10 20 30 40 50
Number of files

N
u
m

b
e
r

o
f
p
a
ck

a
g
e
s

K K K K K

Fig. 2. Scatter plot of container images by the number of files and the number of packages. Dot
Size is proportional to the popularity rankings for top 10 distros. Minor distros are all drawn in
the same small size to avoid being too tiny.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10M+ 5M+ 1M+ 500K+ 100K+ 50K+ 10K+
Pull Counts

N
u

m
b

er
 o

f
Im

ag
es

352 284

1564
1291

4942

3480

8017

(1.8%) (1.4%)

(7.8%) (6.5%)

(24.8%)

(17.5%)

(40.2%)

Fig. 3. Number of images grouped by the pull counts.

In terms of the file counts, there are a few distros that have less number of files
than ‘alpine’ -‘vmware photon’,‘buildroot’,‘kali’, and ‘scratch’. Among them, ‘kali’
and ‘buildroot’ are both special-purpose Linux distributions. ‘Kali’ is a suite of pen-
etration testing software, and ‘buildroot’ is a pack of tools for automating the build
process for Linux-based embedded systems. Although these are comparable with each
other in the number of files, they vary in the number of packages installed inside.

Figure 2 also reveals a general trend within the space where the number of files
and the number of packages are positively correlated, which is expected. However, the
correlation is loose. Within a narrow range of the number of files, the package counts
can differ as much as 41% (compare debian and sles in Figure 2). Opposite case also
exists. For a similar package counts, ‘rhel’ and ‘opensuse’ have even larger differences
of file counts.

3.3 Image Pull Counts
Docker Hub provides two metrics of images that indicates the popularity - stars and

downloads. Stars are the indication of how many users ‘liked’ the image. Downloads
means how many times the image was pulled. We have used the download counts as a
measure of popularity in terms of image pulls.

8

10M+ 5M+ 1M+ 500K+ 100K+ 50K+

alpine 38.0% 34.9% 31.8% 31.5% 28.9% 27.7%

debian 27.4% 18.8% 24.1% 31.9% 32.6% 32.7%

ubuntu 18.0% 24.9% 28.2% 26.3% 27.0% 25.9%

centos 4.9% 9.6% 8.8% 5.0% 6.4% 7.6%

buildroot 7.1% 7.0% 4.0% 2.9% 1.6% 1.2%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

P
ro

p
o
rt

io
n

38.0% 34.9% 31.8%

32.6% 32.7% 31.9%

Fig. 4. Top 5 popular images in six pull count groups.

P
ro

b
ab

ili
ty

Number of Compliance Violations in an Image

 Maximum Number of
 Violations in an Image

14

 Median Violations 6

 Average Number of
 Violations Per Image

5.2

 Standard deviation 2.4

 Total Number of Images
 Analyzed

10073

 Number of clean images (no
 compliance violations)

77
(.7%)

 Modes (Peaks)
3

(at 2,6,9)
0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 5. Distribution of compliance violations and statistics.

Docker Hub provides seven categories of pull counts - 10M+, 5M+, 1M+, 500K+,
100K+, 50K+ and 10K+. Figure 3 shows the number of images per category, as col-
lected by the ING component. Images in the most popular 10M+ group make up only
1.8% of all the images. The proportion of images that have more than one million down-
load counts adds up to be only 11%. Although we have collected image names in all 7
groups, when downloading images for scanning we have not pulled any from the last
category, 10K+ because our target of 10,000 images are covered by the first 6 groups.

We have looked at the popularity of distros in each pull count groups and the sum-
mary is shown in Figure 4. It shows top five distro names in each group and the cor-
responding percentages. In all 6 groups, three most popular distros from Table 2 con-
sistently rank as top three. However, the alpine distro is slightly more popular in the
first three pull count groups followed by debian. In the rest of the groups (i.e., 500K+,
100K+ and 50K+ groups), debian is ranked as the most popular as highlighted in the
Figure 4 with red text. The fact that the proportion of alpine gets higher as the pull
count is larger could be reflection of recent increasing popularity of alpine images as
the container base.

3.4 Compliance Rule Violations
In this Section we present our analysis results on the compliance violation counts. First,
we look at the overall distribution of the number of compliance violations in Figure 5.

9

alpine, opensuse, scratch
debian

scratch
amzn

ubuntu
(41.2%)

linuxmint, gentoo, centos

debian
(14.9%)

centos
(54.3%)

ubuntu
(22.3%)

fedora
(6.5%)

buildroot, kali

debian
(58.2%)

arch, scratch
rhel, euleros, ol

alpine
(94.7%)

buildroot
(3.1%)

(2.2%)
(0.5%)

(2.1%)

(a) Mode at 2 (b) Mode at 6 (c) Mode at 9
Fig. 6. Composition of distros at peaks.

It is a distribution of the average number of compliance violations per container image.
Out of 10073 images we have analyzed, only 77 images came out to be free of any
compliance violations. On average there were 5.2 compliance violations per image. We
suspected that the existence of multiple modes strongly indicated that it was probably
a mixture of three distributions. We selected those three peak points (2, 6 and 9 com-
pliance violations on x-axis) and looked at the composition of distros at each point.
Figure 6 illustrates the results. At mode 2 the ‘alpine’ image was 94.7%. Thus, the first
mode at 2 is mostly due to the ‘alpine’ images having two compliance violations. At
mode 3, ‘debian’ and ‘ubuntu’ images were two major components, together taking up
99.5%. We can learn that the number of compliance violations are strongly tied to the
distro names. At mode 9, the largest contributing distro was ‘centos’. It is followed by
‘ubuntu’ and ‘debian’.

Table 4 is the list of compliance rules in the order of the violations counts. The
count means how many images out of 10073 images have the corresponding rule as
a compliance violation. It shows that D2 is violated in almost all the images - 98%.
We have set the auto-logout tolerance time to be 3600 seconds, but almost all images
had the settings missing from /etc/profile. If the setting is not present, we gave a
verdict of ‘compliance violation’. For the second commonly violated rule, C3, we have
defined the rule to enforce the permission of 400 to /etc/shadow. But, many images
had the permission of 640, thus, giving us 89.9% violation proportion. The strictness
of compliance rules are up to the enforcers. Therefore the list of most violated rules
can vary by organization as well as over time. Three password setting rules, B1-B3, are
also violated in more than half of the images. Also it is worth mentioning that we have
found that ssh server is installed with password authentication enabled in about 7% of
the images. This violation can lead to a vulnerability in the containers that can be easily
exploited as analyzed in [26]. Out of 25 compliance rules, 8 of them were never violated
by any images as listed at the end of Table 4.

To drill down on how compliance violation behavior changes with image popularity,
we grouped the compliance check results by (a) pull counts, and (b) the distro base. Bar
graphs in the Figure 7 (a) and (b) illustrate the change of average compliance violations
along with the standard deviations in each group. In Figure 7 (a), we see that the average
compliance violation increases only slightly as we move from the most popular (10M)
to the less popular (50K). The change of average is very small and the standard deviation
is also steady across groups. However, we see much larger changes in Figure 7 (b) when

10
Table 4. List of compliance violations in the order of frequency

ID DESCRIPTION COUNT %

D2 Auto log-out 9869 98.0%
C3 400 /etc/shadow 9051 89.9%
B1 Max passwd age 6729 66.8%
B3 Passwd min day 6724 66.8%
C1 644 /var/log/wtmp 6508 64.6%
B2 Min passwd len 5811 57.7%
C24 700 /root 1010 10.0%
A3 PermitRootLogin 923 9.2%
D1 UMASK setting 022 894 8.9%
A1 SSH server exists 795 7.9%
A2 SSH passwd auth 673 6.7%
C4 644 /etc/group 155 1.5%
C15 755 /etc 149 1.5%
C2 644 /var/run/utmp 118 1.2%
C5 644 /etc/passwd 114 1.1%

ID DESCRIPTION COUNT %

C6 744 /etc/profile 69 0.7%
C12 755 /bin 64 0.6%
C10 644 /etc/fstab 64 0.6%
C25 755 /sbin 51 0.5%
C22 755 /lib 33 0.3%
C21 644 /etc/ld.so/conf 22 0.2%
D5 UID used once 6 0.1%
C9 744 /etc/sysctl.conf 4 0.0%
E3 ftp server 3 0.0%
C11 644 /etc/sudoers 3 0.0%
A4 SSH protocol version 3 0.0%
E2 rssh server 1 0.0%
D4 /root/.netrc 1 0.0%
C17 755 /etc/cron.hourly 1 0.0%
C13,C14,C16,C18,C19,C20,C23,D3 none

0

1

2

3

4

5

6

7

8

9

debian alpine ubuntu centos buildroot fedora opensuse

Pull count groups A
vg

 N
u
m

b
e
r
o
f
C
o
m

p
lia

n
ce

 V
io

la
ti
o
n
s

A
vg

 N
u
m

b
e
r
o
f
C
o
m

p
lia

n
ce

 V
io

la
ti
o
n
s

6.0 2.2 6.4 6.4 4.2 6.2 4.5

debian ubuntu buildroot opensuse

alpine centos fedora
Distro names

0

1

2

3

4

5

6

7

8

10M 5M 1M 500K 100K 50K

4.5 4.6 4.7 4.8 5.0 5.1

st
d
:2

.2
1

st
d
:2

.1
9

st
d
:2

.1
5

st
d
:2

.1
2

st
d
:2

.0
9

st
d
:2

.0
4

st
d
:0

.6
4

st
d
:0

.6
9

st
d
:1

.0
1

st
d
:1

.3
2

st
d
:2

.2
6
 st

d
:0

.7
2

st
d
:1

.4
4

(a) Avg non-compliance per pull count group (b) Avg non-compliances by distros

Fig. 7. Compliance Violation Break-down by Pull Count Groups and Distros
we group the images by distros. In accordance with what we observed in Figure 6, the
‘alpine’ image has the least compliance violations of 2.2 with the second least standard
deviation of 0.69. The ‘debian’ and ‘ubuntu’ images both have the average around 6,
also supporting the reason why we saw the mode at 6 in Figure 5. Although the ‘centos’
images has similar average of 6.4 as with ‘ubuntu’ or ‘debian’, the standard deviation
(1.32) is significantly larger than them. This explains why we see the third mode at 9
with ‘centos’ being the largest contributor.

The reason why average compliance violations do not change much across pull
count groups is because each group has roughly equal proportion of ‘alpine’, ‘debian’
and ‘ubuntu’ distros, the top 3 distros as seen in Figure 4. However, since the proportion
of the ‘alpine’ is the largest in 10M+ group among the pull count groups, it has the effect
of slightly lowering the average. As we move to less popular groups from 10M to 50K,
the proportion of ‘alpine’ drops, increasing the average from 4.5 to 5.1.

3.5 Package Vulnerabilities

For package vulnerability analysis, we present the results for ‘ubuntu’, ‘debian’ and
‘centos’ images, since we currently consult security notices only for these three distros.
We plan to add support for ‘alpine’ images which use the ‘apk’ package manager. The
total number of images in these 3 distros becomes 6589.

11

P
ro

b
ab

ili
ty

Number of Package Vulnerabilities in an Image

 Maximum Number of
 Vulnerable Packages

116

 Median Vulnerabilities 7

 Average Number of
 Vulnerable Packages

10.3

 Standard deviation 11.1

 Total Number of Images
 Analyzed

6589

 Number of clean images (no
 vulnerable packages)

512
(8%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 15 30 45 60 75 90 105

Fig. 8. Distribution of package vulnerabilities and statistics.

0

0.1

0.2

0.3

0.4

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

P
ro

b
a
b
ili

ty

Number of Vulnerable Packages In Image

ubuntu

centos

debian

Fig. 9. Component distribution of vulnerable packages.

Figure 8 shows the distribution of package vulnerabilities. Images with zero vul-
nerabilities turn out to be only about 8% or 512 images. The average package vulnera-
bilities per image is 10.3, but the difference with the median of 7 is large because the
distribution is long-tailed. Small number of images with extremely high vulnerability
tend to push up the average. The title of “the image with the largest number of vulnera-
ble packages” with 116 vulnerable packages belongs to gpdejulio/centos:latest,
which was pushed to the Docker Hub about 5 month ago. In fact, all the high ranked
vulnerable images are based on the ‘centos’. This could be because they were pushed
relatively long ago and had not been actively used or updated with recent packages.

Since vulnerabilities are continuously discovered and added, it is natural that the
number of vulnerable packages increases as images age. Interestingly, however, ‘centos’
images had the largest proportion (30%) of clean images. This implies there are subset
of ‘centos’ images are well-cared for while the rest are largely forgotten.

Similar to the distribution of compliance violations, we present three separate com-
ponent distributions of the vulnerable packages in Figure 9. Stretching to the far right
of the distribution, it clearly shows that ‘centos’ images have much larger number of
vulnerable packages in comparison. Out of three distros, ‘debian’ has the lowest av-
erage 7.9 and the lowest max of 24, whereas ‘ubuntu’ has 10.7 and 72 respectively.
‘Centos’ has 18.5 and 116. In case of ‘debian’, there exist two peaks and this indicates
that there are largely two groups of debian images with different number of package
vulnerabilities.

12
Table 5. Top 20 Vulnerable Packages

PACKAGE COUNT PERCENT

perl 3122 47.4%
sensible-utils 3007 45.6%
openssl 2845 43.2%
libssl1.0.0 2400 36.4%
curl 2385 36.2%
libxml2 2064 31.3%
libtasn1-6 1947 29.5%
gnupg 1926 29.2%
libgcrypt20 1867 28.3%
wget 1835 27.8%

PACKAGE COUNT PERCENT

git 1424 21.6%
patch 1419 21.5%
gcc-4.9 1129 17.1%
apt 1098 16.7%
libffi6 962 14.6%
tar 932 14.1%
bzr 922 14.0%
libexpat1 890 13.5%
ca-certificates 846 12.8%
isc-dhcp-client 807 12.2%

Table 6. Top 10 vulnerable packages in three distros
UBUNTU

PACKAGE COUNT
libssl1.0.0 2400
patch 1419
libffi6 962
libexpat1 890
ca-certificates 846
isc-dhcp-client 807
perl 777
sensible-utils 764
systemd 721
libpam-modules 593

DEBIAN

PACKAGE COUNT
openssl 2750
perl 2345
sensible-utils 2243
curl 2064
gnupg 1545
libgcrypt20 1480
libxml2 1461
libtasn1-6 1397
wget 1244
gcc-4.9 1129

CENTOS

PACKAGE COUNT
libstdc++ 531
libgcc 526
yum 421
binutils 421
libdb 397
kpartx 378
bind-license 372
util-linux 372
libuuid 372
libmount 372

Table 5 lists top 20 vulnerable packages we have found. The most frequently seen
package in the list is the perl package. As of now the most up-to-date stable version for
debian is 5.24.1-3+deb9u3, but we have encountered 16 earlier versions. We further
analyzed package vulnerabilities to identify which packages are vulnerable in three
distros. Table 6 shows top 10 vulnerable packages in ‘ubuntu’, ‘debian’ and ‘centos’
images. Note that the perl is not at the top of ‘ubuntu’ and ‘debian’. For both ‘ubuntu’
and ‘debian’, the first one is ssl-related packages - libssl1.0.0 and openssl. Although
they are in the same category, they are counted as separate packages. But, when we
combine them, we can see that the ssl is the top most package vulnerability, not perl.
Except for ssl and perl, we can see that the set of vulnerable packages of different distros
do not intersect much.

4 Discussion
Trends of Base Images: We observe that the ‘alpine’ is quickly rising as the standard
image base for containers. It is already one of the top three heavily used distros in
the Docker Hub images. But, the proportion of ‘alpine’ is significantly larger in the
group of popular images. In Figure 4, ‘alpine’ takes up 38% of the images in the 10M+
group. Although we have not performed the analysis of creation time, we conjecture
that there will be larger proportion of ‘alpine’ images in more recently created images.
As we can see from Figure 2 it make more sense to adopt ‘alpine’ images than others,
since it is much lighter that other images. The size of images is at least an order of
magnitude smaller than two other popular distros - ‘debian’ and ‘ubuntu’. Alpine image
is in line with the VM-to-container footprint reduction philosophy, while still being

13

general purpose as others. This momentum will continue and we will probably see
much larger proportion of ‘alpine’ images with time. As a consequence of the rise of
‘alpine’, we see the gradual decline of popularity for ‘debian’ and ‘ubuntu’.
Compliance Behaviors: According to our compliance rule checking, ‘alpine’ images
came out to be most compliant of top three distros. It it too early to conclude that
‘alpine’ images are safer than others because the compliance rules we have may not
contain all the rules appropriate for ‘alpine’ images. Rather, the current rule set is more
geared toward traditional distros such as ‘ubuntu’. This motivates us to investigate
deeper into the nature of ‘alpine’ images and build sensible set of compliance policy
for ‘alpine’. The general pattern we see in terms of compliance rules is that most of
the images have weak password settings such as maximum password age or minimum
required password length. When it is combined with SSH server, this can create highly
vulnerable images where even rookie attackers can easily gain access to the live con-
tainers. Compliance violations differ drastically by the distros, but not by the popularity
groups. This is because the group contains almost similar combination of distros.
Vulnerabilities: The different base image distros exhibited different vulnerability pat-
terns, and it was hard to find commonalities. However, we were able to discover that
there were noticeable distro-specific differences in the magnitude of vulnerable pack-
ages. Out of ‘debian’, ‘ubuntu’ and ‘centos’, ‘centos’ had the highest number of average
vulnerable packages in the images. But, on the contrary, ‘centos’ also had the largest
proportion of clean images that had no vulnerable packages. Previously the Banyan
blog reported that 30% of official images in the Docker Hub contained high secu-
rity vulnerabilities [17]. In the report the top packages with high priority vulnerabil-
ities included mercurial, libtasn1-3, openssl, libmodule-signature-perl,
binutils, mime-support, file, bash, apt. In our analysis, we find that libtasn,
binutils, and openssl are still ranked high in the top 20 vulnerable packages. In that
sense, the threat continues in the container images. This strongly suggests we need to
adopt continuous scanning of container images to reduce the risk.

5 Related Work
There have been studies on the Docker ecosystem from several perspectives, such as
code evolution [10], software engineering [29] and security [24, 9, 12]. Our analysis is
a subcomponent of the general Docker ecosystem security, which focuses specifically
on the security posture of the Docker image registry- the Docker Hub. We provide a
more comprehensive analysis of public images’ security posture, as compared to exist-
ing tools [22] and studies [17, 25]. We do so by incorporating several image features,
beyond just system-level packages, such as file system properties, configuration param-
eters, and distribution base, amongst others. Furthermore, our data analytics framework
is open-sourced and extensible, allowing custom analytics to be incorporated over the
dis-aggregated backed storage, without a re-crawl of the container images. Finally, there
exist multiple image scanning solutions, such as Anchore [7], Aqua [8], Clair [11] Ten-
able/Flawcheck [27], and Twistlock [28], amongst others, we use the Agentless-system-
crawler to scan container images because of its ability to perform deep inspection, while
being open-sourced and extensible [1, 21].

Relative importance of CVEs to a particular deployment are important as well.
Some vulnerabilities pose a high risk to the task the image and environment is intended

14

for, others may not. CVEs or vulnerabilities reported have increased significantly in re-
cent years (7900 in 2017) [5], making it increasingly difficult for teams to address them
all in time. Some efforts have been made to highlight the risk associated with the vul-
nerabilities such as the CVSS score, although these remain heuristic scores at best [3].
Others have tried to impose a triage approach [4] in order to focus the developer at-
tention on a limited number of key vulnerabilities that pose the highest risk to that
particular deployment (such as product, environment etc). For example, a tar package
vulnerability may be ignored, while an openssl immediately addressed. Related work
such as the census project [2, 13] have tried to systematically measure risk factors as-
sociated with open source projects based on a variety of factors (size of community in
the open source, activity, network exposure and so on). In our work, we present results
particular to Docker Hub images, and the results should be seen in the light of other
related work that provide additional insight to each of the reported metrics.

6 Conclusion
In this paper, we have analyzed container images from Docker Hub to gain a compre-
hensive understanding of their security posture, as well as their evolution trends. Using
our extensible data analytics framework, we have scanned more than 10,000 images,
and discovered that 99% of the public images contain 5 compliance violations, and
92% of them have 10 vulnerable packages on average.

As future work, we plan to expand our compliance rules to cover not only the OS
checking rules, but also application-specific rules, such as for MySQL, ngnix, etc. Also,
we will add capability to check the package vulnerabilities for the popularly rising
‘alpine’ images, as well as for application-level packages such as ruby gems and python
pip packages, amongst others.

Acknowledgement
This research was supported by Kyungpook National University Research Fund, 2017.

References

1. Agentless system crawler. https://github.com/cloudviz/
agentless-system-crawler.

2. Census Project. https://www.coreinfrastructure.org/programs/
census-project.

3. Don’t Substitute CVSS for Risk: Scoring System Inflates Importance of CVE-
2017-3735. https://securingtomorrow.mcafee.com/mcafee-labs/
dont-substitute-cvss-for-risk-scoring-system-inflates-\
\importance-of-cve-2017-3735/.

4. Record-Breaking Number of Vulnerabilities Disclosed in
2017: Report. https://www.securityweek.com/
record-breaking-number-vulnerabilities-disclosed-2017-report.

5. Vulnerability QuickView. https://pages.riskbasedsecurity.com/
hubfs/Reports/2017/2017\%20Year\%20End\%20Vulnerability\
%20QuickView\%20Report.pdf.

6. Amazon Inspector. https://aws.amazon.com/inspector/.
7. Anchore. Open source tools for container security and compliance. http://anchore.

com.

15

8. Aqua. https://www.aquasec.com/.
9. T. Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967, 2015.

10. J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall. An empirical
analysis of the docker container ecosystem on github. In Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, pages 323–333. IEEE Press, 2017.

11. Clair. Automatic container vulnerability and security scanning for appc and docker. http:
//coreos.com/clair/.

12. T. Combe, A. Martin, and R. Di Pietro. To docker or not to docker: A security perspective.
IEEE Cloud Computing, 3(5):54–62, 2016.

13. David, A. Wheeler and Samir, Khakimov. Open Source Software Projects Needing Security
Investments . https://www.coreinfrastructure.org/sites/cii/files/
pages/files/pub_ida_lf_cii_070915.pdf.

14. Docker-slim. https://github.com/docker-slim/docker-slim.
15. Dockerhub. https://hub.docker.com/.
16. K. Gschwind, C. Adam, S. Duri, S. Nadgowda, and M. Vukovic. Optimizing service delivery

with minimal runtimes. In Proceedings of the 15th International Conference on Service-
Oriented Computing, 2017.

17. Gummaraju, Jayanth and Desikan,Tarun and Turner, Yoshio. Over 30% of Official Im-
ages in Docker Hub Contain High Priority Security Vulnerabilities. https://www.
banyanops.com/blog/analyzing-docker-hub/.

18. James Doran. Is your docker container secure? ask vulnerability advisor! https://www.
ibm.com/blogs/bluemix/2015/07/vulnerability-advisor/.

19. R. Koller, C. Isci, S. Suneja, and E. de Lara. Unified monitoring and analytics in the cloud.
In 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15), Santa Clara,
CA, 2015. USENIX Association.

20. Microcontainers Tiny, Portable Docker Containers. https://blog.iron.io/
microcontainers-tiny-portable-containers/.

21. F. Oliveira, S. Suneja, S. Nadgowda, P. Nagpurkar, and C. Isci. Opvis: extensible,
cross-platform operational visibility and analytics for cloud. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Industrial Track, pages 43–49. ACM, 2017.

22. OpenSCAP oscap-docker. https://github.com/OpenSCAP/
container-compliance.

23. V. Rastogi, C. Niddodi, S. Mohan, and S. Jha. New directions for container debloating. In
Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software Transforma-
tion, pages 51–56. ACM, 2017.

24. E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan. Security of os-level virtualization
technologies. In Nordic Conference on Secure IT Systems, pages 77–93. Springer, 2014.

25. R. Shu, X. Gu, and W. Enck. A study of security vulnerabilities on docker hub. In Pro-
ceedings of the Seventh ACM on Conference on Data and Application Security and Privacy,
CODASPY ’17, pages 269–280, New York, NY, USA, 2017. ACM.

26. B. Tak, C. Isci, S. Duri, N. Bila, S. Nadgowda, and J. Doran. Understanding security im-
plications of using containers in the cloud. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 313–319, Santa Clara, CA, 2017. USENIX Association.

27. Tenable Network Security. Nessus vulnerability scanner. http://www.tenable.com.
28. Twistlock. https://www.twistlock.com/.
29. T. Xu and D. Marinov. Mining container image repositories for software configuration and

beyond. arXiv preprint arXiv:1802.03558, 2018.

