
The Case for System Testing with Swift Hierarchical VM Fork

Junji Zhi
University of Toronto

Sahil Suneja
University of Toronto

Eyal de Lara
University of Toronto

Abstract

System testing is an essential part of software develop-
ment. Unfortunately, comprehensive testing of large sys-
tems is often resource intensive and time-consuming. In
this paper, we explore the possibility of leveraging hier-
archical virtual machine (VM) fork to optimize system
testing in the cloud. Testing using VM fork has the po-
tential to save system configuration effort, obviate the
need to run redundant common steps, and reduce disk
and memory requirements by sharing resources across
test cases. A preliminary experiment that uses VM fork
to run a subset of MySQL database test suite shows that
the technique reduces VM run time to complete all test
cases by 60%.

1 Introduction

System testing is an essential part of software develop-
ment which aims to guard systems against bugs and en-
sure quality [5]. Yet testing large systems is often dif-
ficult. One difficulty lies in configuring a system envi-
ronment for test [19]. Testers may need to prepare hard-
ware, certain versions of drivers, libraries, packages, or
set the applications to certain state. Some non-functional
tests, e.g., stress or performance tests, may even re-
quire more specialized configurations that are difficult to
replicate [10]. In addition, system testing can be time-
consuming. For example, “large tests” in MySQL [16]
and Ballista [7] test suites require up to eight hours and
24 hours to execute, respectively.

Cloud computing creates new opportunities for sys-
tem testing [22, 19, 9]. By configuring a virtual machine
(VM) image with the appropriate testing environment,
developers can boot multiple instances that leverage the
power of the cloud to run a large number of test cases
in parallel. This approach leverages the strong isolation
properties provided by the VM to formulate testing as
an embarrassingly parallel task, where VMs run fully

independent test case. However, we observe that this
approach requires redundant execution of common test
steps, and does not take advantage of the resource shar-
ing opportunities that exists across VMs running differ-
ent tests.

In this paper, we propose to use hierarchical VM fork
to optimize system testing on the cloud. VM fork [14]
mimics the semantics of UNIX process fork at VM level.
It enables the cloning of a VM into multiple child VMs
on the same host or across a cluster. Child VMs inherit
the state from their parent including its memory and disk.
Since most of the relevant data, executables and configu-
rations needed by a clone are already loaded in its mem-
ory by the time of creation, a child VM can readily par-
ticipate in ongoing tasks such as SIMD computations [2].

The proposed approach has the potential to reduce
testing cost on the cloud by eliminating the redundant
test steps and expensive clean-up actions. With VM fork,
common test steps only get executed once as intermedi-
ate state is automatically replicated from parent to child
VM(s). Similarly, because different test cases run in iso-
lation, a VM can be simply terminated when a test case
completes. In addition, a test framework built on top of
VM fork reduces resource requirements by enabling ef-
ficient memory and disk sharing between concurrently
executing test cases.

To determine the potential benefits of the proposed
approach, we conducted a preliminary experiment with
a subset of the MySQL test suite. Because the current
VM fork implementation does not support hierarchical
forking, we used the QEMU snapshots [21] to emulate
this functionality. Even in this non-ideal setting (boot-
ing a new VM out of a snapshot is slow and VMs do not
share memory, only disk), our approach (1) takes 60%
less time to complete than an alternative setup that ex-
ecutes test cases sequentially and (2) requires 29% and
70% less CPU cycles and disk space, respectively, than
a naive approach that runs test cases in parallel but does
not leverage the state sharing opportunities between test



cases.
The rest of this paper is organized as follows: Sec-

tion 2 discusses the related work in system testing on
the cloud. Section 3 introduces our approach and Sec-
tion 4 discusses the challenges and limitations. Then we
present the case study and discuss the preliminary out-
come in Section 5.

2 System Testing on the Cloud

System testing is essential for ensuring software sys-
tem quality [5, 8]. It generally consists of three phases:
system deployment and configuration, test suite execu-
tion, and functional verification or non-functional prop-
erty measurement. System testing can consume a large
portion of software development costs [25].

Each system test case (TC) consists of sequential
steps. Table 1 lists some example TC sequences.

Table 1: Test Sequences
TC# S1 S2 S3

1 A0 B1 C1
2 A0 B1 C2
3 A0 B2 C3
4 A0 B3 C4

For TC#1, the sequence is A0-B1-C1. The rest TCs
are likewise. A TC is considered successful if, after the
execution of all its steps, the system behavior conforms
to the Functional Requirement Specification(s) [5].

Software testing is starting to migrate to the cloud [18,
19, 22, 15]. System testing on the cloud generally has
two execution models: (1) End users request service
providers to prepare a pre-configured environment, in-
cluding OS, web server, database, compiler, testing tools,
etc. and submit their systems or applications and the cor-
responding test tasks. Such model is also named Testing-
as-a-service (TaaS) [25, 24], which exposes services
like test case auto-generation, and test auto-execution
on the cloud, to which end users subscribe; (2) Ser-
vice providers (e.g., Amazon EC2) provide infrastructure
support that allows end users to create independent VMs
and optimize the resource consumption for testing activ-
ities. One example is D-Cloud [9, 3].

We summarize the benefits of porting software test-
ing to the cloud [12, 22, 19, 9]: (1) cost savings by
renting testing infrastructure, (2) accelerated overall test-
suite execution in parallel, with each VM packaged with
the entire operational environment and encapsulating all
dependencies for testing and (3) realistic performance
and scalability testing using large cloud infrastructure as
compared to limited internal infrastructure. Simple VM

checkpointing has also been used for debugging and soft-
ware testing [23, 17, 6, 20]; however, these previous ef-
forts provide limited sharing between VMs and do not
address redundant step execution.

3 Our approach

We make the following observations: (1) There exist
many commonalities or overlapping steps (e.g., system
configuration and test data loading) among TCs. For ex-
ample, the four TCs in Table 1 all share the same step
A0. (2) TCs share the same code base.

To take advantage of the above observations, we pro-
pose to use VM fork as a building block to improve sys-
tem testing efficiency. VM fork is a new abstraction in
virtualization-based cloud computing [14]. VM allows
rapidly cloning a VM into dozens of replicas running
in the same or different hosts. These replicas share the
initial state of their parent and thus are stateful workers
ready to accept tasks.

According to Observation 1 and 2, since there exist
commonalities in test steps and code base, TCs share cer-
tain run-time state, including CPU, disk or memory state.
VM fork can be leveraged to enable spawning multiple
child VMs from a parent on the fly. Each child VM in-
herits all the ready state of its parent and thus is able to
participate in the ongoing testing tasks.

With our approach, TC execution flow changes in two
ways: (1) The common steps only execute once and
then its resulting state is replicated from parent to child
VM(s); (2) VM fork can eliminate the need to execute
clean-up steps by simply recollecting or destroying the
VMs after the TC execution.

Figure 1 illustrates a workflow instance of executing
the TCs in Table 1 with VM fork. Each arrow edge de-
notes a test step and each cube represents a VM instance.
Also, the arrows are tagged with test steps that map to
the TCs that we consider in the case study (Section 5).

The workflow begins when the tester configures the
VM which hosts the System under Test(SUT). Since all
TCs share the common step A0, the base VM is forked
into multiple child VMs after executing A0. Similarly,
since TC#1 and TC#2 share the common step B1, the
VM forks into two instances for these two TCs. To re-use
the common steps, a multi-level VM fork mechanism is
needed which enables forking a VM multiple times dur-
ing its lifecycle and thus re-using any sequence of com-
mon steps. The more efficient the process of spawning a
child VM is, the finer granularity of test step re-use we
can achieve. The end result is that VM workers form
a hierarchical structure. This is in contrast to starting
each VM from scratch and re-doing each configuration
or setup step from the beginning.

2



Figure 1: An Example of Testing Workflow with VM
Fork

The improvements are two-fold: (1) By reusing com-
mon steps among TCs and eliminating the potential
clean-up steps, TC execution require less cumulative VM
run time; (2) Memory and disk requirement are reduced
compared with simply running each TC in a VM.

4 Challenges and Limitations

To achieve the benefits of a testing framework based on
hierarchical VM fork, we need to find an efficient and
practical solution to each of the following challenges:

• Latency and space: The latency of forking VMs is
important. We would like to minimize the over-
head of forking a new VM so that it does not be-
come a dominant factor in test execution. To do
so, a potential approach to optimize VM fork is
to implement the memory and disk copy-on-write.
Snowflock [14] has shown that fast VM cloning is
possible, yet it only implements single-level fork.
In terms of space, since VMs are large entities with
Gigabytes of footprint, forking multiple VMs can
be space-consuming if not done properly. Similar
to the strategy that we discussed to reduce latency,
disk copy-on-write can be used to reduce space con-
sumption.

• When to fork: The decision of when to fork depends
on whether the cost of forking is lower than the ben-
efit of not having to execute the common steps. A
run-time profiling may be needed to analyze the cost
of each test step.

• Where to fork: Forking locally allows the local
memory and storage to be efficiently shared among
VMs. However, the increasing number of VMs
causes pressure on the local host. When the re-
source needs exceed the local capacity, it is prob-
ably wise to spawn a new VM in a remote host,
which achieves scalability and elasticity at the same
time. In the latter case, fork latency is influenced

by the network bandwidth. The decision of where
to fork needs to consider how much forking will
happen down the line. Potentially early forks can
be used to spread the workload across a large num-
ber of hosts and the subsequent ones can be used to
leverage the multiple CPUs on each host.

• VM fork transparency: Requiring test engineers to
rewrite their test suites to leverage VM fork is un-
realistic. Instead, we observe that automatic test
suites tend to be written using well-structured test
scripts (e.g., Listing 1). We hypothesize that it is
possible to leverage static analysis techniques to
identify the re-usable common steps and partition
test execution automatically.

1 # T e s t 1
2 drop t a b l e i f e x i s t s t 1 ;
3 c r e a t e t a b l e t 1 ; # c o n f i g s t e p
4 i n s e r t i n t o t 1 SOME ROWS;
5 d e l e t e from t 1 where CRITERIA1 ;
6 i n s e r t i n t o t 1 DELETED ROWS;
7 drop t a b l e t 1 ; # c l e a n−up s t e p
8
9 # T e s t 2

10 drop t a b l e i f e x i s t s t 1 ;
11 c r e a t e t a b l e t 1 ; # c o n f i g s t e p
12 i n s e r t i n t o t 1 SOME ROWS;
13 d e l e t e from t 1 where CRITERIA1 ;
14 a l t e r t a l b e t 1 add column C1 ;
15 drop t a b l e t 1 ; # c l e a n−up s t e p

Listing 1: Psuedo-SQL code for two MySQL tests

• Fork side effects: For example, child VMs need to
be re-configured so as to avoid IP conflicts with the
parent or each other. For VMs that use remote re-
sources (e.g., file systems, or databases), they have
to reset their IP connections.

A test framework based on VM-fork is not without
some limitations:

• We assume that there exist re-usable overlapping
steps among TCs. We anticipate little or no savings
if such steps do not exist.

• Hosting an SUT in a VM has an impact on the
SUT performance. For some non-functional test-
ing types, such as load testing [1] that requires pre-
cise performance measurement, the existence of the
virtualization layer may introduce undesired over-
heads.

5 A Case Study: Testing MySQL

We conducted a preliminary case study to provide evi-
dence of the potential benefits of the proposed approach.
Because we do not have a working system that supports

3



hierarchical VM fork, we leverage the existing QEMU
snapshot functionality [21] to emulate VM fork. The
forking procedure is as follows: For an interim VM (i.e.,
base VM) that needs to fork into two separate instances,
we use KVM to create one snapshot that is identical to
the base VM. We then boot another VM (i.e. VM2)
based on that snapshot. Since the snapshot uses Redirect-
on-Write [11], all the disk changes by VM2 will be pre-
served in the snapshot delta file (e.g., files with “.qcow”
extension) instead of being committed to the base VM
image. We can execute a TC in VM2 and then discard
the snapshot to prevent that TC from polluting the base
VM. This approach, however, has two limitations: (1)
booting a new VM out of a snapshot is slow and (2) VMs
do not share memory, only disk. Therefore, our results
are conservative.

5.1 System under Test
We experiment with the MySQL(v5.5) “large tests”
suite, which executes the common database operations
on a set of large tables with 274 trillion rows. For sim-
plicity, we use a smaller test table (with 1.1 trillion rows)
in our study. Nevertheless, constructing such a large
test table for each TC is expensive in time and space.
Whereas the complete test suite includes tens of TCs, we
focus our effort on a small subset of 4 representative TCs
that exercise database insert, update, delete, alter, select
and update functions. The TCs are shown in Table 2.

Table 2: MySQL Test Cases
TC# Description

1
Construct a large table, delete a large number
of rows which conform to a certain criteria,
and then inserting the deleted rows.

2
Construct a large table, delete a large number
of rows which conform to a certain criteria,
and then add a new column to the table.

3
Construct a large table, select a large number
of rows which conform to a certain criteria.

4
Construct a large table, update a large number
of rows which conform to a certain criteria.

5.2 Experiment
We run the four TCs in three configurations. The base-
line runs each TC in sequential order in a single host
(Config. I), which is the existing approach of executing
the MySQL TCs. In Config. II, we run each TC in a sep-
arate VM concurrently. In Config. III, we run TCs with
the emulated VM fork. In order to re-use the test steps,
we first identify one common step among four TCs, i.e.,

constructing a large table (insert table), and a common
step (i.e., delete table) between TC#1 and TC#2. There-
fore, forking a VM after these common steps is our way
to re-use the steps. Figure 1 presents the test suite execu-
tion workflow.

5.3 Hardware Setup

Our hardware setup is as follow: the MySQL (v5.5) SUT
is hosted in a 64-bit Ubuntu 12.04 (Kernel v3.2.0) VM.
The size of VM image is 21GB. The KVM hypervi-
sor (v3.8.0) [13] operates on an Ubuntu 12.04 (Kernel
v3.8.0) host OS and a QEMU emulator (v1.0). We also
use libvirt(v1.0.4), a VM management user interface util-
ity, in our experiments. The host OS runs on a physical
machine with a 64-bit 4-Core AMD A10-5700 APU pro-
cessor, 12GB RAM and a 2TB hard drive.

5.4 Experiment Outcome

We run the experiment three times and average the statis-
tics. In Figure 2, the first bar presents the outcome of run-
ning in Config. I and the rest four bars denote Config. II.
Since each TC shares the first step (i.e., insert table), all
bars share a segment of almost the same length (coloured
blue in Figure 2). The blue segment also repeats itself at
the first bar since other three TCs needs to re-execute this
step again.

Figure 3 presents the outcome for Config. III. Com-
pared with Config. I and II, there are two additional types
of cost incurred by the emulated VM fork: the overhead
of creating VM snapshots and booting a new VM from a
snapshot. During the execution of TC#1, its host VM is
checkpointed twice to create two snapshots which are re-
used for other TCs. The checkpointing costs are denoted
by two tiny green segments at the bottom bar in Figure 3.
The cost of booting VMs from snapshot is denoted by
the brown segments of the other three bars.

We also measure the VM snapshot size for each TC
and compare them with the base VM size in Config. I
and II. The result is shown in Figure 4.

We make the following observations:

1. Running TCs in parallel with the emulated VM fork
reduces execution time and its performance is only
limited by the longest TC (i.e., the bottleneck) in the
test suite. More concretely, the bottleneck in Con-
fig. III is TC#1, which takes 401s while executing
TCs sequentially in Config. I consumes 971s. Thus
Config. III consumes 60% less the time of the se-
quential execution

2. Config. III requires less resources to run than Con-
fig. II. The savings come from the fact that there is

4



Figure 2: Serial (Config. I) and Naive Parallel (Config.
II) Runtime.

no need to execute the common steps (i.e., blue seg-
ments in VM #2, #3 and #4 and orange segments
in VM #2) in Config. III. Also, the cost of creating
snapshots in TC#1 is negligible. As a result, testers
do not have to pay for the run time associated with
re-executing these test steps. This is shown in the
cumulative execution time of TCs: Config. III takes
690s in total while Config. II consumes 971s (29%
savings).

3. Creating a snapshot of the base VM for a TC con-
sumes less than 5% disk space of the base VM im-
age(Figure 4). Therefore, Config. III requires only
one base VM image and four snapshots while Con-
fig. II requires four base VMs (70%+ saving).

4. The cost of the test environment configuration step,
which is not shown in the figures, are saved in Con-
fig. III, since any child VMs forked from a par-
ent VM will automatically inherit all its state. Al-
though the process can be automated (e.g., by Shell
scripts) to prepare each VM for test in Config. II,
it requires some engineering efforts to compose and
manage such automation tools or scripts, which is
not needed with VM fork.

6 Conclusion

In this paper, we propose to leverage the technique of
hierarchical VM fork to optimize system testing in a
virtualization-based cloud. Testing on the cloud can
yield the advantage of speeding up TCs by running in
parallel. The proposed approach reduces the cost of run-
ning system tests on the cloud by eliminating the redun-
dant steps among TCs and by allowing VMs to share
memory and disk.

Our preliminary experiment uses an emulated hierar-
chical VM fork implementation to execute a small por-

Figure 3: Hierarchical VM Fork (Config. III) Runtime.

Figure 4: Disk Usage of Snapshots

tion of the MySQL test suite. Even in this limited setup,
our technique reduces the test completion time by 60%
compared to the serial execution, and lowers the CPU
and disk space usage by 29% and 70%, respectively,
compared to a naive approach that runs TCs in parallel
but does not leverage the state sharing opportunities be-
tween TCs.

For future work, we plan to implement the discussed
hierarchical VM fork. We envision a test framework
which incorporates VM fork and facilitates system test-
ing on the cloud.

References
[1] AVRITZER, A., AND WEYUKER, E. J. Generating test suites for

software load testing. In Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis (1994),
ACM, pp. 44–57.

[2] BALMER, K., GOVE, R. J., GUTTAG, K. M., AND ING-
SIMMONS, N. K. Multi-processor reconfigurable in single in-
struction multiple data (simd) and multiple instruction multiple
data (mimd) modes and method of operation, May 18 1993. US
Patent 5,212,777.

[3] BANZAI, T., KOIZUMI, H., KANBAYASHI, R., IMADA, T.,
HANAWA, T., AND SATO, M. D-cloud: Design of a soft-

5



ware testing environment for reliable distributed systems using
cloud computing technology. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (2010), IEEE Computer Society, pp. 631–636.

[4] BERGMANN, S. Phpunit fixtures. http://phpunit.de/

manual/current/en/fixtures.html, 2014. [Online; Ac-
cessed: 2014-05-23].

[5] BRIAND, L., AND LABICHE, Y. A uml-based approach to
system testing. In ł UML 2001The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools. Springer,
2001, pp. 194–208.

[6] CLOUDSTACK. Devcloud continuous tests. https://

cwiki.apache.org/confluence/display/CLOUDSTACK/

Devcloud+Continuous+Tests, 2014. [Online; Accessed:
2014-03-01].

[7] CMU. Ballista os robustness test suite. http://users.

ece.cmu.edu/~koopman/ballista/ostest/ostest_

download.html, 2014. [Online; Accessed: 2014-02-10].

[8] GAROUSI, V., AND ZHI, J. A survey of software testing practices
in canada. Journal of Systems and Software 86, 5 (2013), 1354–
1376.

[9] HANAWA, T., BANZAI, T., KOIZUMI, H., KANBAYASHI, R.,
IMADA, T., AND SATO, M. Large-scale software testing environ-
ment using cloud computing technology for dependable parallel
and distributed systems. In Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Con-
ference on (2010), IEEE, pp. 428–433.

[10] HEDGES, R., LOEWE, B., MCLARTY, T., AND MORRONE, C.
Parallel file system testing for the lunatic fringe: The care and
feeding of restless i/o power users. In Mass Storage Systems and
Technologies, 2005. Proceedings. 22nd IEEE/13th NASA God-
dard Conference on (2005), IEEE, pp. 3–17.

[11] IBM. Ibm developerworks. http://www.ibm.com/

developerworks/tivoli/library/t-snaptsm1/index.

html, 2014. [Online; Accessed: 2014-02-10].

[12] INÇKI, K., ARI, I., AND SOZER, H. A survey of software testing
in the cloud. In Software Security and Reliability Companion
(SERE-C), 2012 IEEE Sixth International Conference on (2012),
IEEE, pp. 18–23.

[13] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. kvm: the linux virtual machine monitor. In Pro-
ceedings of the Linux Symposium (2007), vol. 1, pp. 225–230.

[14] LAGAR-CAVILLA, H. A., WHITNEY, J. A., SCANNELL, A. M.,
PATCHIN, P., RUMBLE, S. M., DE LARA, E., BRUDNO, M.,
AND SATYANARAYANAN, M. Snowflock: rapid virtual machine
cloning for cloud computing. In Proceedings of the 4th ACM
European conference on Computer systems (2009), ACM, pp. 1–
12.

[15] LIU, H., AND ORBAN, D. Remote network labs: An on-demand
network cloud for configuration testing. ACM SIGCOMM Com-
puter Communication Review 40, 1 (2010), 83–91.

[16] MYSQL. Mysql5.5 manual. https://dev.mysql.com/doc/
refman/5.5/en/mysql-test-suite.html, 2014. [Online;
Accessed: 2014-02-16].

[17] ORACLE. Oracle enterprise manager. https://blogs.

oracle.com/oem/entry/snap_clone_instant_

database_on, 2014. [Online; Accessed: 2014-03-01].

[18] ORSO, A., AND ROTHERMEL, G. Software testing: A research
travelogue (2000–2014). In Future of Software Engineering Ses-
sion (FOSE’14), 36th International Conference on Software En-
gineering (ICSE’14) (2014).

[19] PARVEEN, T., AND TILLEY, S. When to migrate software test-
ing to the cloud? In Software Testing, Verification, and Valida-
tion Workshops (ICSTW), 2010 Third International Conference
on (2010), IEEE, pp. 424–427.

[20] PENG, F., DENG, B., AND QI, C. Caste: a cloud-based au-
tomatic software test environment. World Academy of Science,
Engineering and Technology 71 (2012), 2012.

[21] QEMU. Qemu snapshot. http://wiki.qemu-project.org/
Documentation/CreateSnapshot, 2014. [Online; Accessed:
2014-02-25].

[22] RIUNGU-KALLIOSAARI, L., TAIPALE, O., AND SMOLANDER,
K. Testing in the cloud: Exploring the practice. Software, IEEE
29, 2 (2012), 46–51.

[23] VMWARE. Vmware support. https://www.vmware.com/

support/ws55/doc/ws_clone_overview.html, 2014. [On-
line; Accessed: 2014-03-01].

[24] YU, L., LI, X., AND LI, Z. Testing tasks management in test-
ing cloud environment. In Computer Software and Applications
Conference (COMPSAC), 2011 IEEE 35th Annual (2011), IEEE,
pp. 76–85.

[25] YU, L., TSAI, W.-T., CHEN, X., LIU, L., ZHAO, Y., TANG, L.,
AND ZHAO, W. Testing as a service over cloud. In Service Ori-
ented System Engineering (SOSE), 2010 Fifth IEEE International
Symposium on (2010), Ieee, pp. 181–188.

6


