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Abstract. Despite their maturity and popularity, security remains a
critical concern in container adoption. To address this concern, secure
container runtimes have emerged, offering superior guest isolation, as
well as host protection, via system call policing through the surrogate
kernel layer. Whether or not an adversary can bypass this protection de-
pends on the effectiveness of the system call policy being enforced by the
container runtime. In this work, we propose a novel method to quantify
this container system call exposure. Our technique combines the analy-
sis of a large number of exploit codes with comprehensive experiments
designed to uncover the syscall pass-through behaviors of container run-
times. Our exploit code analysis uses information retrieval techniques
to rank system calls by their risk weights. Our study shows that secure
container runtimes are about 4.2 to 7.5 times more secure than others,
using our novel quantification metric. We additionally uncover changing
security trends across a 4.5 year version history of the container runtimes.

Keywords: Secure container runtime · Security quantification · System
call · Container escape · Exploit code analysis.

1 Introduction

Container technology has firmly established itself as an essential component
of modern cloud platforms. All major cloud providers offer various kinds of
container-based services either in the form of directly usable container instances,
orchestrated container environment services, or as an underlying layer for server-
less computing engines [5, 16, 19, 31]. However, the foremost concern of adopting
containers in production firmly remains security [26]. Examples of some infa-
mous vulnerabilities affecting containers include Dirty COW (CVE-2016-5195),
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RunC Container Escape (CVE-2019-5736), and Kubernetes container escape via
eBPF (CVE-2021-31440).

To address the security concerns, there have been recent efforts to design
secure container runtimes such as gVisor [17], Kata [20], Nabla [32], Firecracker [4,
13], and Unikernels [21, 22, 29], amongst others. These focus on limiting a con-
tainerized application’s system call access to the host kernel, to minimize the
possibility of an exploit. The main principle is the employment of a ‘surrogate
or proxy kernel’. This kernel can take the form of a user-space kernel, a library
OS, or a light-weight virtual machine (VM) guest kernel, which lies in front of
the actual host kernel being protected, effectively sandboxing the containerized
applications and preventing them from interfacing directly with the host. The
role of this surrogate kernel is to handle most of the system calls directly and
allow only a reduced subset of system calls to reach the host kernel.

Most claims about the security guarantees offered by the secure container
runtime techniques are qualitative at best [11, 26, 36, 39]. What is missing is a
metric that reflects the quantitative measures of their ‘secureness’, which can
be a useful tool as container technologies continue to evolve. First, it can be
used to track and guide the security hardening processes across the development
iterations of the container runtimes [25]. Second, it enables a direct comparison of
the security strengths of different, and in some cases competing, secure container
runtime alternatives. Lastly, a quantification methodology that reflects the up-
to-date state of vulnerabilities enables observing score changes due to external
factors such as time-varying trends of threats.

Our goal in this work is to measure how well the secure container runtimes
fair at policing or filtering the application-invoked system calls. One approach
for a security metric could be to use the specification of the secure container
runtimes, in terms of the set of system calls allowed to reach the host. However,
the number of system calls in the set alone is not an accurate and sufficient
metric of security. This is because the usefulness or importance of system calls
in exploits differs, and changes over time. Also, it is unclear how to correctly
compare sets not in a proper subset relationship with each other. So the challenge
exists in translating the presence or absence of system calls into a numeric score.

In this paper, we present a novel approach for quantifying the system call
exposure of container runtimes. Our technique, called SecQuant, consists of two
parts: SCAR(System Call Assessment of Risk) and SCED(System Call Exposure
Discovery). In SCAR, SecQuant produces numerical risk weights of system calls
by analyzing existing exploit codes, and applying a variant of the information
retrieval technique—TF-IDF—customized and extended for the security quan-
tification task. In SCED, SecQuant performs comprehensive system call tests inside
the target containers using a purpose-built test suite. It generates one-to-many
mappings between container-invoked system calls and the ones appearing on the
host in response. The outputs from SCAR and SCED are combined to produce
system call exposure scores for the different container runtimes.

Analyzing the container runtimes with our quantification methodology re-
veals several interesting findings. First, secure container runtimes offer 4.2 to 7.5
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Fig. 1: SecQuant architecture for quantifying container system call exposure

times improved (i.e., reduced) system call exposure than their general-purpose
counterparts. Second, in addition to a non-negligible number of pass-through sys-
tem calls reaching the host kernel, the secure container runtimes also generate a
significant number of derived system calls, appearing consistently in response to
the ones invoked by the application. This presents an indirect avenue of exposure
which we account for in our metric. Third, their exposure scores change across
a 4.5 year version history, showing both increasing and decreasing trends across
different runtimes.

2 Secure Containers and Threat Model

In the overall container security landscape, we limit the scope of this work to the
specific case of system call access restriction to the host. Our analysis targets
primarily the host kernel vulnerabilities, which an adversary inside a container
wishes to exploit via possibly crafted system calls. We approach the security
problem from the host perspective, in terms of the reachability of critical sys-
tem calls. For example, if the container runtime uses light-weight virtualization
instead of containerization, then the system call pass-through policy will get
accounted towards the container runtime’s exposure score.

We assume an untrustworthy guest container, either instantiated directly by
an adversary, or compromised to gain control by them. The goal of the adversary
is then to attack the host, or other colocated guests, from within this guest
container, for malicious gains such as privilege escalation, denial of service, data
corruption, information leak, and service theft, amongst others [18].

We set the scope of our analysis to exploits which leverage vulnerabilities
exposed by system calls. For example, the exploits targeting the Dirty COW
vulnerability (CVE-2016-5195) abuse a race condition in the kernel by rapidly
calling madvise system call and write system call on /proc/self/mem for priv-
ilege escalation. One way in which secure container runtimes protect against
such attacks is by policing system call invocations made from the guest. This is
typically achieved by employing a surrogate kernel to handle a majority of the
system calls and allowing only a few necessary ones to reach the host.



However, this does not necessarily imply that the system calls that do reach
the host from the applications are passed down through the surrogate kernel to
the host kernel as-is. The host-reaching system calls may be a ‘translated’ set of
system calls assembled by the surrogate kernel in response to the system calls
the applications invoke. During this process, the application-level system calls
may be extended with additional ones, replaced by compatible ones, sanitized, or
queued up for batching. For example, gVisor implements a portion of the Linux
system functionality in an application kernel written in Go. Kata containers is
essentially a light-weight VM with its own guest kernel. And Nabla container
wraps an application with a userspace library OS, which implements almost all
of the system call functionality tailored to the application.

Depending upon the system call policy enforced by a secure container run-
time, an adversarial guest may succeed in its attack. For example, Kata containers

have been shown to be vulnerable to the buffer overflow exploits [35]. In this
work, we quantify this system call exposure of the different secure container
runtimes. We trust the host system’s integrity and assume that it is not already
compromised. We base our measurements on publicly available exploit codes,
assuming they are representative of real-world attacks.

3 Design of SecQuant

Figure 1 shows the overall architecture of our SecQuant approach to quantify
system call (or syscall, used interchangeably) exposure of container runtimes.
It consists of two independent components: (i) SCAR: System Call Assessment
of Risk, and (ii) SCED: System Call Exposure Discovery. SCAR is container-
independent and determines the risk weights associated with system calls by
analyzing existing exploit codes. These per-syscall risk weights are generated by
employing static code analysis as well as dynamic experiments, in conjunction
with information retrieval techniques. SecQuant’s second component, SCED, ex-
amines the system call reachability and host-kernel pass-through behavior for a
given container runtime. By using a systematic exploration of syscall-level access
via a custom test suite, it emits a 1:n mapping between a syscall made at the
application-level to the syscalls reached the host-level. Finally, the output of the
two components, per-syscall risk weights and syscalls-per-container, are com-
bined together to produce an overall Container System call Exposure Measure
(CSEM) for the container runtime. This CSEM metric essentially quantifies how
well the container runtime fairs at policing the application-invoked system calls.
We use it to (i) compare the security posture across different container runtime
alternatives, and (ii) analyze evolution across different versions (Section 5).

3.1 SCAR: System Call Assessment of Risk

The goal of SecQuant’s SCAR component is to determine a risk weight associ-
ated with each syscall. The intuition is to convert the occurrence frequencies of



different system calls in existing exploit codes, into a numerical measure encap-
sulating the importance of each syscall in attacking the host. Figure 1(a) shows
the steps involved in extracting syscall risk weights, described as follows.

Step 1- Input Data: SecQuant ingests three different types of input data:

1. Exploit codes: From ExploitDB [1], Project-Zero [2], and a few other stan-
dalone git repositories, we collected 298 exploit codes written in C and tar-
geting the Linux kernel.

2. Exploit Metadata: The exploit codes extracted from the aforementioned
vulnerability databases are augmented with metadata such as their CVE-ID,
release date, and CVSS scores from NVD, wherever applicable.

3. Library function Call Graph: To facilitate the extraction of syscalls from
the library functions used in an exploit, we use the library function call graphs
from CONFINE [14] and refine it.

Step 2- Exploit Code Analysis: The objective of this step is to build a
complete set of system calls being used by each exploit code. While it is possible
to put efforts into directly running the exploits to uncover the syscalls used [26],
such an approach can be challenging to properly set up and difficult to automate.
Hence, we rely mostly on a static analysis approach. Since high-level code rarely
invokes system calls directly, relying instead on library functions, we need to
discover syscalls being invoked indirectly by these library calls. To collect the
syscall set for each exploit code, we first identify the library functions it uses,
and then use a mapping between the library functions and the corresponding
syscalls being employed underneath. The specific details are described next.

1. Exploit-to-Libc Mapping: Instead of directly parsing the C syntax of the
exploit codes, we use the LLVM Intermediate Representation (IR) to identify
the library functions in the codes. LLVM IR uses the prefix character ‘@’ for
library functions, making it easier to recognize them.

2. Libc-to-Syscall Mapping: The next step is to identify the reachable system
calls for different library functions extracted from the exploit codes. We use the
state-of-the-art for such libc-to-syscall mapping, CONFINE, which uses static
code analysis to build a function call graph from the libc source code, terminating
with system calls at the leaves. The challenge, however, is the accuracy of the
call graph, especially in the case of function pointers, which results in either
missing system calls or reporting a bloated set as reachable. We found certain
errors in CONFINE’s libc-to-syscall mapping, in both over and under estimating
the reachable system calls, especially when the mapping is not 1:1. In such
cases, we use a custom test suite to call the corresponding library functions
and collect the system calls reaching the host kernel using ftrace. Using such
refinement over CONFINE, we are able to map almost 90% of the libc functions
to at-most two system calls each. We limit our scope to only the libc functions
and their corresponding arguments appearing in our exploit codes, and not the
entire 2000+ APIs. Linking the exploit codes with another C library such as



musl would possibly change the system call mappings. We leave this comparison
for the future exploration. In addition to the libc, we also extract system calls
from functions of other libraries used in the exploits, e.g. libfuse, libecryptfs,
libpcap, libaio, etc.

3. Direct Syscall Detection: In some exploit codes, we observe direct invo-
cations of system calls through INT or SYSCALL instructions, which bypass the
libc library. Such carefully crafted system call invocations are likely to be key to
the intended attack in the exploit codes. We directly parse such inline assembly
codes to identify the syscalls being employed.

Step 3- System Call Risk Weight Assignment: After extracting the syscalls
being used by the exploit codes, the next step is to assign a risk weight to each
syscall based on its importance to the exploits. One approach is to use the pro-
portion of exploit codes a syscall appears in, as an indicator of its associated
risk. However, this may not appropriately capture its degree of risk. A syscall
may appear in many exploit codes simply because it is part of a commonly used
initialization procedure. On the other hand, it may appear in only a few exploit
codes, but be critical to successfully exploit the corresponding vulnerabilities.

To address this challenge, we adopt a popular technique, TF-IDF, used in
the Information Retrieval (IR) domain to compute the relevance of words to a
particular topic across documents. TF, the Term Frequency, captures the idea
that the more frequently appearing terms are likely more important to the con-
tent of the document. IDF, the Inverse Document Frequency, penalizes the term
weights if they appear in many documents since it implies that such words are
common and carry less relevance to any specific topic. Adopting TF-IDF to our
security context, the term is mapped to a system call, while document is mapped
to the exploit code. However, we observe that such näıve translation is insuffi-
cient. While the rationale of IDF holds true in our setting, the rationale of TF
may not necessarily hold. Specifically, adhering to the IDF rationale, a syscall
widely used across many exploit codes is less likely to be a syscall playing a
key role in the attack logic. The observation that the most used system calls in
exploit code are close, brk, exit and nanosleep also supports this. However, in
contrast to the TF rationale, just because a syscall appears frequently within
an exploit code (i.e., used repeatedly in a single type of attack), it does not
necessarily mean that it is more important to the attack than less frequent ones.

Thus, we introduce another component—Class Frequency (CF)—to replace
the role of TF. We define CF as the proportion of exploit codes a particular
syscall appears in within a class. A class is defined as a subset of exploit codes
grouped by common characteristics, such as the vulnerability being leveraged,
or the attack methodology, amongst others. The intuition is that if a syscall
consistently appears across the exploit codes within the same class, then it pre-
sumably plays a key role to the attack logic for that class. Note the contrast to
IDF which considers a syscall with more appearances across the entire exploit
codes as less relevant. If a syscall is indeed crucial to a specific class of exploits,
it will render the CF value high. At the same time, this value will be countered



by IDF if the syscall appears frequently throughout other exploit codes as well.
The information we currently use to realize the class concept is the CVE-ID [12]
associated with each exploit code.

Metric Formulation: Our metric to calculate system call risk weights is de-
noted as CF-IDF, obtained by combining the two components. Formally, let s,
e and E denote a system call, an exploit code and the set of all exploit codes,
respectively. We use Ce to indicate the class, subset of E, of which e is a member.
The smallest size of Ce is 1. That is, an exploit code can be the sole member of
a class. Also, the set of syscalls used in a specific exploit code e is denoted as σe.

The IDF component is represented as a vector, computed using the generic
IR formulation as:

idf(s, E) = log|E|

(
|E|

|{e|s ∈ σe}|+ 1

)
(1)

Note that we use the size of E as the base of log in order to keep the IDF value
within 0 and 1 as well. The term {e|s ∈ σe} is the set of exploit codes within
which s exists. Equation 1 gives us a lower value as the system call appears in a
larger number of exploit codes.

The CF component is represented as the fraction of exploit codes which
contain the syscall s amongst all exploit codes belonging to the class Ce. It can
be viewed as a DF (Document Frequency) metric for each class. It also contains
the normalized CVSS score (to [0,1] range) to reflect the vulnerability severity
of the CVE that the exploit code belongs to. Formally, CF is represented as:

cf(s, Ce) =
1

10
CV SSe ×

|{e|s ∈ σe, e ∈ Ce, Ce ⊆ E}|
|Ce|+ 1

(2)

The overall CF-IDF value (V) is computed by multiplying both components,
and represented as 2D data consisting of syscalls and exploit codes, as:

V (s, e) = cf(s, Ce)× idf(s, E) (3)

Finally, a per-syscall risk weight (W) is calculated by averaging its CF-IDF
values across all exploit codes, as:

Ws =

∑
e V (s, e)

|{e|s ∈ σe}|
(4)

3.2 SCED: System Call Exposure Discovery

While SecQuant’s SCAR component computes risk weights for different system
calls, SCED determines which of these system calls are accessible under the differ-
ent container runtimes (Figure 1(b)). This information is gathered by executing
test programs within a given container runtime, and observing which syscalls
reach the host-kernel. We developed our own test programs instead of using ex-
isting tools such as LTP [28] or Syzkaller [37]. Their focus is somewhat different



(e.g. stress testing), which made the cost of extending them significantly greater
than rewriting. Their heavy use of library calls, instead of direct syscall invoca-
tions, made it difficult to add necessary modifications. We thus created a custom
test suite limited to the 185 syscalls found in the exploit codes we collected.

System Call Tracing: Depending upon how a container runtime handles the
application-invoked system calls, different behavior can be observed on the host:

– No system calls whatsoever seen at the host kernel
– Identical system call arriving at the host kernel
– Syscalls arriving at the host kernel including the application-invoked syscall
– Syscalls arriving at the host kernel without the application-invoked syscall

We use the ftracemechanism to detect these cases, while running our test suite
inside the container(s) to exercise all target system calls. We tightly enclose all
syscall statements inside the test programs with the ftrace’s trace-marker write
actions, to accurately pinpoint the begin and end markers in the ftrace logs.
Then, the host-reaching syscall set is identified by locating the sys enter events
within these markers. We also set the event-fork option to include all the child
processes that may be spawned along the way.

Even with the use of the trace-marker to narrow down the exact time range,
the ftrace logs can contain syscalls from other parallel threads, which can incor-
rectly inflate the derived syscall set. We use domain knowledge specific to the
container runtimes to identify the relevant threads, and filter the logs accord-
ingly to collect only the syscall events triggered by the original syscall of the test
program.

The trace-marker approach works for most container runtimes we experiment
with, except Kata, sysbox, and LXC. In case of Kata, mounting the tracefs filesys-
tem inside the container (VM, technically) is problematic. As a marker for Kata,
we instead use the fsync syscall (repeated fixed number of times as a signature),
which we found to be a stable and immediately responsive pass-through syscall.
getpgid syscall similarly serves as a marker for sysbox and LXC.

Traced System Call Types: We further categorize the system calls that reach
the host kernel into the following groups:

– Pass-through: These include the application-level system calls which eventu-
ally end up reaching the host kernel, either as-is or after any argument san-
itization. We additionally include a notion of equivalent system calls for this
category—system calls with different syscall numbers but sharing the same
kernel function for execution (Appendix Table C.1). If a syscall results in
triggering such equivalent syscalls, it is considered a pass-through.

– Derived: It refers to the system calls generated by the container runtime (and
reaching the host kernel) in response to an application-invoked system call,
excluding the pass-through if any. These can be differentiated into:
• Workload-dependent: The set of system calls necessary to carry out an

application-invoked system call. One application-invoked syscall may be
translated, replaced or converted into a sequence of multiple syscalls.



Table 1: Example host-reaching syscall data for open as an output of SCED
runsc-ptrace

Observed syscalls Count Caller process
futex 20 gofer, sandbox
ptrace 10 sandbox
openat 4 gofer
newfstat 4 gofer
wait4 2 sandbox
fcntl 2 gofer
sendmsg 1 gofer
recvmsg 1 sandbox
dup 1 gofer
close 1 gofer

kata-qemu
Observed syscalls Count Caller process
futex 6 pool, virtiofsd
write 3 pool
read 3 virtiofsd
ppoll 3 virtiofsd
openat 3 pool
setresuid 2 pool
setresgid 2 pool
newfstatat 1 pool
geteuid 1 pool
getegid 1 pool

• Architecture-dependent: The set of system calls that are consistently gen-
erated and reached the host kernel for every application-invoked syscall,
owing to the container runtime’s architectural characteristics. It may be,
for example, due to the specific syscall interception mechanism used, or
from the auxiliary components for the container management.

SCED results in host-reachability data for each system call for a given container
runtime. Table 1 shows an example for the open system call for two container
runtimes—gVisor and Kata. The output contains a list of observed syscalls with
the occurrence count and the originating process name. As can be seen, calling
open inside the containers results in a large number of derived system calls,
together with its pass-through equivalent—openat.

3.3 Container Syscall Exposure Measure

The complementary information gathered and computed by SecQuant’s SCAR and
SCED components, in terms of risk-weights-per-syscall and syscalls-per-container
respectively, are finally combined together to generate the overall container sys-
tem call exposure measure—CSEM. Formally, let S be the complete list of known
system calls. Computing CSEM requires three inputs: (i) from SCAR: the per-
syscall risk weight vector W = {Wi|i ∈ S}, (ii) from SCED: the entire list
of observed system call sets, D, in which Ds refers to a single set of system
calls observed to be induced from a system call s, and (iii) a reduction ratio r
(0 ≤ r ≤ 1), controlling the risk-weight contribution of the derived system calls.
Pass-through system calls are given the whole risk weight values from Ws if s
exists in Ds. Derived system calls are applied the reduction ratio and averaged
over the set size of Ds. Finally, CSEM is defined as:

CSEM(W,D, r) =
∑
s

∑
d∈Ds

(
Ws · I(s, d) +

Wd · r
|Ds|

(1− I(s, d))
)

(5)

where I is an indicator function selecting the correct terms while going through
syscalls in Ds, testing if two given syscalls are identical or not, as:

I(s, d) =

{
1 if s = d
0 otherwise

(6)



Table 2: CF-IDF correctly capturing similarity within exploit code groups. Sim-
ilarity scores are against the first exploit code in each group.
Group Grouping Criteria Exploit-ID (source) CVE-ID Similarity

G-I
Same CVE.

Keyring object reference mishandling with crafted keyctl.
PrivEsc, DoS.

40003 (exploit-db)

CVE-2016-0728

-
39277 (exploit-db) 1.0
2016-0728A (git) 1.0
2016-0728B (git) 1.0

G-II
Same CVE.

Incorrect integer data type via crafted perf even open.
PrivEsc.

33589 (exploit-db)
CVE-2013-2094

-
26131 (exploit-db) 1.0
25444 (exploit-db) 1.0

G-III
Different CVE but same vulnerability type.

Improper traversal via crafted epoll create and epoll ctl. DoS.
35403 (exploit-db) CVE-2011-1083 -
35404 (exploit-db) CVE-2011-1082 0.764533

G-IV
Different CVE but same vulnerability type.

Lack of validation with bpf.
PrivEsc.

2021-31440A (git) CVE-2021-31440 -
2020-8835A (git)

CVE-2020-8835
1.0

2020-8835B (git) 1.0
2021-3490A (git) CVE-2021-3490 0.975811
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Fig. 2: Comparison of risk weight vectors of exploits in Group II showing visually
very similar signatures for all three group members (Table 2). The key system
call, perf event open is identified correctly to have the highest weight.

4 System Call Analysis Results

4.1 Verification of CF-IDF Metric

We first provide empirical justification supporting the soundness of the CF-IDF
metric we use to assign risk weights to system calls. The CF-IDF scores in its 2D
form, which is the collection of vectors with the length equal to the number of
syscalls, can be considered as signatures that represent the characteristic of ex-
ploit codes. If our assumptions and intuitions behind CF-IDF are valid, it would
generate similar signatures (i.e., vector of risk weights) for the exploit codes that
are truly similar in their nature. We analyzed all exploits using domain knowl-
edge and classified them as similar groups if the vulnerability was located in
the same kernel component or the method for triggering the vulnerability was
similar. We present such a similarity comparison in Table 2. It shows four ex-
ample groups each containing similar kinds of exploit codes. Column 5 shows
the similarity scores generated using cosine similarity between our risk weight
vectors for the different exploit codes. As can be seen, the generated similarity
scores are high within each group. This can also be seen in Figure 2’s vector
distribution, which is very similar for all exploits within a group (and different
across groups; shown in Appendix Figure A.1). This corroborates the effective-
ness of our CF-IDF metric in being able to capture the unique characteristics of
different exploit (groups) in terms of system call composition and risk weights.



Table 3: Partial (top-70) ranked list of system calls by the risk weights obtained
from the SCAR process. Full list given in Appendix Table A.1.
Rank Syscall Weight Rank Syscall Weight Rank Syscall Weight Rank Syscall Weight

1 capset 0.439551 19 futimesat 0.30329 37 shmget 0.244536 55 pwrite64 0.21538
2 add key 0.409431 19 inotify rm watch 0.30329 37 shmat 0.244536 55 set mempolicy 0.21538
3 recvmmsg 0.392371 19 inotify init1 0.30329 37 sigaltstack 0.244536 55 readv 0.21538
4 getresuid 0.388023 19 restart syscall 0.30329 37 setxattr 0.244536 55 sched getaffinity 0.21538
4 sendfile 0.388023 19 utimensat 0.30329 41 symlink 0.244057 55 shmdt 0.21538
4 io uring reg 0.388023 24 clock nanosleep 0.303143 42 getcwd 0.244007 60 mremap 0.212287
7 shutdown 0.335366 25 umount2 0.295618 43 fchmod 0.240128 61 inotify init 0.210391
8 settimeofday 0.334059 26 chown 0.286681 44 modify ldt 0.237571 62 sched yield 0.206736
9 rename 0.329819 27 link 0.284955 44 clock gettime 0.237571 63 recvmsg 0.205074
10 creat 0.329663 28 dup3 0.272522 46 process vm readv 0.237358 64 getegid 0.204785
11 keyctl 0.32028 29 eventfd2 0.269163 47 writev 0.235578 65 fallocate 0.202194
12 fchown 0.316477 30 msgsnd 0.267191 48 getdents 0.234431 65 sysctl 0.202194
12 flock 0.316477 31 sched setscheduler 0.264745 49 sendmmsg 0.232625 65 move pages 0.202194
12 mknod 0.316477 32 inotify add watch 0.261581 50 syslog 0.232287 68 shmctl 0.200075
12 mq notify 0.316477 32 waitid 0.261581 51 mount 0.226888 69 msgctl 0.199029
12 io setup 0.316477 34 msgget 0.254518 52 rmdir 0.224417 70 dup 0.197707
12 io submit 0.316477 35 pipe2 0.25433 53 getgroups 0.219776 ... ... ...
12 kcmp 0.316477 36 chmod 0.248783 54 select 0.216088 185 close 0.026151

4.2 System Call Risk Weights

Table 3 shows the output of SecQuant’s SCAR component, in terms of a ranking
of syscalls by their risk weights computed using the CF-IDF metric (partial
list shown due to space constraints; full list in Appendix Table A.1). As per
SCAR’s analysis, the capset system call gets assigned the highest weight, while
close gets ranked the last. The high weight assignment to capset is owing to
the exceptionally high CVSS score (10/10) of the only CVE that it belongs to—
CVE-2000-0506. Appendix B uses concrete examples to show how the various
interdependent factors—CVSS scores, number of exploits, and CVE class size—
affect the system call risk weights.

Note that the last syscall in the list should not be interpreted as a harmless
syscall because, although ranked the last, it is given a rank because it played a
part in composing the attack logic in some of the exploit codes. The fact that
it is on this list already implies a substantial degree of utility to the attacks.
Similarly, it is not always the case that a syscall with a higher rank is always
riskier than nearby syscalls with slightly lower risk weights. This is because the
final risk weight of a syscall is an average of values of a vector across exploit
codes as expressed in Equation 4.

4.3 Pass-through System Calls across Containers

Table 4 shows the output of SecQuant’s SCED component, in terms of the syscall
handling behavior of different container runtimes. As expected, the trace results
of general-purpose container runtimes (runc, crun, sysbox, and lxc) contain
mostly pass-through syscalls and a small number of derived syscalls. On the
contrary, Kata containers and gVisor generate a large number of derived syscalls,
passing only about 20% of application-side syscalls through the runtime layer.

Table 5 shows a list of pass-through syscalls we captured from gVisor and
Kata containers runtimes. The gVisor and Kata containers runtimes pass through
different set of system calls, the risk weights of which eventually impact the



Table 4: Number of pass-through/non-pass-through system calls
Container runtime # of Pass-through syscalls # of Non-pass-through syscalls # of Tested syscalls

runc 176 (93.6%) 12 (6.4%) 188
runsc-ptrace 37 (19.5%) 153 (80.5%) 190
runsc-kvm 35 (18.6%) 153 (81.4%) 188
kata-qemu 43 (22.5%) 148 (77.5%) 191
kata-clh 44 (22.2%) 154 (77.8%) 198
crun 181 (95.8%) 8 (4.2%) 189
sysbox 181 (91.9%) 16 (8.1%) 197
lxc 187 (94.9%) 10 (5.1%) 197

Table 5: Pass-through system calls for runsc and kata runtimes. Equivalent sys-
tem calls are shown as X→Y. SCAR rank is given in parenthesis.

runsc-ptrace (weight rank) kata-qemu (weight rank)

utimensat(23), futimesat(19) → utimensat(23),
fchmod(43), chmod(36) → fchmod(43),
pwrite64(55), write(173) → pwrite64(55),
getdents64(76), getdents(48) → getdents64(76),
ptrace(86), tgkill(103), ftruncate(133), wait4(157),
pread64(171), munmap(172), nanosleep(174), openat(179),
open(175) → openat(179), creat(10) → openat(179),
fstatfs, statfs(90) → fstatfs, fstat(180) → fstatfs,
renameat, rename(9) → renameat, mkdirat, mkdir(75) → mkdirat,
linkat, link(27) → linkat, readlinkat, readlink(107) → readlinkat,
fchownat, fchown(12) → fchownat, chown(26) → fchownat,
symlinkat, symlink(41) → symlinkat, unlinkat, lchown, fsync

utimensat(23), futimesat(19) → utimensat(23), fallocate(65),
getdents64(76), getdents(48) → getdents64(76), futex(89),
ftruncate(133), connect(150), renameat2(166), write(173),
openat(179), open(175) → openat(179), creat(10) → openat(179),
close(185), pwritev2, pwritev, writev(47) → pwritev,
fchmodat, chmod(36) → fchmodat, fchmod(43) → fchmodat,
fstatfs, statfs(90) → fstatfs, mknodat, mknod(14) → mknodat,
renameat, rename(9) → renameat, mkdirat, mkdir(75) → mkdirat,
linkat, link(27) → linkat, readlinkat, readlink(107) → readlinkat,
fchownat, fchown(12) → fchownat, chown(26) → fchownat,
symlinkat, symlink(41) → symlinkat,
unlinkat, unlink(128) → unlinkat, lchown, fsync

overall exposure measure for the container runtimes (Section 5.1). In determining
the pass-through system calls, we use the concept of system call equivalence. If
a container invokes a system call X (e.g., open), and we observe a system call Y
(e.g., openat), they are not a pass-through in a strict sense. However, if X and Y
share the code at the function level in the kernel, we view them as identical and,
thus, pass-through. Arrows in Table 5 and 6 indicate these relationships. Note the
ranking order of the lists with some syscalls out of place, e.g., getdents and creat.
These syscalls get assigned the weights of their equivalent syscall counterparts
(Section 3.2), which they are always replaced with by the container runtime.

A large part of pass-through syscalls are file I/O related since the data has
to physically travel in and out of the container runtime. This holds true even for
the Kata containers which is a light-weight VM with its own guest kernel.

5 Container Runtime Security Analysis

In this section, we analyze the security posture of container runtimes using our
CSEM metric. We use LXC, runc, crun, and sysbox as baseline container runtimes,
and gVisor and Kata containers as secure alternatives. The gVisor runsc uses a
userspace surrogate kernel, intercepting application-level syscalls using either
ptrace (runsc-ptrace) or KVM (runsc-kvm). Kata uses a light-weight VM to run
the user application, relying on either QEMU (kata-qemu), Firecracker [13]5 or
Cloud Hypervisor (kata-clh) [10] as VM hypervisors. Host and container runtime
version information can be found in Appendix C. We do not include unikernel-
inspired container runtimes such as Nabla [32] in our study, since they require
varying degrees of effort to make general applications (including our test suite)
run on them—a by-product of their generality vs. security trade-off.

5 Firecracker unsupported in Kata 2.x as of conducting this study.
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Fig. 3: CSEM score comparison of container runtimes. Lower is better. (a) Across
all reduction ratios. (b) Selected reduction ratios 1○, 2○ and 3○ from (a).

5.1 Container Syscall Exposure Measure Scores

Figure 3(a) compares the CSEM scores of different container runtimes. The graph
shows the change of CSEM scores as we vary the reduction ratio on the x-axis.
Recall that the reduction ratio governs how much the weights of the derived
system calls contribute to the final CSEM score. A reduction ratio of 0% means
that the derived system calls are given the full risk weights as determined by the
SCAR analysis. On the other hand, the reduction ratio of 100% implies derived
system calls are ignored, and only the pass-through system calls are taken into
account towards CSEM scoring. Overall, as expected, gVisor and Kata have much
lower CSEM scores than the baseline container runtimes, and exhibit higher
sensitivity to the changes in reduction ratio owing to a higher proportion of
derived system calls, as shown in Table 4.

Given that the value of the ideal reduction ratio is subjective, Figure 3(b)
shows the CSEM score differences at three spots chosen from Figure 3(a). Spot
1○ is the CSEM score where derived system calls are treated equally to the pass-
through system calls. This is only a theoretical configuration, not conforming
to any expected practical setting. This is especially disadvantageous for the
container runtimes that tend to generate many derived system calls as the CSEM
score of gVisor (runsc-ptrace) shows. On the other extreme, CSEM score at Spot
3○ is where only the pass-through system calls are used in the calculation. The
assumption here is that the derived system calls are not useful or easily craft-able
for an adversarial attack, which seems unlikely as well.

Spot 2○ considers a more reasonable setting of reducing risk weights of de-
rived system calls by 90%. This reflects the intuition that derived system calls
can also likely, albeit with some difficulty, be exploited and hence deserve some,
but smaller, risk weights. Figure C.1 in Appendix shows the contribution of each
system call types to the CSEM score. A majority of the derived system calls turn
out to be architecture-dependent rather than application workload-dependent.
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5.2 Historical Trends Across Versions

We now present a case study of using our CSEM metric to analyze the changing
trends of the security posture of container runtimes. Across a 4.5 year history, we
track 31, 35 and 22 versions of runc, gVisor and Kata respectively. Figure 4 shows
the trends of the changing CSEM scores for the different container runtimes:

• runc(Docker): Steady for the whole measurement period.
• runsc-ptrace: Exhibits an increasing trend in the long-term (TREND-1), but
a decreasing trend in the short-term (TREND-4).

• runsc-kvm: Has a slightly increasing trend (TREND-2).
• Kata-qemu: Has a decreasing long-term trend (TREND-3).
• Kata-clh: Insufficient data points for trend analysis.

Overall, the observations from the previous Section hold across time—both of
Kata and gVisor naturally being better than runc. The increasing trend of gVisor
and the decreasing trend in Kata can be explained by analyzing the changes in
their pass-through system calls (bigger contribution to CSEM scores—Appendix
Figure C.1) across versions. This can be seen in Table 6, comparing the system
calls between two opposite ends of the version history. For gVisor, the syscall
count has increased over time, and the risk weights of newly added syscalls are
higher than the ones removed. For Kata, the risk-weight ranks of recent version
decrease and the syscall count decreases as well.

Additionally, we identify four places of interest in the figure which exhibit a
sudden change of CSEM scores, labeled as Event-1 through Event-4:

• Event-1: Our tracking tests resulted in a weight increase in 53 syscalls in
Docker v18.03.0. This was mostly because of the appearances of epoll wait

and futex syscalls. Docker release notes mentioned a version bump-up for
runc, containerd and golang, which we believe to be the cause of changes in
the derived syscall sets. The pass-through sets were unchanged.



Table 6: Differences of pass-through system calls between the first and the last
versions of container runtimes

Runtime Version Count Syscalls unique to this version (Risk weight rank)

20180610 33 getrandom, sched setaffinity(96)
runsc-ptrace

20210906 37
utimensat(23), futimesat(19) → utimensat(23), openat(179),

munmap(172), nanosleep(174), fstat(180) → fstatfs

kata-qemu
1.5.4 46

gettimeofday(102), newfstatat(no rank),
recvmsg(63), sendmsg(114)

2.1.1 44
connect(150), fallocate(65), nanosleep(174),
renameat2(166), unlink(128) → unlinkat

• Event-2: The score drop in Kata v1.8.0 is due to the disappearance of write
and futex from the derived syscall set, which otherwise contribute significantly
to the overall CSEM score (18% and 9% respectively). On cross-verification
with the release notes, this was a result of QEMU upgrade in Kata.

• Event-3: Starting with runsc-ptrace v20191210, one architecture-dependent
derived syscall disappeared—getcpu. It makes the CSEM score larger by caus-
ing the denominator smaller in the Equation 5 for all syscalls. This can be
traced to getcpu being replaced by a golang API, as per the gVisor patch
note.

• Event-4: A second score drop in Kata, this time in v1.12.0, is due to the dis-
appearance of gettimeofday and clock gettime, leading to a further reduction
in derived system calls from 5 to 3.

Historical analysis presented in this section, made possible by SecQuant,
demonstrates the important utility of quantifying the syscall exposure. It en-
ables us to compare the degree of syscall exposure between container runtimes
and uncover hidden trends. Associating the score changes with production events
provides us with deeper insights.

6 Related Work

Attack Surface and Risk Metrics. Existing research proposes ways to mea-
sure the attack surface of a host kernel and how to quantify its security risk.
Kurmus et al. [23] define attack surfaces of a kernel as a set of entry functions,
the associated call graphs, and a set of barrier functions. Williams et al. [41, 40]
use ftrace-based system call coverage as a proxy for attack surface. Li et al. [24]
developed a risk metric based on popular paths through the kernel to evaluate
their LibOS based scheme for securing privileged kernels. These works do not
discuss how to assess the risks of system calls with respect to how they are
used by exploits. Nayak et al. [33] utilize a large collection of real-world exploits
as a basis for their analysis on the vulnerabilities of systems and their attack
surfaces. Cheng et al. [9] developed three security metrics: the vulnerable host
percentage, CVSS severity score, and compromised host percentage to evaluate
the general security of an enterprise network based on vulnerability assessment.
However, these works do not offer a methodology to statistically analyze the
risk of system calls. Bernaschi et al. [7] presented a system call classification
based on function and threat level. However, their analysis is limited to buffer
overflow-based attacks, and their 4-level threat classification method is difficult
to expand and update due to subjective criteria.



Measuring Container Security. Works that attempt to evaluate the security
mechanisms of containers and their runtimes by analyzing the design and ar-
chitecture of the respective containerization technology also exist [34, 6]. Other
researchers have deployed known vulnerabilities and exploits to assess the iso-
lation and security promises of containers and their runtimes [30, 26, 42]. For
example, Lin et al. [26] deployed 88 known exploits to measure and analyze how
Docker containers fare against them. This collection of exploits includes attacks
against both the applications in the container as well as the host kernel. Wu
et al. [42] evaluated five cloud-based container offerings against selected attacks
that were chosen to exploit specific security mechanisms that were identified to
be lacking in those particular offerings. However, none of these works developed
a methodology for scoring the risks of system call usage found in exploits and
their associated effects on the security of container runtimes.

System Call Extraction. We build upon works that devise mechanisms for
extracting system calls from programs for the purpose of debloating/specializing
the kernel or automatically generating seccomp profiles. Ghavamnia et al. [14,
15] have used static analysis to build out system call mappings for libc and tar-
get applications as well as whole containers create tight seccomp policies. They
evaluated the security benefit of their works using a list of critical system calls
derived from exploit programs as well as system calls linked to CVEs. Unfor-
tunately, they do not specify the methodology in which the criticality of the
system calls was derived nor do they provide any ranking among the security-
critical/affected system calls. Similarly, works from Abubakar et al. [3] and Olu-
fogorehan et al. [38] generate system call lists from target applications using a
static analysis approach. Bulekov et al. [8] build a mapping between system calls
and PHP APIs. Lopes et al. [27] perform dynamic analysis by running the target
application and using unit testing combined with fuzzing to come up with their
system call list. These works all have common elements with our work in how
we extract the system call list.

7 Considerations for Improvements

As this is the first attempt, to the best of our knowledge, to quantify the syscall
behavioral aspect of secure containers, there are several promising improvements
and challenges yet to be addressed. Although each topic may lead to in-depth
discussion, we only briefly outline them here due to space constraints.

• Benign application: Incorporating known benign applications into the syscall
analysis can further improve the validity of our syscall risk weights. For ex-
ample, if some system calls are found to be used heavily in exploit codes, but
not in benign applications, this may be a ground to increase the risk weights.
However, the challenge is to select benign applications that are representative.

• Argument checking of system call tracing and the need for systematic argu-
ment fuzzing: Current SCED process for testing the syscall path-through be-
havior can be made more accurate and comprehensive by extending test cases
with systematic argument fuzzing. Our experience suggested that syscall pass-
through behaviors can vary by syscall argument values. In addition, we need



to enhance our implementation to better observe argument values and how
one syscall translates into another while passing through the proxy kernel.

• Validity of using exploit codes publicly available: Exploit codes we used are all
publicly available ones. This may raise a concern that some of these open ex-
ploit codes may not resemble the real, unknown ones. Our current assumption
is that the core part of the attack logic remains similar since they are based
on the same principle. However, as we find more exploit codes, we can easily
incorporate them into our automated analysis and adjust scores.

8 Conclusion
In this work, we presented a novel syscall exposure quantification technique, Sec-
Quant, for secure container runtimes. SecQuant works by combining the system
call risk weights obtained from IR-based analysis on a large set of exploit codes,
and the system call pass-through/filter behavior of runtimes through extensive
experimentation. Our analysis revealed several interesting syscall pass-through
behaviors with varying types and numbers of syscalls reaching the host kernel.
According to our metric, secure container runtimes have 4.2 to 7.5 times smaller
syscall exposure. We have also found that there exist both increasing and de-
creasing trends in syscall exposures of container runtimes. SecQuant can further
be improved by employing more accurate syscall-to-exploit mapping techniques
and more general and accurate pass-through test platforms in the future. Espe-
cially, a technique for comparing the arguments of application and host-arrived
syscalls can enable more sophisticated quantification.
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A Complete Ranking of System Calls by Risk Weights
We provide a complete list of system calls ranked by the risk weights calculated
by our CF-IDF methodology in Table A.1.

0

0.2

0.4

T
F

-I
D

F
-C

D
F 33589 (exploit-db) 26131 (exploit-db) 25444 (exploit-db)

(a) Group Ⅰ

(b) Group ⅠⅠ

(c) Group ⅠⅠⅠ

(c) Group Ⅳ

0

0.2

0.4

T
F

-I
D

F
-C

D
F

40003 (exploit-db) 39277 (exploit-db)

2016-0728A (git) 2016-0728B (git)

0

0.1

T
F

-I
D

F
-C

D
F 35404 (exploit-db)

35403 (exploit-db)

0

0.1

0.2

0.3

T
F

-I
D

F
-C

D
F

2021-3490A (git) 2021-31440A (git)
2020-8835A (git) 2020-8835B (git)

C
F

-I
D

F
C

F
-I

D
F

C
F

-I
D

F

C
F

-I
D

F

Fig.A.1: Visual comparison of the similarity between risk weight vectors of exploits
within different groups



Table A.1: List of syscalls ranked by risk weights obtained by SCAR
rank system call weight rank system call weight rank system call weight rank system call weight rank system call weight

1 capset 0.439551 37 shmat 0.244536 75 mkdir 0.193169 112 pipe 0.139035 149 setgid 0.104811
2 add key 0.409431 37 sigaltstack 0.244536 76 getdents64 0.188096 113 getppid 0.138948 150 connect 0.103625
3 recvmmsg 0.392371 37 setxattr 0.244536 77 llseek 0.187949 114 sendmsg 0.136639 151 prlimit64 0.101779
4 getresuid 0.388023 41 symlink 0.244057 77 getpriority 0.187949 115 setresgid 0.136633 152 seccomp 0.101097
4 sendfile 0.388023 42 getcwd 0.244007 79 setns 0.187368 116 uselib 0.136261 153 stat 0.100942
4 io uring register 0.388023 43 fchmod 0.240128 80 msgrcv 0.185928 116 msync 0.136261 154 setitimer 0.092306
7 shutdown 0.335366 44 modify ldt 0.237571 81 getsockname 0.184515 118 mincore 0.135555 155 setsockopt 0.091907
8 settimeofday 0.334059 44 clock gettime 0.237571 82 setrlimit 0.175967 119 uname 0.135125 156 lseek 0.087384
9 rename 0.329819 46 process vm readv 0.237358 83 getrlimit 0.175651 120 pause 0.134133 157 wait4 0.084849
10 creat 0.329663 47 writev 0.235578 83 sync 0.175651 121 vmsplice 0.130688 158 exit group 0.080511
11 keyctl 0.32028 48 getdents 0.234431 85 splice 0.174387 122 alarm 0.128849 159 getpid 0.078393
12 fchown 0.316477 49 sendmmsg 0.232625 86 ptrace 0.169211 123 setresuid 0.128281 160 ioctl 0.077965
12 flock 0.316477 50 syslog 0.232287 87 setpriority 0.167943 124 gettid 0.128004 161 arch prctl 0.073672
12 mknod 0.316477 51 mount 0.226888 88 userfaultfd 0.167438 125 epoll create1 0.126591 162 rt sigaction 0.072893
12 mq notify 0.316477 52 rmdir 0.224417 89 futex 0.166319 125 setgroups 0.126591 163 kill 0.069353
12 io setup 0.316477 53 getgroups 0.219776 90 statfs 0.165307 125 umask 0.126591 164 access 0.068628
12 io submit 0.316477 54 select 0.216088 91 dup2 0.164186 128 unlink 0.126579 165 exit 0.06426
12 kcmp 0.316477 55 pwrite64 0.21538 92 accept 0.164048 129 time 0.123122 166 renameat2 0.063323
19 futimesat 0.30329 55 set mempolicy 0.21538 93 perf event open 0.163461 130 socketpair 0.122321 167 sysinfo 0.061537
19 inotify rm watch 0.30329 55 readv 0.21538 94 poll 0.15674 131 geteuid 0.121388 167 setreuid 0.061537
19 inotify init1 0.30329 55 sched getaffinity 0.21538 95 getsockopt 0.15602 132 setuid 0.120857 169 socket 0.059526
19 restart syscall 0.30329 55 shmdt 0.21538 96 sched setaffinity 0.155237 133 ftruncate 0.1204 170 rt sigprocmask 0.058141
19 utimensat 0.30329 60 mremap 0.212287 97 timerfd create 0.154563 134 mlock 0.119328 171 pread64 0.055834
24 clock nanosleep 0.303143 61 inotify init 0.210391 97 timerfd settime 0.154563 135 setsid 0.119298 172 munmap 0.055819
25 umount2 0.295618 62 sched yield 0.206736 99 unshare 0.153808 136 epoll ctl 0.116779 173 write 0.055482
26 chown 0.286681 63 recvmsg 0.205074 100 fcntl 0.153628 137 sendto 0.115332 174 nanosleep 0.055054
27 link 0.284955 64 getegid 0.204785 101 madvise 0.152935 138 setpgid 0.113589 175 open 0.05293
28 dup3 0.272522 65 fallocate 0.202194 102 gettimeofday 0.151181 139 getgid 0.113317 176 getuid 0.052282
29 eventfd2 0.269163 65 sysctl 0.202194 103 tgkill 0.150511 140 getresgid 0.113173 177 mprotect 0.049306
30 msgsnd 0.267191 65 move pages 0.202194 104 personality 0.150292 140 adjtimex 0.113173 178 execve 0.04722
31 sched setscheduler 0.264745 68 shmctl 0.200075 105 listen 0.148191 140 timer create 0.113173 179 openat 0.043193
32 inotify add watch 0.261581 69 msgctl 0.199029 106 prctl 0.146587 140 memfd create 0.113173 180 fstat 0.040249
32 waitid 0.261581 70 dup 0.197707 107 readlink 0.144822 144 epoll wait 0.108171 181 clone 0.035285
34 msgget 0.254518 71 io uring enter 0.194227 108 chroot 0.142477 145 set tid address 0.107822 182 brk 0.034785
35 pipe2 0.25433 71 io uring setup 0.194227 109 bpf 0.142335 145 set robust list 0.107822 183 read 0.032339
36 chmod 0.248783 73 chdir 0.19396 110 recvfrom 0.140137 147 bind 0.106639 184 mmap 0.03019
37 shmget 0.244536 74 iopl 0.193403 111 epoll create 0.139559 148 rt sigreturn 0.1059 185 close 0.026151

B Break-down of Sample Risk Weights
To gain better understanding of ranks and scores presented in Section 4.2, we
provide four sample system calls shmdt, capset, add key and io uring register

with details of how the scores are computed.
The first example shows the impact of CVSS scores for the same CVE class

size. Although both shmdt and capset appear only in one exploit code each
(CVE-2019-15666 and CVE-2000-0506, respectively), they have very different
risk-weight rankings—55 vs 1. For shmdt, the IDF value is 0.88, but the CF is
only 0.245 because of the low CVSSv2 score 4.9. On the other hand, capset has
the same IDF value but CF of 0.5 because of the high CVSSv2 score 10.

In the case of add key and io uring register, the size of the class affected
the rank (2 vs. 4) following the Equation 2. Since add key appear in three ex-
ploit codes belonging to CVE-2016-8655 and io uring register appear in two
exploit codes belonging to CVE-2020-29534, it grants the IDF score of about
0.76 to add key and about 0.81 to io uring register. The CVEs of add key and
io uring register have the same CVSS score (7.2) but the class size (3 vs. 2)
is different. Thus, 0.75 and 0.67 are multiplied by the normalized CVSS score.
Eventually, io uring register has a higher IDF score than add key, but the total
weight is lower.

C Experiment Setup
runc v1.0.0-rc10. gVisor v20210906. Kata v2.1.0. Host: Ubuntu 20.04 / Linux 5.11.
For historical trends, running older versions of container runtimes required setup
of compatible environments including older OS versions, e.g. Ubuntu 16.04 /
Linux 4.4 for Docker. glibc v2.33 used for extracting libc-to-syscall mapping.



Table C.1: System call groups that share kernel functions
Syscall Group Shared Kernel Fxn

open, openat, creat do sys open
link, linkat do linkat

mkdir, mkdirat do mkdirat
mknod, mknodat do mknodat
symlink, symlinkat do symlinkat
readlink, readlinkat do readlinkat

read, pread64 vfs read
readv, preadv, preadv2 vfs readv

rename, renameat
do renameat2

renameat2

Syscall Group Shared Kernel Fxn

unlink, unlinkat do unlinkat
chmod, fchmod, fchmodat chmod common

statfs, fstatfs do statfs native
utimensat, utime
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Fig. C.1: CSEM score break-down by system call types at 90% reduction ratio
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