EnVi: Energy Efficient Video Player for Mobiles

Sahil Suneja
University of Toronto, Canada
sahil@cs.toronto.edu

Eyal de Lara
University of Toronto, Canada
delara@cs.toronto.edu

ABSTRACT

Watching online movies and TV shows while on the go is
rapidly becoming one of the most common uses of smart-
phone. Unfortunately, sustained use of the cellular interface
for long-standing data transfers severely reduces the battery
life of the device. This paper introduces EnVi, a signal-
aware scheduler that saves energy for mobile downloads by
scheduling data transfers when signal quality is expected
to be good, and avoiding communication in other periods.
EnVi uses a self-calibrating approach that does not require
assistance from the network, or knowledge of the user’s route
and future signal profile. EnVi is robust to signal profile
changes due to time of day effects, different cell tower asso-
ciations and new cell tower deployments. In a preliminary
evaluation on a suburban train route, our EnVi video player
achieved average radio energy savings of 20.7%, going upto
as high as 32.5%.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network

Architecture and Design— Wireless communication; C.5.3

[Computer System Implementation]: Microcomputers—
Portable devices; B.8.0 [Performance and Reliability]:

General

General Terms

Algorithms, Design, Experimentation, Measurement, Per-
formance

Keywords
Energy; Mobile; Video; 3G; HSPA; Fast Dormancy

1. INTRODUCTION

With near-ubiquitous availability of high speed cellular
internet access, mobile users are becoming extensively in-
volved in streaming online music and radio (e.g. via Pan-

dora), and watching online movies, and TV shows (e.g. Youtube,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CellNet’13, June 25, 2013, Taipei, Taiwan

Copyright 2013 ACM 978-1-4503-2074-0/13/06 ...$15.00.

Vishnu Navda
Microsoft Research India
navda@microsoft.com

Ramachandran Ramjee
Microsoft Research India
ramjee@microsoft.com

1400: .\ = H— Power per RSSI . 3 —
1300 - *X+ Throughput per RSSI 4 . X 25 g
] - . m
= 1200+ L : L2 £
= 1100+ g S 15 2
g 1 < XN e
2 10004 x - 1 |'E
-9 1 x | %
4 ~ r =
900] —_ * 0.5 3
800 T T T T T T T T T 0 =

-100 -90 -80 -70 -60 -50

RSSI

Figure 1: Power and Throughput vs. RSSI

Netflix) on their smartphones and tablets while on the go.
However, sustained use of the cellular interface for long-
standing data transfers can reduce the battery life of the
device significantly, for example a typical smartphone with
a fully charged battery only lasts around 3 hours while view-
ing a YouTube video stream [5].

Furthermore, under mobility, when radio communication
is carried out during periods of poor signal quality, energy
per bit transferred is almost a factor of 6x higher compared
to that at good signal conditions owing to a combination
of lower data rates and increased power draw (figure 1). In
a mobile setting, by sensing the operational environment,
there is an opportunity to reduce energy drain by schedul-
ing data transfers when signal quality is expected to be
good, and avoiding communication in other periods. This
technique is particularly suitable for applications that are
amenable to soft deadlines for their data transfers, such as
on-demand media streaming. When the playout buffer is
sufficiently full, downloading of data can be paused when-
ever signal quality degrades, without triggering a disruption
in video playback. This reduces wireless energy consump-
tion without hurting user experience.

This paper presents EnVi, a signal-aware scheduler that
runs locally on the mobile device, and EnVi Player, an
energy-efficient video player that minimizes battery drain
during realtime video download. EnVi uses a simple thresh-
olding scheme where the download is triggered whenever
the instantaneous signal value goes above a certain signal
threshold, and paused when the signal drops below a certain
threshold. EnVi self-calibrates the values of these thresholds
using local history of signal strength and network through-
put that it builds up as the trip proceeds. This approach
enables EnVi to adapt to the user’s mobility pattern, maxi-
mizing energy saving while ensuring that the user’s experi-
ence is not degraded. A key strength of EnVi is that it is a
self-contained approach that does not require any privacy-

sensitive knowledge of the user’s route or future signal pro-
file. EnVi also does not require assistance form the network
and is able to adapt to different signal conditions.

EnVi employs simple practical heuristics to deliver radio
energy savings in diverse real world settings with its vari-
ous constraints and corner cases. Unlike a closely related
previous work- Bartendr [8], EnVi does not require any ex-
tensive calibration phase to profile signal quality variations
for each user traveled route. Thus, EnVi works even when
there are detours in previously traveled routes, and more
importantly on entirely new routes as well. EnVi is also re-
silient to variations in the speed of the user’s movement, and
signal profile changes due to time of day effects, different cell
tower associations and new cell tower deployments.

We have implemented EnVi Player on Android and Win-
dows 7 phones. A preliminary evaluation of the prototype
conducted on a popular suburban train route produced avg.
radio energy savings of 20.7%, going upto as high as 32.5%.

2. RELATED WORK
2.1 Mitigating Radio Tail Overhead

Cellular radios incur high energy drain after each data
transfer while transitioning from active state (CELL_DACH)
to idle state, which is commonly referred to as the radio tail
overhead. By batching multiple short data transfers into
fewer longer transfers one can reduce the number of radio
tails [2]. Other approaches invoke a network API call called
fast-dormancy to cut down the tail energy by forcing the
radio to quickly go to a low energy idle state [6]. Studies [5]
have shown that many mobile applications such as Youtube
do not efficiently use the available network bandwidth, and
effectively keep the cellular radio in high power active for
long durations of time. Wireless energy savings of up to 80%
can be achieved by downloading video chunks at the highest
possible rate to build up enough playout buffer, and quickly
move to idle state by invoking fast-dormancy. In this pa-
per, the naive approach we use as baseline downloads video
stream at full-throttle rate. Thus, energy savings achieved
by EnVi are over the best possible download protocol for
video streams proposed by previous studies. In addition,
EnVi is focused on mobile settings where signal variations
are taken into account for downloading each video chunk.

2.2 Reducing Communication Energy

Prior related work regarding reducing radio energy con-
sumption requires knowledge about the user’s mobile us-
age context, while EnVi does not and starts afresh every-
time without requiring any information about the user’s fu-
ture route or signal profile. BreadCrumbs [4] maintains a
personalized / trained mobility model per user, using past
observations of networking conditions associated with GPS
locations, and a Wi-Fi AP quality database. Context-for-
Wireless [7] also requires training on and maintaining user-
mobility and usage-context history to select either Wi-Fi or
cellular network for communication based on network con-
dition estimation, except for its ‘Hysteretic Estimation’ al-
gorithm that works for short data transfer intervals wherein
network conditions don’t change often, not applicable in our
break-free media streaming under mobility’ scenario.

Other approaches to saving radio energy include exploit-
ing multiple radio interfaces [7], batching & prefetching [1],
and rate adaptation [9]. EnVi’s savings are obtained by

only exploiting the signal strength variability in the 3G/H+
cellular networks, and can be complemented with these tech-
niques in the form of WiFi-offloading, multiple parallel video-
chunk downloads and per video-chunk bitrate optimization.

Of all the previous studies, Bartendr [8] is the closest work
to EnVi. Bartendr predicts future signal quality based on
data collected during past drives on the same route. Using
future signal predictions, Bartendr employs a dynamic pro-
gramming algorithm to compute the schedule for download-
ing video chunks within their specified deadlines such that
the total energy consumed for data transfer is minimized.
Signal prediction assumes that the speed along any given
route does not change significantly over multiple runs, and
thus Bartendr is not resilient to variations that are typical
of user mobility. Moreover, when signal profiles change due
to time of day effects or due to new cell tower deployments,
the calibration efforts need to be redone. Bartendr is able
to schedule downloads only on routes for which signal pro-
file exists, thus does not work on new routes or even when
there are minor detours in earlier routes. EnVi on the other
hand does not use signal-profiles but recent-history-based
heuristics to adapt to changing signal conditions.

2.3 Channel-state based Scheduling

Cellular base-stations use channel state information to
perform fine grained scheduling [3] at ms granularity for
downlink transmissions to active users in a cell. The objec-
tive is to maximize efficiency of channel usage and increase
aggregate network throughput. EnVi on the other hand is
a client initiated communication based on several factors-
current channel state, future signal predictions, application
deadline, and energy consumption. The scheduler in base-
station does not have this level of context about clients, and
thus cannot schedule / buffer packets at the granularity of
10s of seconds.

3. DESIGN

We have the following three design goals, motivated from
real-world constraints:

o Unhampered user experience- the data download strategy
should not negatively impact media playback.

e No server-side modifications- the solution should be com-
pletely local to the device and not require any server-side
modifications, for a seamless deployment.

e Robust- the solution should work on arbitrary user routes
with unknown signal conditions.

3.1 Scheduling Algorithm

The basic idea behind an energy aware scheduling algo-
rithm is to preferentially prefetch data when the signal is
good and hold off downloading when the signal quality de-
grades, so long as there is sufficient data in the playout
buffer. In order to do this, there are three key challenges
that need to be addressed.

First, given no apriori knowledge of signal conditions, we
need to figure out what is a ’good’ signal. A simple static
high threshold for a good signal (e.g., -60dbm) will not be
robust to various provider networks/user routes. Thus, we
need a mechanism where threshold for good signals is dy-
namically determined based on history of observed signals.
Second, even with dynamic thresholds, future signal condi-
tions may be significantly different from the past. Thus, we

need a way to adapt the thresholds as conditions change.
Third, cellular radios incur a tail-energy overhead [2] every
time the radio is turned on/off. Thus, the algorithm has to
avoid frequent radio on/off episodes.

The scheduling algorithm is shown in Figure- Algorithm
1. At a high level, we divide the video into multiple chunks,
impose deadlines for each chunk download completion based
on the video playout rate, and download them indepen-
dently. A chunk represents the smallest granularity of data
transfer unit. The chunk size is determined by the bitrate (5
sec worth of video, in experiments). With each chunk that
gets downloaded, the intermediate deadlines are updated de-
pending upon the average recent chunk transfer time, to
account for the current network characteristics. A moving
recency-time-window (30 sec. in experiments) is maintained
to continuously update expected chunk transfer times. We
now discuss how the algorithm addresses the aforementioned
challenges.

Radio tail overhead. To address the radio tail overhead
challenge, we employ three techniques. First, we use fast
dormancy [5] to proactively put the radio in a low powered
state (IDLE or CELL_PCH) on poorer signals, and bring it
back up to a high power transmission state (CELL_DACH)
when the signal quality improves. While fast dormancy is
more energy efficient than incurring the full radio tail, it still
consumes significant energy (roughly 1W x 3.5 s). Thus,
we also enforce min_radio_up_time (line 4), wherein, once
the radio is turned on, we continue to download for atleast
this duration (4 x 3.5 seconds, in our experiments), in order
to amortize the tail overhead. Finally (not shown in the
algorithm), we handle signal spikes by a) using smoothed
signal values and b) building in a hysteresis to the algorithm
so that even if signal spikes down momentarily, if good signal
values have been seen in the recent past, we continue with
the next chunk download.

1 while chunks remaining do
2 rssi = getCurrentRssi()
3 thpt = getRecentThpt (rssi)
// schedule next chunk transfer, contingent on
following conditions
4 if radio_on and !min_radio_up_time then
5 ‘ download chunk irrespective of rssi;
6 else
7 if rssi in top recent_rssi_p_thresh percentile and
8 rssi in top overall_rssi_p_thresh percentile and
9 thpt in top thpt_p_thresh percentile then
10 ‘ start downloading chunk;
11 else
12 if chunk deadline near then
13 download chunk irrespective of rssi;
14 deadlineEnforcedThreshUpdate (rssi)
15 else
16 ‘ if radio_on then stop downloading chunks
and invoke fast dormancy;
17 end
18 end
19 end
20 end

Algorithm 1: EnVi’s Scheduling Algorithm

Dynamic thresholds. In order to determine what is a
good signal to download data in a robust manner, we use
past history to determine our thresholds dynamically. How-
ever, we found that a single dynamic threshold based on
recent history is not robust to the varied conditions seen dur-
ing our experiments. Thus, our algorithm employs a combi-
nation of three different thresholds to determine good signal

conditions to download data on (lines 7-9). Our thresholds
are based on relative percentiles rather than absolute val-
ues of the cellular signal (referred to as rssi- received signal
strength indicator) and data throughput.

e recent_rssi_p_thresh: The current signal must surpass this
percentile threshold of rssi values seen in recent history
(aforementioned recency-time-window), to be potentially
selected for data transfer. This threshold tries to ensure
that the data transfer happens on only the best of the
signals seen recently.

e overall_rssi_p_thresh: The current rssi must surpass this
percentile threshold value of rssi values seen in the en-
tire communication history, to be potentially selected for
data transfer. We need this parameter in addition to re-
cent_rssi_p_thresh to avoid local sub-optimal decisions, i.e.
when the signal strengths have generally been poor re-
cently. Thus, even if current rssi is amongst the best of
the recent poor lot, it is not a good candidate overall un-
less it is in the top owverallrssi_p_thresh as well. On the
other hand, we cannot rely only on overall_rssi_p_thresh;
recent_rssi_p_thresh adapts faster to changing conditions,
allowing the use of higher thresholds if recent signal con-
ditions are much better than overall values.

e thpt_p_thresh: Recent throughput observed for the cur-
rent rssi X must surpass this percentile threshold value of
throughputs observed for rssi X in the past, to be poten-
tially selected for data transfer. This ensures that even if
the current rssi is amongst the very best, but if we have ob-
served lower throughputs recently for this rssi than what
has been generally seen, then it is perhaps better to wait
for this, possibly transient, phase to subside (e.g, due to
transient congestion, interference, hand-off, etc.).

The percentile thresholds are aggressively set to 95% ini-
tially, but adapt automatically as follows.

Adaptive thresholds. While the above thresholds are
dynamically determined based on past history, the user may
encounter a future that is significantly different from the
past. When this happens, we need to update the thresholds
to reflect this new reality. One feedback mechanism that
identifies such a scenario is the deadline-based forced down-
load wherein a chunk is forced to be downloaded, irrespective
of signal, because its deadline is close (deadlineEnforced
ThreshUpdate (), line 14, algorithm 1). In such a case, if a
lower rssi is used for the forced download, while a higher rssi
X was left unused earlier, we have paid a higher energy cost
owing to tighter thresholds for rssi X. But since we main-
tain history information, we are able to figure out the reason
behind not selecting rssi X earlier, and determine the condi-
tions that would have allowed rssi X to be used during the
higher rssi readings in the past. We do this by backtrack-
ing in time to detect which thresholds to tweak for rssi X
amongst the 3 aforementioned ones, and what corresponding
percentile values to set the thresholds to. The threshold(s)
are restored back to their original percentile value(s) after
some chunks have been downloaded on rssi X (in experi-
ments, 2 x number of chunks downloaded on poorer rssi).

3.2 Scheduler in Action

Figure 2 shows a typical experimental run, highlighting
how the scheduling algorithm adapts to the varying signal
conditions to maintain a break-free energy-efficient media
playback. Initially, to buildup a reasonable-sized playout

RSSI

a ——Signal Variation

----- Data Schedule
-100 | ()
-110

1 e

\wau (PAN =X ~Off
0 2000 4000 6000 8000
Time [x100ms]

Figure 2: EnVi’s data scheduling behaviour

buffer, signal-agnostic data download is initiated. As the
session proceeds, when coming across poor signal quality
(case ’a’ in the figure), the scheduler pauses intermediate
chunk downloads, deadline permitting. A signal-agnostic
naive scheme would have continued downloading in such a
scenario, thereby paying a higher radio energy cost. Upon
detecting better signal conditions, the radio is turned back
on, but the radio is not immediately turned off if the sig-
nal suddenly turns poor — the radio continues to stay on
for the min_radio_up_time in order to balance the overhead
of invoking fast dormancy (case ’b’). As the run proceeds,
the scheduler manages to avoid poorer signals (case 'c’), but
sometimes chunk deadline constraints may require an imme-
diate download, irrespective of signal, so as to maintain a
break-free playback (case 'd’). In this case, data was down-
loaded at a signal quality poorer than what had been left
unused in the past (case ’c’). On detecting this, the sched-
uler relaxes the selection criteria (i.e., lowering thresholds
for what qualifies as a good signal), thereby increasing its
probability of selection in the future (case ’e’).

4. IMPLEMENTATION

We implemented EnVi on two platforms — Windows Phone
7 (WP7) and Android 2.2. A screenshot of the WP7 EnVi
application is shown in Figure 3, where a video from YouTube
server is being played along with the recently seen signal
values and the status of the download protocol. YouTube
server allows us to download a video stream using the high-
est possible bitrate (without rate throttling) starting at any
arbitrary position in the video by specifying the start time
relative to the beginning of the video. EnVi automatically
determines these parameters for the user requested YouTube
video, and encodes it in the HT'TP request URL to fetch in-
dividual video chunks.

EnVi registers with the OS to obtain updates when the
signal strength sensed by the device’s telephony component
changes. After each chunk gets downloaded, the sched-
uler uses this current signal value in it’s decision regarding
whether or not to terminate the current connection and put
radio to fast dormancy. Once that happens, the scheduler
wakes up every 100ms to read the current signal value and
decides whether to initiate a new connection for the next
chunk and put the radio back up to its high power state.

For carrying out controlled experiments, we also set up a
TCP server that emulated YouTube server, and used EnVi
to download video streams of certain length and bitrate as
specified in the particular experiment. Instead of perform-
ing full video playback each time, we kept the screen on
throughout our experiments to take display energy into ac-

count. This might affect overall savings but not radio energy
component. Any other side effects this introduces equally
affects the compared schedulers.

URL referred sin01s06.v12

Figure 3: EnVi YouTube player on WPT7

S. EVALUATION

We conducted trace-driven simulations and real-world ex-
periments to compare EnVi against other schedulers.

5.1 Simulation experiments

We gathered 51 traces while driving around on multiple
routes in two cities with different operator networks — (1)
Airtel 3G network in Bangalore (Blr), India and (2) Bell
4G /H+ network in Toronto, Canada. An application on the
phone continuously downloaded data from a server on the
Internet at full throttle speed during the drive. The trace
consisted of per second timestamped samples of instanta-
neous RSSI (dBm), power consumed (mW) and download
throughput (Kbps). The workload for experiments consisted
of downloading streams of different lengths for two popular
video bitrates — 240p (384 Kbps) and 360p (768 Kbps), and
an audio bitrate of 192 Kbps. For comparison, we com-
puted the radio energy savings achieved by four different
scheduling algorithms over a Naive scheme that downloads
the stream in one go from the time the request is initiated.
These algorithms differ in the amount of knowledge that
they have regarding both past as well as future information,
and thus serve as good reference points for evaluating EnVi.

e Oracle: Algorithm that has complete knowledge of both
future signal and throughput values; Optimal download
schedule is computed using the dynamic programming al-
gorithm described in Bartendr [8]. This provides an upper
bound on possible energy savings.

e Oracle_RSSI: Algorithm with complete knowledge of only
future signal values; throughput values are estimated from
historic traces for each RSSI level. Thus, signal prediction
is assumed to be perfect in this scenario, but the actual
throughput achieved is unknown.

e Bartendr: Bartendr algorithm with knowledge of only
past traces for each route; this predicts future signal strength
values based upon the device’s location in the current run.
As a result, the future signal and throughput values at all
points in the run are only estimates, possibly inaccurate.

e EnVi: the proposed local heuristic algorithm that knows
only about the recent history in the current run.

5.1.1 Savings observed with simulations

Figure 4 shows the energy savings observed over the Naive
policy, averaged over 16 traces for Bangalore and 35 traces

@
e
°

OEnVi
HOrcale_RSSI

I @Ooracle

192kbps 240p 360p

BN W A g
e o 2 o 9
© © © o ©°

Energy Savings over Naive [%]
o
°

@
=
o

EBartendr
OEnVi

W Oracle_RSSI
0 OOracle

a
=
°

IS
=

w
1=
o

N
=
o

=
(=
o

Energy Savings over Naive [%]

(=
°

192kbps 240p 360p
Bitrates
Figure 4: Energy savings over Naive; Above: Blr,
Below: Toronto; Stream Length = {10,20} mins

for Toronto. Shown are the 25th percentile, median and
75th percentile values of the savings recorded for each al-
gorithm. We are able to fairly compare with Bartendr for
Toronto since we collected traces on an inter-city train with
fixed routes and timing schedules. This precise location in-
formation is used for Bartendr’s training. Table 1 compares
the following for Toronto’s traces (corresponding table for
Bangalore is omitted for space constraints): (i) percentage
reduction in radio on time over Naive, (ii) fast dormancy
tail counts, and (iii) average increase (improvement) in sig-
nal (dBm) during communication as compared to Naive.

As can be seen in figure 4, for Bangalore, EnVi manages
to save around 54% of the possible energy savings on aver-
age. Comparing with Oracle_RSSI scheme, which assumes a
perfect match of signal strengths for the current trip to pre-
vious runs, EnVi is able attain 73% of the formers savings.
For Toronto, the corresponding numbers are 37% and 47%
respectively. Finally, EnVi performs much better than Bar-
tendr when the current trip’s signal profile (signal strength
vs. location) varies quite a bit in comparison to previously
travelled routes because different travel speeds and/or dif-
ferent cell tower associations are seen. It should be noted
that if the comparison was made on new routes for which
Bartendr did not have any signal profile information before-
hand, Bartendr wouldn’t have been able to function, while
EnVi would have continued to provide similar savings.

As evident from these figures, savings can be further im-
proved (Oracle_RSSI) if accurate future signal profile and
route information is available as in public transportation.
We are exploring a hybrid algorithm that employs EnVi,
when there is no history or when route / signal profile info
does not align with the expectation, otherwise switches over
to Bartendr that performs well on trained routes.

EnVi is able to save radio energy even when it incurs more
tail costs (table 1). Higher tail count is due to the fact that
since EnVi has no knowledge about the future signal qual-
ity, it has to take scheduling decisions on the fly to balance
between the demands of a disruption-free experience and
energy-efficient playback. However, by dynamically adapt-
ing to changing conditions as the trip proceeds and down-
loading data on locally optimal conditions, EnVi is able to
save on the amount of time the radio stays in a high power
transmission state, thereby reducing battery drain.

Comparing energy savings for the two cities, we observe
higher savings for Bangalore’s traces than for Toronto. This

192kbps | 240p | 360p

Radio Uptime Savings

EnVi 21.7% 18.9% 15.3%
Bartendr 8.7% 13.1% 9.5%
Oracle_RSSI 32.8% 29.4% 21.6%
Oracle 44.7% 38.2% 30.2%
Intermediate Tails
EnVi 3.7 6.0 9.6
Bartendr 1.1 2.4 3.1
Oracle_RSSI 1.7 3.0 4.4
Oracle 2.2 3.2 4.3
AAverage RSSI
EnVi 3.7 3.3 2.2
Bartendr 1.1 0.9 0.1
Oracle_RSSI 5.1 4.9 2.9
Oracle 5.8 4.5 2.7

Table 1: Improvements over naive, Toronto

192kbps | 240p | 360p
AAverage RSSI [dBm]
EnVi 12 10.2 8
Oracle_RSSI 13.5 13.4 10.8
Oracle 12.9 12.4 10.7

Table 2: Improvement in rssi over naive, Blr

is because the proportion of poorer signal strengths seen in
Bangalore’s traces is much more than Toronto as can be seen
in the cdf in figure 5. Thus there is more opportunity to save
energy on Bangalore’s network. This is also corroborated by
comparing the AAverageRSSI metric in Tables 1 and 2.

Also, we find that for lower bitrates energy savings are
higher since the scheduler can afford to wait a bit longer
while the playout buffer gets consumed at lower rates. This
provides more opportunity to find better signal conditions.

Finally, figure 5 also shows that for both cities sufficient
energy saving opportunities exist in normal user routes, char-
acterized by a good proportion of poorer signal strengths, to
exploit the signal variability for scheduling data transfers on
good signals while avoiding the bad ones. This, combined
with figure 6’s observations (omitting similar trend for Ban-
galore) that throughputs also vary for each signal value itself
along the user route, enable EnVi to be even more selective
in scheduling data transfers and thus saving radio commu-
nication energy further.

5.2 Real-World Experiments
5.2.1 Setup for live app testing

We compared EnVi and Naive policy during real world ex-
periments using two identical Android phones (Acer S100).
We installed EnVi player on one of the phones and signal-
agnostic Naive scheme on the other. We conducted multiple
runs on a 30 min. long train route, and ran workloads sim-
ilar to the one in simulation experiments. The two phones
start a data stream request at the same time for each run.

5.2.2 Savings observed on live runs

Overall energy consumption for a trip is calculated from
the periodic OS-broadcasted ’current battery level’ updates
that our app subscribes to. Battery consumption, and en-
ergy savings, calculated in this fashion includes the energy
from all 3 components: (i) radio communication, (ii) screen
display, and (iii) cpu processing. To separate out the ra-
dio communication component from the overall energy sav-
ings, we used average power consumption values measured
at different RSSI levels from our earlier experiments (Figure
1) and tail energy cost for fast dormancy. Table 3 shows
EnVi’s energy savings over the Naive policy averaged over

0.9 -
0.8 |
0.7 |
0.6 [

Cdf_rssi_city]l mmw—
cdf_rssi_city2 ——a—

CDF

0.5
0.4 |
0.3
0.2
0.1

0 L L T
-115-110-105-100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50
RSSI

Figure 5 RSSI CDFS for Blr (01ty1) & Toronto

o 1 2 3 4 5
Throughput [MBit/s]

Figure 6: Per-RSSI throughput CDF's, Toronto

18 runs (6 runs each for 3 bitrates; stream length = {10, 20,
30} minutes). Also shown are percentage reduction in radio
up time that EnVi achieves by scheduling faster downloads
over better signals, the latter being represented as a dif-
ference between the average communication signal strength
observed with EnVi as compared to Naive.

It is clear that the amount of time the radio stays in high
power transmission state (CELL_DACH) is generally lower
for EnVi, even after accounting the fast dormancy transi-
tion times. This is because although it downloads the same
amount of data as the Naive policy does, but it strives to
do so on better signal conditions characterized by higher
throughputs and hence lower transfer times.

During the live runs, EnVi achieved average savings of
20.7% of radio energy and 10.2% of overall energy com-
pared to Naive, while going upto as high as 32.5% radio en-
ergy savings and 21.4% overall energy savings on a few runs.
The overall energy consumption metric incorporates all ex-
tra processing overheads associated with EnVi’s scheduling
algorithm, including per-second logging for analysis. It also
includes the energy expended while keeping the screen-on
for the entire data transfer duration. Also, the OS broad-
casted battery level updates are very coarse grained - occur
after every 1% drop in the battery level. So, the calculation
of energy consumption using these updates alongwith times-
tamping is slightly less accurate. Additionally, this metric
also includes the overhead of emulating fast dormancy on
Android !. Since there isn’t a fast dormancy API on Android
yet, we emulated it by enabling/disabling data-connectivity
programatically. This has the shortcoming of the device
losing its PDP-context and the associated IP address after
each call to fast dormancy. When the data connectivity is
enabled again, PDP context and connection to the server
is re-established resulting in a significant overhead and re-
duction in our energy savings. We expect to observe better
savings with a true fast dormancy facility on device.

' Android context, the term fast dormancy refers to quick transition
from H+ to 3G; this differs from our definition of fast dormancy.

192kbps | 240p 360p
Radio Energy Savings 22% 18.5% 18.4%
Radio Uptime Savings | 13.7% 13.2% 13%
AAverageRSSI [dBm] | 8.4 4.8 4.5

Table 3: EnVi vs. Naive, live runs, Toronto

6. CONCLUSION

In this work we designed EnVi, a light-weight signal-aware
scheduler that saves radio energy drain for long standing
data transfers by exploiting variation in energy-per-bit val-
ues during mobile scenarios. EnVi can adapt to diverse sig-
nal variations that exist on different user routes without re-
quiring any pre-calibration, and thus uniquely differs from
previous efforts. We have implemented EnVi player on two
mobile platforms and shown savings of up to 32.5% of radio
energy.

7. FUTURE WORK

Going forward, we plan to perform more comprehensive
testing and analysis to judge the efficacy of different thresh-
olds that EnVi employs, attributing percentage gains to each
threshold employed. We also want to characterize how EnVi
performs with regards to our design goal of a seamless user
experience, in cases where the playout buffer runs out of
video data owing to possible aggressive scheduling decisions
by EnVi. We plan to optimize the EnVi player for video
playback and explore the feasibility of optimizing bitrates
on a per video-chunk basis depending upon the network
characteristics. We are also focusing on augmenting EnVi
for background bulk transfers. As discussed in sec-5.1.1,
we plan to explore a EnVi-Bartendr hybrid algorithm. Fi-
nally, we want to test our conjecture that as a by-product
of EnVi’s scheduling behaviour, radio communication while
at cell edges gets avoided thereby improving aggregate cell
throughput and reducing inter-cell interference.

8 REFERENCES

T. Armstrong, O. Trescases, C. Amza, and E. de Lara.
Efﬁment and transparent dynamlc content updates for
mobile clients. In MobiSys, 2006.

[2] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy Consumption in Mobile Phones:
A Measurement Study and Implications for Network
Applications. In IMC, 2009.

[3] P. Bender, P. Black, M. Grob, R. Padovani,

N. Sindhushyana, and A. Viterbi. CDMA/HDR: a
bandwidth efficient high speed wireless data service for
nomadic users. Communications Magazine, IEEE, 2000.

[4] A. J. Nicholson and B. D. Noble. Breadcrumbs: forecasting
mobile connectivity. In MobiCom, 2008.

[5] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Characterizing Radio Resource Allocation for
3G Networks. In IMC, 2010.

[6] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. TOP: Tail Optimization Protocol for Cellular
Radio Resource Alocation. In ICNP, 2010.

[7] A. Rahmati and L. Zhong. Context-for-wireless:
context-sensitive energy-efficient wireless data transfer. In
MobiSys, 2007.

[8] A. Schulman, V. Navda, R. Ramjee, N. Spring,

P. Deshpande, C. Grunewald, K. Jain, and V. N.
Padmanabhan. Bartendr: a practical approach to
energy-aware cellular data scheduling. In MobiCom, 2010.

[9] M. Tamai, T. Sun, K. Yasumoto, N. Shibata, and M. Ito.
Energy-aware video streaming with QoS control for portable
computing devices. In NOSSDAV, 2004.

