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Abstract—Due to the small memory footprint and
fast startup times offerred by container virtualization,
made ever more popular by the Docker platform, con-
tainers are seeing rapid adoption as a foundational
capability to build PaaS and SaaS clouds. For such
container clouds, which are fundamentally different
from VM clouds, various cloud management services
need to be revisited. In this paper, we present our
Voyager - just-in-time live container migration service,
designed in accordance with the Open Container Ini-
tiative (OCI) principles. Voyager is a novel filesystem-
agnostic and vendor-agnostic migration service that
provides consistent full-systemmigration.Voyager com-
bines CRIU-based memory migration together with
the data federation capabilities of union mounts to
minimize migration downtime. With a union view of
data between the source and target hosts, Voyager
containers can resume operation instantly on the target
host, while performing disk state transfer lazily in the
background.

I. Introduction
Container virtualization has existed since two decades

in the form of FreeBSD Jails[18], Solaris Zones[26],
IBM AIX Workload Partitional WPAR[5], and LXC for
Linux, amongst others. But these have recently started
gaining acceptance as a lightweight alternative to vir-
tual machines (VMs), owing to technology maturity and
popularization by platforms like Docker[14], CoreOS’s
rocket[12], Cloud Foundry Warden[9]. Containers are be-
ing adopted as a foundational vitualization capability in
building Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS) cloud solutions, e.g. Amazon Container
service[6], Google Container Engine [15] and IBM’s Con-
tainer Cloud[17]. For such container clouds, which are
fundamentally different from VM clouds, various cloud
management services need to be revisited. In this paper,
we target one such service- container migration.
An efficient migration solution becomes essential as

containers start running production workloads. Borrowing
the scenarios from their VM counterparts, migrations are
required during host maintenance, load balancing, server
consolidation and movement between availability zones
(e.g., a Silver zone with HDD storage and 100 IOPS vs.
a Gold zone with SSD storage with 1000 IOPS).
In this paper, we present our Voyager container migra-

tion service, tailored specifically for containers in accor-
dance with OCI principles. Voyager is a novel filesystem-
agnostic and vendor-agnostic migration service that pro-
vides consistent full-system migration, unlike existing al-

ternatives that either provide memory-only migration, or
rely on specific filesystems to migrate persistent storage
(Section 2). Voyager performs just-in-time live container
migration with minimal downtime, by combining the data
federation capabilities of union mounts together with
CRIU-based memory migration. With a union view of data
between the source and target hosts, Voyager containers
can resume operation instantly on the target host, while
performing disk state transfer either on-demand (Copy-
on-Write) or through lazy replication. Our experiments
show Voyager’s federation framework imposes no overhead
during data updates/writes, and ≈ 1% overheads for reads
and upto 10% for scans.
We have open-sourced an initial version of our data mi-

gration framework[8], although it works specifically with
docker containers and does not support live migration. We
intend to open-source the enhancements described in this
paper as well, which include in-memory state migration,
OCI compliance, and support for multiple data storage
types (rootfs, local and network attached data volumes).

II. Background and Related Work

The objective in this paper is not to compare and
establish performance advantages between VM and con-
tainer migration techniques. Containers are fundamentally
different than VMs in terms of their system resource
requirements, high density and agility. We believe a more
optimal migration service can be designed for container
clouds than the prevalent ones in VM clouds.

A. VM Migration
Migration has extensively been studied primarily for

VM Clouds[7][25][24][16][22]. Different vendors use differ-
ent virtual disk (vDisk) formats to encapsulate a VM’s
persistent state (e.g. vmdk, VHD, qcow2), which are
migrated via proprietary hypervisor-assisted services like
vMotion[29] and Hyper-V Live Migration[27], third party
tools [7], [25], [13], or via explicit vDisk conversions[28][19]
across hypervisors. Containers, on the other hand, are
(being) standardised by the Open Container Initiative
(OCI)[3] which specifies an industry standard for container
image format- a filesystem bundle or rootfs, and multiple
data volumes (Section III). These being essentially direc-
tories on the host filesystem, a generic file-based migration
solution can be designed for containers. There also exist
vendor-agnostic file-based migration solutions for VMs like
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I2Map[22] and racemi[4], but there require extra agents to
be installed inside the systems.
Some container clouds[6][15] provision VMs to host con-

tainers, primarily to mitigate security and isolation con-
cerns for containers, while others run containers directly
on cloud hosts [17]. This paper shows how to migrate the
small execution state that is part of a container without
resorting to installing and migrating VMs that impose
different constraints on their hosts. Installing VMs for
the purpose of migration defeats the advantages of using
containers for application deployment.

B. Container Migration
Containers have been popular with the microservice

architecture. Although container migration may seem re-
dundant for stateless containerized applications, but it
is still pertinent to several stateful microservice applica-
tions like databases (e.g. Mysql, cassandra), message bro-
kers (kafka), and state-coordination service (zookeeper),
amongst others. This is being acknowledged and supported
in standard frameworks like Kubernetes’ ‘StatefulSet’.
Portability of stateful containers is also explored in exist-
ing solutions like ClusterHQ’s Flocker[10], Virtuozzo[20]
and Picocenter[30].
Flocker[10] primarily is a data management solution

specifically for docker containers. It supports migration
for network-attached storage backends like Amazon EBS,
Openstack Cinder, VMware vSphere etc., by re-attaching
these network storage for containers. Local attached vol-
ume migration is supported only for ZFS filesystem. On
the other hand, Voyager is a generic, filesystem-agnostic
and vendor-agnostic migration solution.
Virtuozzo is a bare-metal virtualization solution that

includes container virtualization. It facilitates Zero-
downtime live migration for containers[23][20]. During this
migration it first transfer container’s filesystem and virtual
memory to target host. Once transfer is finished, it freeze
all container processes and disable networking. It then
dump this memory state to file and copies these dump file
to target host. Any changed memory and disk blocks since
the last transfer are then migrated to target host and then
container is resumed. It has an underlying assumption
that amount of memory pages and disk blocks changed
(deltas) is small, thus outage time imperceptible. For any
data intensive application these deltas specially persistent
data changes could be large. Voyager differs from this
technique primarily on two aspects. First, Voyager is a
Just-in-Time (jit) Zero-copy migration solution, wherein
container is migrated immediately before whole data is
copied to the target host. Secondly, Voyager does not
require the task of second data transfer performed by
Virtuozzo, thus application downtime for Voyager is still
smaller than Virtuozzo. Further Voyager provided features
like data federation access, dual-band data replication,
OCI compliance which are not provided by any existing
container migration solution.

Picocenter[30] on the other hand is a system that en-
ables swapping-out in-active containers in cloud to object
store (Amazon S3) and swapping-in on-demand. It uses
CRIU to capture and migrate memory-state and btrfs
filesystem snapshots for persistent state. It also proposes
feature of ActiveSet for memory in which memory pages
are restored for container on-access and lazily. This is
again a filesystem specific solution and not optimized for
container migration use-case.

III. Design and Implementation
As per OCI specifications, every container image is

stored in a filesystem bundle, which after unpacking be-
comes just another directory– rootfs– on the host filesys-
tem. On container instantiation, all runtime environment
changes (e.g., new package installations) and data changes
(e.g., application state and logs) are persisted in rootfs
by default. Since runtime state changes actively, hosting
rootfs at the local filesystem also complies from a per-
formance viewpoint. Additionally, any directory from the
host filesystem can also be bind mount inside a container
as data volumes. Such a volume can also be a network at-
tached filesystem mounted on the host. Similarly, although
rare, any block devices on the host can also be mapped
inside container. As for volatile state, containers have their
memory share from the host controlled via cgroups.
Thus, migrating a container involves discovering all

data end-points of a container, and moving their states,
in addition to its memory state, consistently from the
source to the target host. Migration of in-memory state
can be achieved in userspace via CRIU. Also, any net-
work attached storage can be migrated by un-mounting
it from source host and mounting it on target host.
In addition, Voyager provides userspace-level filesystem-
agnostic migration of locally persistent container state,
while ensuring consistency across all these states, as
well as minimum application downtime. Fig.1 shows the
complete orchestration framework of Voyager. Primarily,
we are migrating container state across three different
data stores, namely in-memory, local filesystem, and
network filesystem. We discuss each of these migration
capabilities below.

A. In-memory state migration
Running containers hold a lot of in-memory state like

open file descriptors, network sockets, application data
structures, and cached data. We use open-sourced linux
tool Checkpoint/Restore in Userspace (CRIU)[2] to check-
point and dump these states in files which we can be
migrated and restored. During checkpoint, CRIU freezes
a running container for consistency, and then dumps it’s
memory state into a collection of files. Total size of the
dump is dominated by the size of the process’ pagemap.
For example, a MySQL container checkpointed right after
it is initialized creates a pagemap dump of 117MB and
all other resources dump files accounts for 250KB.
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Fig. 1. Voyager: Orchestration for migrating ContainerA from SourceHost to T argetHost. Numbers indicates order of migration
workflow.

Time to checkpoint memory essentially counts towards
application downtime, and thus it is critical to optimize it.
In Voyager we use tmpfs to store the dump files to avoid
any slower disk transactions. We further use CRIU’s page-
server model, wherein during checkpointing the pagemap
image is directly dumped at the target host, thereby
avoiding the source host storage hop. CRIU also provides
a construct called action script, which allows executing
any script after a container is checkpointed and before
it is un-frozen. We provide a callback method in action
script to notify Voyager about the checkpoint status, so
that Voyager can perform certain sanity checks, followed
by stopping the container at the source and restoring it
at the target. Once the container is instantiated, Voyager
starts a lazy migration process at target, as described next.

B. Local filesystem migration
One of the most significant contributing factor in ap-

plication downtime during migration is data copy. There
exist optimization techniques like transferring incremental
filesystem snapshots, and performing the actual fail-over
when the incremental change is small enough. For data
intensive applications finding such optimal change win-
dow could be difficult. Besides, such techniques are more
suitable for planned VM migrations wherein the actual
migration can happen over time. For containers which in
principle are very agile and whose lifetimes are relatively
shorter than VMs, Voyager currently targets enabling just-
in-time (jit) migration. And it is enabled by employing
dual-band data transfer between the source and the target-
in-band transfer through data federation, and out-of-
band transfer via lazy replication as described next.
Data federation
The goal here is to make the container data at the source
accessible on the target host, without actually copying any
data first. Such federation logic enables remote-reads and
local-writes for the migrated container. Voyager orches-
trates data federation using a union mount of filesystems

across the source and target hosts. This federation is zero-
downtime because it is orchestrated before the memory
checkpoint, while application is running at the source
host. Once it’s memory state is restored at the target, the
container has access to its persistent data via the union
mounted rootfs.
As show in Figure 1, first, the rootfs of a container

(say /var/contA) is NFS-exported from the source (step
1), and mounted on the target host (step 2) as read-only
/mnt/nfsA. Next, two new directories are created at the
target- /var/lazyStoreA to host the lazy replicated data
(described below), and /var/active to host any updated
or newly written data. These three directories are accessed
in the order as shown in step 3, using the AuFS[1] union
mount filesystem at the target’s rootfs at /var/contA. The
federation capability of Voyager is equally applicable with
any other union filesystem as well.
Initially, the lowest NFS directory branch and lazyStore

branch both are marked read-only, and only the active
branch has read-write permissions. Every new file created
by the migrated container is hosted in the active directory.
Any update to an existing file first transfers it over through
the NFS branch to the active branch, and then updates it
locally. Thus, essentially the active branch acts as a copy-
on-write (CoW) directory. Any further reads or updates
to this file are handled locally. The only file reads that are
not satisfied by the active branch or the lazyStore branch
(discussed below) are routed over NFS to the source host
filesystem. Voyager uses NFS client-side caching at the
target host to optimize these reads over the network.
Lazy replication
Once the container is resumed with access to its data
through federation, Voyager launches a lazy replicator
to transfer the data in background. The replicator first
traverses the rootfs of the container at the source to
compute a joblist of all files, and then starts copying them
over to the lazyStore. We employ inotity (step 7) on the
active directory which monitors and notifies the replicator
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(step 8) about the files that have already been transferred
to the target through CoW, so that the replicator can
remove them from the joblist to avoid any redundant
network copy. The replicator first creates the file in the
lazyStore with a temporary name .filename.part to avoid
surfacing a mid-transfer incomplete view to the container.
Once the copy is finished, the file is is renamed to its actual
name. Any subsequent reads to this file by the container is
served by the lazyStore, while avoiding the NFS branch.
When the replicator finishes copying all files, the lowest
NFS branch is removed from federation and the lazyStore
branch is marked read-write. At this point Voyager marks
the container migration as complete.

Tuning
Having a dual-band transfer channel allows a sysadmin
to prioritize one flow over the other. Out-of band lazy
replication rate can be throttled to avoid any network
bottleneck for primary federation flow. Also, if the hosts
have multiple network ports, the faster port can be used
in federation to mount NFS, while the slower employed for
lazy replication.

C. Network filesystem migration
For any network-attached file storage, Voyager simply

performs un-mounting and mounting of the NAS share,
along with any host access authorization and firewall con-
figurations. Similarly, distributed filesystem deployments,
by virtue of their design, lend themselves well to migration.

D. Future enhancements
Various on-going efforts to further minimize application

downtime, and incorporate new features are listed below:
(i) In Voyager application downtime is incurred only dur-
ing memory checkpoint/restore, and data replication is
zero-downtime. Thus, we are exploring ways to reduce size
of pagemap by perfoming page-flush (sync) or any appli-
cation specific garbage collection inside container before it
is checkpointed. Also, selectively discarding checkpoint of
certain redundant resources could be helpful.
(ii) Currently Voyager implements Just-in-Time migra-
tion. We have very recently also incorporated CRIU’s in-
cremental memory checkpointing capabilities in Voyager,
which should lower the application downtime significantly.
We plan to commit these changes back to runc OCI
compliant runtime. At the same time we are also exploring
incremental disk checkpointing for planned migration.
(iii) For out-of-band lazy replication we are planning to
provide a filter wherein user can specify regular expres-
sions for file patterns. For example ∗.log, tmp∗. These
files will be omitted during replication to avoid redundant
network transfer.

IV. Evaluation
Experiment Setup: We conducted our experiments on

two Ubuntu 14.04.5 LTS VMs acting as a source and

target hosts for containers. Each VM was configured with 4
vCPUs, 4 GB memory and 25GB disk with ext4 filesystem.
These VMs were in the same datacenter, and average
network bandwidth between them was observed to be 2.5
Gbps. We ran our containers using docker − runc (via
docker-1.12.3) which is docker’s OCI compliant container
runtime. For memory migration we used the latest CRIU
release in 2.8. We selected the most popular stateful
database from docker hub as our test application- MySQL
5.7.15. Finally, we used the standard Yahoo! Cloud Serv-
ing Benchmark(YCSB)[11] benchmarking tool to measure
MySQL performance under different workload patterns.
We evaluated Voyager on three dimensions: consis-

tency, application downtime and performance over-
head.

A. Consistency
Voyager is a complete state migration solution for an ap-

plication container. Thus, once the container is migrated,
it is critical to ensure that the application’s runtime state
is correctly restored. To measure consistency we devised
two data-points:
(i) MySQL server performs a set of initialization tasks
when it starts, which includes loading configuration, ini-
tializing data directory, system tablespace and related
in-memory data structures needed to manage InnoDB
tables, amongst others. Thus, as a first datapoint, we
inserted some records into a MySQL database, and mi-
grated that container using Voyager. We then verified that
the a MySQL client can connect to the migrated server
and query existing records without errors. This validated
that the application was restored consistently with its in-
memory data structures and persistent tablespace.
(ii) For our second datapoint evaluation, we embedded
a test client inside the same MySQL container. We first
inserted 10K person records into a database with incre-
mental index starting from 1. The client program was
initialized with person index 1 and an empty file on the
disk. It has a periodic function to connect to the database,
query a person record (name, age) with next index, append
name to file and revise average age. We started this client
program, migrated the container in the middle of the
program’s progress, and ensured that the client program
finishes at the target with accurate summary every time,
by comparing it with the expected output obtained in a
base no-migration setup.

B. Application downtime
Minimum application downtime is an important crite-

ria in production clouds, for example to maintain SLAs
and Business Continuity. Voyager imposes no application
downtime during persistent state transfer by virtue of its
data federation and lazy replication between the source
and target hosts. The downtime is thus limited to the
time required for in-memory state transfer via CRIU. We
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measure this with time to checkpoint and restore the in-
memory process dump of a container.
Checkpoint: During checkpoint, CRIU freezes the con-
tainer to ensure consistency and dumps the process’ in-
memory state. In Voyager, we use a remote page-server to
dump the process’ pagemap directly on the target host’s
tmpfs. Thus, checkpoint time includes the time taken
to collect the process tree, freeze it, collect the process’
resources (e.g., file descriptors, memory mappings, timers
and threads), and write the resources in dump files over the
network to a remote page-server. As shown in Figure 2(a),
we evaluated the checkpoint time for the MySQL container
at stages with different number of records, resulting in an
increasing pagemap dump file size from 117MB-250MB.
Checkpoint time increases linearly with the size of ap-
plication’s memory state. In a micro-service architecture,
we can expect the memory usage of individual containers
to be less than 1GB, limiting the checkpoint time to <2
seconds.
Restore: During restore, CRIU reads dump files, resolves
shared resources, forks the process tree and restores the
process’ resources. Figure 2(a) shows the restore time for
the MySQL container. As we can see, the restore time is
≈ 0.7 − 0.8 seconds for a <250 MB dump size.
Thus, in Voyager migration, the total expected appli-

cation downtime is between 2-3 seconds. We have very
recently also incorporated CRIU’s incremental memory
checkpointing capabilities in Voyager, which should lower
the application downtime significantly. As future work, we
plan to evaluate this optimization, and also instrument
CRIU to measure both the checkpoint and restore time at
a per resource granularity, so that we can prioritize and
optimize for individual resources.

C. Performance overhead
In Voyager, once a container is resumed at the target,

it has immediate access to its persistent data storage
through Voyager’s data federation layer. This layer incurs
performance overhead, which we measure using YCSB
for different types of workload profiles including reads,
inserts, updates, and scans. For each profile, in YCSB’s
load stage we inserted 1M records to a database table,
and in the run stage we performed 1M record operations
of respective types. The records were accessed using zipfian
distribution for popularity-based long tail access pattern.
For each workload profile, we measured average applica-
tion throughput (operations/sec) every 10 seconds. Each
experiment was performed at two application states- (i)
baseline: application state at the source host before it is
migrated, and (ii) federation: application state after it is
migrated at the target host, having access to data through
the federation layer. For common application read/write
workload patterns we observe zero to 3% overhead in
steady state. Performance impact on the individual work-
load profiles is discussed below:

Read: Fig. 2(c) shows the benchmark results for data
reads. Initial low throughout is attributed to cache warm-
ing phase, and then in steady state phase we observe rel-
atively stable performance. Every read operation through
federation layer makes data access over NFS at the source.
As a result, in the federation state, read throughput drops
by ≈ 20% during cache warming, and ≈ 1% in steady
state.

Scan: Fig. 2(d) shows results for scans. Unlike reads,
where a zipfian pattern accesses popular records fre-
quently, this workload accesses records in order, starting
at a randomly chosen record key, and generates more
unique read requests. Thus, even in stead state we record
a performance overhead of ≈ 10% for read accesses over
NFS.

Updates: In federation state, an update is essentially
a CoW operation i.e. a file is read from source over NFS,
copied at target and then updated locally. MySQL stores
its InnoDB tables and indexes in separate .ibd data files.
Thus, during the federation state when a record is up-
dated, the respective index and tablespace file is CoW’ed
at the target host. Then, every subsequent updates to the
records are done locally. As a result in Fig. 2(e) we observe
almost ≈ 75% performance overhead at the start, and in
steady state update performance is at par with baseline.

Inserts: In federation state, every write operation
resulting in creation of new files is performed locally.
Thus we observe similar performance for baseline and
federation state in Fig. 2(f). The size of the table slows
down the insertion of indexes by log N, assuming B-tree
indexes[21], thus a steady performance drop is observed
for both states.

Read/Update/Insert: In this profile, we split the IO
workload into 60:20:20 for read:update:insert. As seen in
Fig. 2(b), we observe ≈ 65% performance overhead at
the start attributed to file-copy during updates and NFS
access for reads, and ≈ 3% overhead in steady state.

D. Application container: startup vs. restore

When contrasted against VMs containers have fast
startup times. But, applications inside container also typ-
ically have their own startup or initialization time, which
ranges from milliseconds to few seconds. We measured
average initialization time to for two application namely
MySQL and elasticsearch. The average initialization time
for these application was recorded as: 10secs for MySQL
and 7sec for elasticsearch. Then we checkpointed these
application containers right after they were initialized and
restored them on the same host. Restore time for both of
them was less than 500ms, much faster than their startup
time. We are exploring use of Voyager on such platforms
where applications are instantiated by restoring their state
and rootfs is provisioned through data federation and lazy
copy.
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Fig. 2. MySQL Application benchmarking with Voyager migration

V. Conclusion
We presented the design and implementation of Voyager

in this work. Voyager employs a data federation across
source and target hosts to ensure that application is
resumed just-in-time at target host with remote-reads
and local-write data access. Performance overhead of such
federation framework is evaluated to be within 1 − 3%
for common read/write workloads. We are committed to
open-source and further enhanced this work to support
incremental migration for containers, optimize memory
checkpointing/restore and design policy-driven lazy repli-
cation to reduce network overhead.
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