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Abstract

We describe a variant of Edelsbrunner’s Wrap algorithm for surface reconstruction, for
which we can prove geometric and topological guarantees within the ε-sampling model. The
Wrap algorithm is based on ideas from Morse theory applied to the flow map induced by
certain distance function. The variant is made possible by a previous result on the “separation”
of critical points for a related distance function that directly applies in this case. Though the
variant is easily proposed, in order to prove the quality guarantees for the output, we need to
closely investigate the geometric properties of the flow map.

1 Introduction

The problem of surface reconstruction calls for computing a surface that passes through a given
set of points P in R3 sampled from an unknown underlying smooth surface Σ (in generalizations
of the problem, the assumptions on the smoothness of the surface may be lifted, the sample
data may be allowed to be noisy, and the constructed surface may only be be required to pass
only sufficiently close to the data). This is an important practical problem that has received a
great deal of attention from researchers in a number of computational such as vision, graphics,
and geometry.

Particularly in computational geometry several approaches have been proposed; many of
which with guarantees on the produced output. In order for an algorithm to be able to provide
effective guarantees for the output, assumptions on the quality of the input sample P are
inevitable. A very common sampling model is the ε-sampling framework proposed by Amenta,
Bern and Eppstein [2] which defines a real-valued function f called the local feature size on Σ
(as the distance to the medial axis M(Σ) of Σ) and, essentially, requires that the sample set
P leaves no ball centered at a surface point x and of radius ε · f(x) unsampled. Most of these
algorithms are based on the Delaunay complex (and its dual Voronoi complex) of the sample
points. For example, given an ε-sample of a smooth surface Σ, for a small enough value of ε,
the algorithms of Amenta and Bern [1], Amenta, Choi, Dey and Leekha [3], Amenta, Choi and
Kolluri [4], and Boissonnat and Cazals [5] reconstruct surfaces with the same topology as Σ that
geometrically approximate it in terms of ε. Surveys of these algorithms can be found in [6, 7].

In [10], Edelsbrunner described an algorithm for solving problem by “wrapping finite sets in
space”. This algorithm was successfully implemented and comercialized (as geomagic wrap),
and will be referred here generically as the Wrap algorithm. The Wrap algorithm does not
make assumptions on the input data, and hence can only make some very general statement
about the type of output. Specifically, for the main variant of his algorithm, the output is a
pinched sphere. The significance of Wrap is in that it is based on discrete methods inspired by
concepts in continuous mathematics, such as Morese functions and gradient fields, and develops
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an array of tools and concepts that aims at solving the surface reconstruction problem in a
systematic and thorough way.

Edelsbrunner’s approach employes a certain distance function together with ideas from Morse
theory and creates a decomposition of the space coarser than the Delaunay complex that is
exploited for producing a reconstruction. This approach makes essential use of the Delaunay
complex DelP and the Voronoi complex VorP of P . More specifically, for q in the set Q of
Voronoi vertices, let wq be the distance to its closest point in P (the radius of the Delaunay
tetrahedron dual to q). The distance function considered is1

hQ(x) = min
q∈Q

(‖x− q‖2 − w2
q).

Though this distance function is not smooth everywhere, there is a well developed theory of
critical points (local extrema and saddle points) of such functions [13] (Edelsbrunner indepen-
detly addresses this by a smoothing and pass to the limit process). The critical points of hQ
are precisely those points where a Voronoi cell of P intersetcs its dual Delauany cell. Using
Morse theory, hQ has at any point x a direction of steepest ascent vQ(x) which induces a flow
path described by a flow map φQ(x, t) and decompositions of the space into so called stable and
unstable sets of the critical points (collection of points that flow towards and “away” from them).
The Wrap reconstruction algorithm essentially works by computing an “approximation” to the
unstable sets of the critical point at infinity, through Delaunay simplices, and by removing it
leaves an output which is a Delaunay subcomplex.

Independently, Giesen and John [11] developed an alternative reconstruction approach based
on a more natural distance function, the distance to the points:

hP (x) = min
p∈P
‖x− p‖.

The algorithm is based on the corresponding stable sets. The critical points of hP turn out
to exactly coincide with those of hQ. These approaches are in a sense dual to each other. In
the primal context of Giesen and John, Dey et al [8] proved a separation result for the critical
points of hP : they are concentrated near Σ and near its medial axis M(Σ). The separation
can be computed effectively and was the basis in the same paper for a provable version of the
reconstruction algorithm of Giesen and John, in the context of ε-sampling.

Our goal in this paper is to advance the understanding of the Wrap algorithm. In particular,
we are interested in describing a variant for which we can prove geometric and topological
guarantees within the ε-sampling model. Specifically, the separation of critical points proved
in [8] can be transferred to hQ, and it allows us to describe a simple modified version of the
Wrap, that approximates the volume S bounded by Σ, and for which guarantees can be proved:
The output of the modified Wrap differs from S only within a thin tubular neighborhood of
Σ and has the same homotopy type. In order to prove these guarantees, understanding of the
geometric behavior of the flow map appears to be crucial.

Overview of Paper and Results

In Section 2, we review some preliminary concepts. Further properties of flow maps induced
by weighted points are presented in Section 3. Based on these, we describe in Section 4 the
modified verision of Wrap. On input P , the modified Wrap outputs a subcomplex I of DelP
that is expected to approximate S. Briefly, it collects the set O of all the Delaunay simplices
that can be reached through flow lines from the Delaunay simplices corresponding to “exterior”
critical points (those that lie outside but not close to Σ), but not reachable from the Delaunay
simplices corresponding to other critical point, and then it outputs the rest, i.e. DelP \ I. The
rest of the paper is then devoted to proving guarantees for I. Whenever possible, we develop
the results in general dimension, but at the end, we achieve guarantees only for the case of a

1 Edelsbrunner actually considers −hQ. For technical reasons, we prefer to work with hQ; in particular, this makes
our approach consistent with our work in [8, 12].
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surface embedded in R3. In particular, the goal is to prove that I is homotopy equivalent to S,
the bounded volume enclosed by the surface Σ, and that the error between I and S lies within
a thin tubular neighborhood Σδ of Σ, where δ ≈ ε2 measures the width relative to the local
feature size. As a first step, in Section 5, we show that the flow map φQ(x, t) is continuous on
both variables, and as a corollary, we also obtain an integral equation relating hQ with vQ and
φQ(x, t). This result is an essential part in the homotopy proof in Section 8. Two geometric
components are also needed for the homotopy proof to go through. The first, shown in Section
6 states that Σδ is flow-tight for hQ, that is, no flow lines of φQ leave Σδ. The second geometric
component, presented in Section 7, which also represents the geometric guarantee of the output,
is that the symmetric difference between I and S lies in Σδ. This result is only proved for R3

and is the sole limit to the extension of the results to higher dimensions. Finally, the homotopy
equivalence proof is presented in Section 8. It proceeds in three steps. Two of them follow a line
of argument used by Lieutier [16] to prove that the medial axis of a bounded open set captures
its homotopy type. Specifically, the flow map is used to establish the homotopy. The majority
of the proofs are omitted due to lack of space and are available in the full-version of the paper.

2 Preliminaries

Basic Notions For a vector v ∈ Rn, ‖v‖ denotes the `2 norm of v, i.e. ‖v‖ =
√
〈v, v〉 where

〈·, ·〉 is used to denote the usual inner product on Rn. Given a set T of points in Rn, the distance
of a point x to T is denoted dist(x, T ) is defined as

dist(x, T ) = inf
y∈T
‖x− y‖.

Given two sets R and T of points, the distance between R and T is the distance between the
closest pair of points x and y chosen from R and T respectively.

dist(R, T ) = inf
x∈R,y∈T

‖x− y‖ = inf
x∈R

dist(x, T ).

For a point x ∈ Rn and r > 0, B(x, r) denotes the open ball of radius r centered at x, i.e.
B(x, r) = {y ∈ Rn : ‖x − y‖ < r}. The closed ball B(x, r) is the closure of B(x, r), i.e.,
B(x, r) = {y ∈ Rn : ‖x− y‖ ≤ r}.

Shapes and Surface We consider closed connected smooth (n − 1)-manifolds embedded
in Rn. We call such manifolds surfaces. A surface Σ partitions its complement Rn \ Σ into
two open sets: a bounded or inner component S and an unbounded or outer component S∗.
The inner component is sometimes called the shape enclosed by Σ. Throughout this paper, Σ
represents an unknown but fixed surface. Likewise, throughout, S and S∗ refer respectively to
the inner and outer shapes determined by Σ. Note that Σ = ∂S = ∂S∗ where ∂S represents
the boundary of S. For a point x ∈ Σ, nx denotes the direction of the normal to Σ at x. Of the
two possible orientations of this direction, n+

x is the normal vector pointing toward the exterior
of Σ, (into S∗) and n−x is the one pointing toward its interior (into S).

Medial Axis In general, the medial axis M(T ) of a set T ⊂ Rn is the set of points in T that
have at least two closest points in ∂T . Formally, if we define for a point x ∈ T the set AT (x) as

AT (x) = {y ∈ ∂T : ‖x− y‖ = dist(x, T )} ,

then the medial axis of T is given by

M(T ) = {x ∈ T : |AT (x)| > 1} .

Thus the medial axis M(S) of the inner shape S determined by a surface Σ, also called the inner
medial axis of Σ, is the set of all points in S that have at least two closest points in ∂S = Σ.
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Note that since Σ is compact, AS(x) is well-defined and non-empty for every x ∈ S. The outer
medial axis of Σ, M(S∗) can be defined similarly. By medial axis M(Σ) of Σ (or just M when
sigma is understood), we refer to the union of the inner and outer medial axes of Σ, i.e.

M(Σ) = M(S) ∪M(S∗).

In other words, M is the set of all points in Rn that have at least two closest points in Σ.

Feature Size and Surface Samples

By definition, every point of Rn \M has a unique closest point in Σ. For any point x ∈ Rn \M ,
x̂ denotes the unique closest surface point to x, i.e.,

x̂ = argmin
y∈Σ

‖x− y‖,

and x̌ ∈M denotes the center of the medial ball tangent to Σ at x̂ and at the same side of Σ as
x. The medial feature size is the function µ : Rn \(Σ∪M)→ R∪{∞} defined as µ(x) = ‖x̂− x̌‖.
The function

f : Σ→ R, x 7→ inf
y∈M
‖x− y‖,

which assigns to each point in Σ its distance to M , is called the local feature size. Notice that
for x ∈ Rn \ (Σ ∪ M) it always holds that f(x̂) ≤ µ(x). It can also be easily seen that f
is 1-Lipschitz. Throughout this paper, we assume that every point x ∈ Σ has non-zero local
feature size and that the infimum of the local feature size function over Σ,

fmin = inf
x∈Σ

f(x),

called the reach of Σ, is strictly positive. This requirement is automatically fulfilled when Σ is
a C1,1 or smoother surface.

Sampling Criteria We consider two highly popular sampling criteria. The most natural
and by far the most common in literature is known as the uniform ε-sampling. For a constant
ε > 0, a point set P is a uniform ε-sample of a surface Σ if every point of Σ has a sample point
in its closed ε-neighborhood, i.e.

∀x ∈ Σ, B(x, ε) ∩ P 6= ∅.

Uniform sampling is insensitive to the size of surface features and can in this sense be deemed
wasteful. It is therefore desirable to allow the sample to become sparser at larger features of the
surface. The local feature size function f(·) as defined above can be regarded a well-behaving
(Lipschitz) conservative local measure of feature size — it can be shown that for every surface
point x, 1/f(x) upper bounds the largest principle curvature of the surface at x. Following
Amenta and Bern [2], for a constant ε > 0, a finite sample P ⊂ Σ is called a relative (or
adaptive) ε-sample of Σ if every point x ∈ Σ has a sample point within distance εf(x) from x,
i.e.

∀x ∈ Σ, B(x, εf(x)) ∩ P 6= ∅.

Reduced Shapes and Tubular Neighborhoods Offset surfaces and shapes play a
crucial role in our approach. Given the surface Σ, one can define tubular neighborhoods of Σ
an the corresponding offset surfaces in two different ways.

Given a parameter 0 < δ, the uniform δ-tubular neighborhood Σ̂δ as the set

Σ̂δ = {x ∈ Rn : dist(x,Σ) ≤ δ} .

In other words Σ̂δ is simply the Mikowski sum of Σ and B(0, δ). Consider now what remains
when we remove Σ̂δ from Rn. Each of the two shapes S and S∗ determined by Σ will be further
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Figure 1: Σδ, Sδ, and S∗δ .

trimmed. We define the uniformly reduced shape Ŝδ as S \ Σ̂δ. The outer uniformly reduced
δ-shape Ŝ∗δ is defined similarly.

For a constant 0 < δ < 1, the (relative) δ-tubular neighborhood Σδ of Σ (See Figure 1) is the
set

Σδ = {x ∈ Rn \M(Σ) : ‖x− x̂‖ ≤ δf(x̂)} .
It can be shown that like Σ, Σδ partitions its complement Rn \ Σδ into two components which
we call the δ-reduced shapes. The bounded or the inner δ-reduced shape Sδ is defined as Sδ =
S \ Σδ. Likewise, the outer δ-reduced shape is S∗δ = S∗ \ Σδ. Notice that the definition of Σδ,
puts the medial axis M(S) in Sδ and M(S∗) in S∗δ . However, it can be shown that points
of M(S) are in fact interior point of Sδ and the same relation exists between M(S∗) and S∗δ .
Furthermore, it can be shown that the boundary of Σδ consists of exactly those points for which
the equality ‖x− x̂‖ = δf(x̂) holds (See [12] for proofs and more details). The boundary of Σδ
has two components: an inner component which coincide with the boundary of Sδ and an outer
component which equal the boundary of S∗δ .

Squared Distance and its Critical Points

Given a sample P of Σ, the square distance function to P defined as

hP : Rn → R, x 7→ min
p∈P
‖x− p‖2,

assigns to each point of space the square of its distance to the sample P . Distance functions have
been widely studied and are known to carry a great deal of information about their inducing sets
and their embeddings in the space. In particular, the critical points of such distance functions
are of great interest. The the set of points at distance hP (x) from a point x ∈ Rn is denoted
by AP (x). Critical points of hP are those points x that satisfy x ∈ convAP (x), i.e. the points
that are contained in the convex hull of their closest points in P . Equivalently, a point x is a
critical point of hP if it is the intersection of a Voronoi face of VorP and its dual Delaunay
face in DelP (See [13, 16, 15, 8] for more information about the critical point theory of distance
functions and their applications).

In this paper we study square distance functions that are induced by weighted points in Rn.
The graph of an ordinary square distance function can be thought of a collection of similar
paraboloids all tangent to the horizontal plane in Rn+1. When considering weighted points,
we allow these paraboloids to move up or down vertically and thus no longer be based at the
horizontal plane. This concept is explored in detail in Section 3.

Separation of Critical Points Dey, et al. [8] observed that if P is a dense enough sample
of the smooth surface Σ, then the critical points of the discrete distance function hP have to be
either very close to Σ or very close to M .

Theorem 2.1 [8] Let P be an adaptive ε-sample of a smooth surface Σ for ε < 1/
√

3. Then
for every critical point c of hP , either (i) ‖c− ĉ‖ ≤ ε2f(ĉ), or (ii) ‖c− č‖ ≤ 2ε2f(ĉ).
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If the sample P is uniform with a sampling density ε proportional to smallest local feature
size fmin, the above theorem can be restated as follows. Notice that only the bound on critical
points near the surface is improved.

Theorem 2.2 [8] Let P be a uniform ε-sample of a smooth surface Σ for ε < 1/
√

3 · fmin

where fmin = infx∈Σ f(x). Then for every critical point c of hP , either (i) ‖c − ĉ‖ ≤ ε2, or (ii)
‖c− č‖ ≤ 2ε2f(ĉ).

Thus the critical points of hP can be classified based on whether they are close to Σ or close
to M . We refer to the first class of critical points as surface critical points and to the second
class as medial axis critical points. We further subdivide the medial axis critical points of hP
into two subgroups: inner medial axis critical points are those that are close to M(S) and outer
medial axis critical points are those close to M(S∗).

3 Flow Induced by Weighted Points

By a weighted point in the n dimensional Euclidean space is a pair (q, wq) ∈ Rn × R where
q ∈ Rn is an ordinary point to which the real weight wq is assigned. An unweighted point is
assumed to have weight zero. The squared distance or power distance to a weighted point q is
given by the function

πq : Rn → R, x 7→ ‖x− q‖2 − wq.

Given a discrete set Q of weighted points, the weighted squared distance to the set Q is defined
by the map

hQ : Rn → R, x 7→ min
q∈Q

πq(x) = min
q∈Q

(
‖x− q‖2 − wq

)
.

Sometimes we need to refer to the unweighted squared distance to a weighted set of points
which is simply the map obtained by setting all point weights to zero and is defined as

h◦Q : Rn → R, x 7→ min
q∈Q
‖x− q‖2.

Given a weighted set of points Q ⊂ Rn, and a point x ∈ Rn, AQ(x) denotes the preimage
of hQ, i.e. AQ(x) = {q ∈ Q : hQ(x) = πq(x)}. We also define A◦Q(x) in a similar manner but

with respect to h◦Q: A◦Q(x) =
{
q ∈ Q : h◦Q(x) = ‖x− q‖2

}
.

Voronoi and Delaunay Complexes of Weighted Points Consider the binary rela-
tion “∼Q” between points in Rn given by

x ∼Q y ⇔ AQ(x) = AQ(y).

Trivially, “∼Q” is an equivalence relation. The equivalence classes of “∼Q” partition the space
into convex regions. Each such region is an open set with respect to the relative topology of
its affine hull. Closures of these regions form faces of a cell complex commonly known as the
weighted Voronoi complex, or the power complex of Q and is denoted VorQ. For each q ∈ Q, the
closure of the set of points x for which AQ(x) = {q} is called the Voronoi cell of q, denoted by Vq.
Unless it is empty, Vq is a full dimensional convex set, meaning that its affine hull is the entire
Rn. The Delaunay complex DelQ of Q is defined as a cell complex dual to VorQ. The faces
of DelQ are convex hulls of those subsets U ⊆ Q for which U = AQ(x) for some x ∈ Rn. For
any point x ∈ Rn, VQ(x) denotes the equivalence class of x under the relation “∼Q”. It follows
that the closure of VQ(x) is the lowest dimensional face of VorQ that contains x in its relative
interior. We also denote by DQ(x) the dual to VQ(x) in DelQ. Thus, DQ(x) = convAQ(x). For
a cell complex K, the underlying space of K, i.e. the union of all faces in K, is denoted by |K|.
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Generalized Gradients

The map hQ : Rn → R, is continuous(it can be shown to be the signed distance between the
lower hull of a set of points and a paraboloid interpolating them; See proof of Proposition 6.1).
However, hQ is not globally differentiable. In particular, the gradient of hQ is undefined at
any point x for which |AQ(x)| > 1. Nevertheless, Giesen and John [11] showed that there is a
unique direction of steepest ascent at every regular point of hQ, extending the gradient of hQ to
a vector field vQ : Rn → Rn defined over the entire space Rn. This generalized gradient vector
field vQ can be characterized as follows: for a point x ∈ Rn, let dQ(x), called the driver of x,
be the closest point to x in DQ(x) = convAQ(x). As was shown by Giesen and John, moving
opposite to dQ(x) locally maximizes over all directions the growth rate of hQ. We thus define
the vector field vQ as

vQ(x) = 2(x− dQ(x)).

The set of points for which vQ(x) = 0 or equivalently x = dQ(x), are called the critical points
of hQ. All other points are called regular points. It can be verified that the critical points of hQ
are the intersection points of weighted Voronoi faces and their dual Delaunay faces (when they
do intersect). Alternatively, a point x is a critical point of hQ if and only if x ∈ convAQ(x).
The fact that AQ(x) is the same for every point x in the relative interior of every Voronoi face
σ entails that that all such points have the same driver. We thus use the notations AQ(σ) and
dQ(σ) to respectively denote the set of closest points and the driver common to all points in the
relative interior of a Voronoi face σ.

It is important to observe that when all the points have weight zero, the above definitions
and characterizations (module adjusting the length of the vectors vQ(x)) exactly match those
in [15, 16, 8] and others which consider only unweighted points.

Integration of the Generalized Gradient into a Flow Map

At every point x of a fixed Voronoi face τ , vQ(x) = 2(x−dQ(τ)) and thus the vector field vQ can
be integrated to result integral lines which follow a pencil of half lines diverging from the driver
dQ(τ) of τ . As a result the vector field vQ can be integrated throughout Rn resulting integral lines
or flow paths that are in general piece-wise linear curves that may turn only at points where they
reach the relative interior of a new Voronoi face. The induced flow map φQ : (R+∪∞)×Rn → Rn
assign to each pair (t, x) with t ∈ R+ ∪∞ interpreted as time and x ∈ Rn, the point φQ(t, x)
along the flow path out of x that is reached at time t. The map φQ has the standard properties
of a flow map, i.e. φQ(0, x) = x, and φQ(s + t, x) = φQ(s, φQ(t, x)). Moreover, at every point

φQ(t, x) of a flow line φQ(x), except turning points, φ̇Q(t, x) = vQ(φQ(t, x)), where φ̇Q(t, x) is
used to denote dφQ(t, x)/dt. In general vQ(φQ(t, x)) is the right derivative of φQ(t, x).

Flow Orbit, Flow-Tight, and Flow-Repellant Sets

A non-critical point is also called a regular point. For a given flow map φQ, the flow orbit of a
regular point x, denoted φQ(x) is the set of all points φQ(t, x) for all t > 0. The flow orbit of
a critical point is the critical point itself. The flow orbit φQ(T ) of a set T is the union of flow
orbits of all its points, i.e. φQ(T ) =

⋃
x∈T φQ(x). Notice that by this definition T ⊆ φQ(T ). A

set T is said to be flow-tight if φQ(T ) = T . We call a set T flow-repellant if T c is flow-tight.

Stable and Unstable Manifolds

Then the flow path φQ(t, x) of every point x converges to a critical point c of hQ or goes to
infinity as t → +∞. Notice that we consider c to be also in the flow orbit of x. For a critical
point c of hQ, the set of all points x whose flow orbits converges to c is called the stable manifold
of c and is denoted by Sm(c). In other words, Sm(c) = {x | φQ(+∞, x) = c}. Although there
is no flow out of a critical point c of hS , it is interesting to know where the points very close to
c flow. Some of these points flow into c while other flow away from it. We define the unstable
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Algorithm (original)Wrap(sample point-set P )

1 Let ∆ ⊆ D be the set of critical simplices.
2 Let O = {τ ∈ D : ω E τ and ∀σ ∈ ∆ : σ 5 τ}.
3 Return I = D \O.

Figure 2: The original Wrap algorithm.

manifold Um(c) of a critical point c, as the set of all points into which points arbitrarily close
to c flow. Formally, Um(c) =

⋂
ε>0

⋃
y∈B(c,ε) φQ(y). With an abuse of terminology, we say that

c “flows” into the points of Um(c).

4 The Wrap algorithm

We are now ready to describe the Wrap algorithm. Our presentation of the algorithm dif-
fers slightly from that of Edelsbrunner and this is due to our description of flow lines which
correspond to limit curves studied by Edelsbrunner only with opposite orientation.

Given an ε-sample P ⊂ Σ of a smooth2 manifold Σ embedded in Rn and of codimension
one, we define a set Q of weighted points consisting of the Voronoi vertices in VorP with every
vertex q ∈ Q given the weight wq = hP (q), i.e. the square of the distance between q and its
closest points in P . It is a classical result that when restricted to convQ, VorP = DelQ and
when restricted to convP , DelP = VorQ and in this sense the point sets P (unweighted) and
Q (weighted), as well as their Voronoi and Delaunay complexes are called dual to each other.

An immediate consequence of this duality is that the critical points of hQ are exactly the
same as those of hP . We call those simplices of DelP that contain a critical point, i.e. those that
intersect their dual faces in VorP , critical simplices (or centered in Edelsbrunner’s terminology).
The intersection of a flow line of φQ and a full-dimensional simplex of DelP = VorQ is a line
segment (if not empty). With lower dimensional simplices there is a second possibility, namely, a
flow line can cross the simplex and thus intersect it in a single point. In such a case, the simplex
is called transversal (or equivocal according to Edelsbrunner). Of course, the flow line can just
as well intersect a non-full-dimensional simplex in a line segment in which case we say that the
flow is tangential on the simplex in question or simply call the simplex tangential (Edelsbrunner
calls such simplices confident).

We say a simplex τ precedes a simplex σ and denote it by τ ≺ σ if τ and σ are incident
simplices, i.e. τ is either a face or a coface of σ, and some flow line of φQ enters the relative
interiors of σ immediately after leaving the relative interior of τ . More formally, when τ is a
coface of σ, τ ≺ σ if there exists a point x and and a time t0 > 0 and a real number 0 < α < t0
such that φ(t0) ∈ rel int τ and φ(t, x) ∈ rel intσ for α < t < t0. Similarly, when τ is a proper face
of σ, τ ≺ σ if for some point x there exist time t0 > 0 and real α > t0 such that φ(t0, x) ∈ rel int τ
and φ(t, x) ∈ rel intσ for t0 < t < α. We define the relation “4” as the reflexive transitive
closure of “≺”, namely, τ 4 σ if there is a sequence τ = τ0 ≺ · · · ≺ τk = σ with k ≥ 0.

Remark Edelsbrunner’s definition of the precedence relation [10], which is denoted by “C”
is slightly different from ours, in that τ C σ if τ ≺ σ, and in addition, the flow on one of τ or
σ is transversal. This definition thus invalidates τ C σ in the case where τ ≺ σ but the flow
is tangential in τ and reaches the face σ of τ and continues tangentially on σ. Note that no
other case is possible; flow cannot cross two incident simplices transversally and cannot move
tangentially from a face to a coface. The reflexive transitive closure of “C” is denoted by “E”.

2Our analysis requires only C1,1 smoothness for the target manifold Σ.
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Figure 3: The function hQ and its modification for the Wrap algorithm.

A subtle technical issue in the definition of the Wrap algorithm involves the assumption of
a critical point at infinity; a minimum. Since the point is at infinity, its weight, i.e. its distance
to the point set P is +∞. This is in contrast with our definition of the function hQ as can
be seen in the one dimensional example of Figure 3. In the figure on the left the points in
P are represented by solid bullets on the horizontal line. The graph of the distance function
hP (the black curve) is the the lower envelope of the the parabolas placed at every point of
P . The points in Q, i.e. the Voronoi vertices of VorP are midpoints of consecutive pairs of
points in P and are shown by hollowed red bullets. The weight wq of a point q in Q is hP (q),
i.e. the vertical distance between q and the black curve. Thus the weight of every point in Q
is positive. If we now base a parabola with offset wq below every point q ∈ Q, the graph of
the function hQ (the red curve) is exactly the lower envelope of this second set of parabolas.
Observe that hQ is non-positive everywhere inside convP but goes to +∞ when the distance to
convP grows infinitely large and as can be seen in the figure, hQ has no critical points outside
convP . However, If we assume in addition that there is a critical point of weight +∞ at infinity,
the graph of the function hQ can be modified to look like the red curve in the figure on the
right. The dotted segments in the figure are vertical lines that correspond to the two arms of a
parabola placed infinitely far away at an infinite offset below the horizontal axis.

The effect of this modification to hQ on Wrap is that the algorithm treats Rn \ convP as a
special abstract critical simplex ω which corresponds, and contains, this critical point. Since this
critical point is infinitely far away, every simplex τ of DelP that is contained in the boundary
of convP is considered preceded by ω.

With these preliminaries covered, Edelsbrunner’s Wrap algorithm can now be stated as
shown in Figure 2.

As stated above, the output of Wrap is not guaranteed to agree topologically with the
sampled surface Σ. In fact, Edelsbrunner proves in [10] that the produced output I is the
boundary of a contractible volume. However, Edelsbrunner also suggests methods for extending
the algorithm in order to make possible the production of non-simply-connected output. For
example, he suggests to consider, in addition to the simplices that are preceded by ω, those that
are preceded by other “significant” critical simplices. In essence, the primary result of this paper
is that this intuition can be made into an algorithm with provable guarantees. We present a
way of determining the significance of critical simplices in a way that such a modification can
certify the geometric closeness and topological accuracy of the output.

In Figure 5, we present a modified version of Wrap which can capture the topology of Σ or
rather the bounded volume S enclosed by it. The modification rests primarily on the notion of
separation of critical points as discovered in [8] and stated in Theorem 2.1. Separation of critical
points allows us to filter out the so-called surface critical points which are in essence artifacts of
discretization. Furthermore, [8] provides an algorithmic way of distinguishing between medial
axis critical points that are contained in S as opposed to those contained in S∗ by building the
incidence graph of stable manifolds of critical points in the stable flow complex induced by P
and looking at the connected components of the subgraph induced by the vertices corresponding
to medial axis critical points. The critical point at infinity is naturally assumed to be in the
second group, i.e. contained in S∗. Our algorithm shown in Figure 5 amends Wrap by adding
to ω all other outer medial axis critical simplices.

The rest of this paper is dedicated to proving that this modified version of Wrap produces
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Figure 4: Extension of the sample points for pushing the flow toward convP near it.

an output that is geometrically close to S and is has the same homotopy type as S provided
that the input P to the algorithm is an ε-sample of Σ for a sufficiently small value of ε. In the
sequel Wrap refers to this modified version.

4.1 The Extended Sample

Before we proceed we address another technical difficulty related to the assumption of the
existence of a critical point at infinity. Our proofs heavily use the flow φQ induced by the set
Q of Voronoi vertices in VorP as a homotopy. It is therefore crucial to ascertain the continuity
of φQ over the bounded region it is used. Per se, the argument given for continuity of φQ in
Section 5 has no way of handling a critical point at infinity. It turns out that we cannot ignore
this critical point either. Since φQ is a steepest ascent flow, and because hQ without the extra
critical point at infinity, goes to infinity when the distance to convP grows infinitely large,
the flow φQ escapes convP outside of it. This is in contrast to the behavior the modified hQ
suggests and it turns out that the modified hQ in which the steepest ascent outside the convex
hull of P is toward convP is the proper choice for our topological proofs. However, assuming
an infinitely heavy critical point at infinity gives us an infinitely fast moving flow map near and
outside convP .

Several of our proofs in what follows study the behavior of φQ on the outer boundary of Σδ.
These proofs are based on the assumption that every point on this boundary is contained in
some Delaunay n-simplex. This assumption trivially fails when the point in question is outside
convP . We handle these problem by adding a component Σ0 to the surface Σ in such a way
that the local feature size of every point in Σ with respect to M(Σ ∪ Σ0) is the same as its
local feature size with respect to M(Σ) alone. This will then imply that if P0 is an ε-sample
of Σ0, P1 = P ∪ P0 is an ε-sample of Σ1 = Σ ∪ Σ0. Moreover, the component of the tubular
neighborhood Σδ around Σ in the two-component surface Σ∪Σ0 will be identical to the one for
the surface Σ alone.

Thus consider a ball B = B(c,R) enclosing Σ and therefore the sample P ⊂ Σ. Let RD
be the circumradius of the largest Delaunay ball in DelP . Consider the ball B0 = B(c,R0)
where R0 ≥ 4R + 2RD + 2F in which F = supx∈Σ f(x). let Σ0 = ∂B be the a new component
of the surface and let P0 be an ε-sample of it. It is easy to see that every Delaunay ball of
DelP is entirely contained in the interior of B and therefore remains empty of the points in P0.
Consequently, DelP is a subcomplex of DelP1 where P1 = P ∪ P0 is the extended point set
which samples the two-component surface Σ1 = Σ ∪ Σ0 (See Figure 4).

Let z be a point of M1 = M(Σ1), i.e. the medial axis of the extended surface. If z ∈
B(c,R0/2), then every closest point of Σ1 to z has to be in Σ and therefore z ∈ M = M(Σ).
Thus, for a point x ∈ Σ, the distance to M1 is at least as large as the distance between x and M
since the points outside B(c,R0/2) are at least R+RD +F distance away from x while x has a
point within distance F in M . Thus P1 = P ∪ P0 is a valid ε-sample of Σ1. This in particular
ensures that the separation of critical point given Theorem 2.1 remains valid for separation of
critical points of hP1

. We intend to use the set Q1 of all Voronoi vertices in VorP1, weighted as
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seen above, instead of the Q solely for our analysis of the Wrap algorithm. Since the critical
points of hP1

and hQ1
are the same, Theorem 2.1 implies that the critical points of hQ1

are
contained either in the ε2 tubular neighborhood of Σ1, or near its medial axis.

Proposition 4.1 The surface critical points of hQ1 contained in Σε2 are exactly the same as
the critical points of hQ contained in Σε2 .

Proof. Let c ∈ Σε2 be a critical point of hQ1
. Since c ∈ Σε2 , ‖c− ĉ‖ ≤ ε2f(ĉ). By the ε-sampling

condition, ĉ has a point p ∈ P within distance εf(ĉ). Thus√
hP1

(c) ≤
√
hP (c) ≤ ε2f(ĉ) + εf(ĉ) ≤ 2εF < 2εR1.

Thus AP1
(c) ⊂ P . Since c is a critical point, c ∈ convAP1

(c) ⊂ convP . Thus c is a critical
point of hP . �

It is useful to study the change of drivers when a flow line moves from a Voronoi face into
another. Let τ and σ be two consecutive Voronoi faces in VorQ visited by a flow path φQ(x) in
the same order, thus in our notation τ ≺ σ. Since τ and σ are incident faces of VorQ, τ is either
a face (τ < σ) or a coface of σ (τ > σ). If τ < σ, then drivers for τ and σ are the same point.
To see this first observe that the flow in σ has to be tangential and therefore, the drivers dQ(τ)
and dQ(σ) must both be in the affine hull of σ. Also, σ cannot be critical since otherwise no flow
line can enter it. Thus dQ(σ) is outside σ. Let y be the point in τ where φQ(x) leaves τ and let
z be a point on φQ(x) in the relative interior of σ. Notice that by definition, πq(z) > πp(z) for
all p ∈ AQ(σ) and q ∈ AQ(τ)\AQ(σ). Thus the hyperplane orthogonal to vQ(z) and containing
the affine hull of AQ(σ) separates σ and AQ(τ) \AQ(σ). The point dQ(σ) is the closest point to
z on convAQ(σ). With the the above observation, dQ(σ) is just as well the closest point to z on
convAQ(τ). This is true for every z ∈ φQ(x) and in the relative interior of σ. In particular, z
can be chosen arbitrarily close to y. Consequently, dQ(σ) is the closest point to y in convAQ(τ)
which is in turn dQ(τ).

On the other hand, if τ > σ, AQ(τ) ⊂ AQ(σ), and in particular convAQ(τ) ⊆ convAQ(σ).
This implies that the new driver (dQ(σ)) is no farther than the old one, i.e. dQ(τ).

These observations lead to the following proposition.

Proposition 4.2 If a flow line φQ(x) consecutively intersects the relative interiors of faces τ
and σ in VorQ, then for every point z ∈ φQ(x) ∩ σ, ‖z − dQ(σ)‖ ≤ ‖z − dQ(τ)‖ with equality
holding only if σ is a proper coface of τ .

It is not hard to see that proof given in [10] for the acyclicity of the precedence relation
does indeed generalize to “≺” as defined here and therefore “≺” defines a partial order on the
simplices of DelP . If τ and σ are incident simplices in DelP , they have at least one vertex
p ∈ P in common. Using p as z in the statement of the Proposition 4.2 givse us the following
observation.

Observation If τ ≺ σ then hP (dQ(τ)) ≤ hP (dQ(σ)) with equality holding only if τ is a
proper face of σ, i.e. dim τ < dimσ.

The above lemma establishes the acyclicity of the relation “≺”, similar to the way Edels-
brunner shows for the slightly different version of of this relation in [10], by showing that the for
if τ ≺ σ, the pair (hP (dQ(τ)),dim τ) is strictly larger lexicographically than (hP (dQ(σ)),dimσ).

Our topological proofs heavily make use of the fact that the map φQ is indeed continuous
on both variables. This and other properties of φQ are proved in the subsequent chapter.

5 Continuity of the Flow Map

Clearly, the map φQ changes continuously with changing of its first parameter; the image of
φQ(·, x) is a continuous curve.
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Algorithm (modified)Wrap(sample point-set P )

1 C ← set of the critical points of hP (or hQ).
2 (C+

M , C
−
M , CΣ)← Separate(C).

3 Let ∆ ⊂ D be the set of critical simplices.
4 Let ∆∗ be the set of critical simplices corresponding to C+

M plus ω.
5 Let O = {τ ∈ D : ∃σ ∈ ∆∗, σ 4 τ and ∀σ ∈ ∆ \∆∗ : σ 64 τ}.
6 Return I = D \O.

Figure 5: The modified Wrap algorithm.

We shall first characterize the rate of flow along each linear piece of a flow path and then
prove that φQ is indeed continuous on its second parameter as well.

Lemma 5.1 Let x ∈ Rn and T ∈ R+ be such that the flow path φQ([0, T ], x) consists of a
single line segment. Then for all t ∈ [0, T ],

φQ(t, x) = x+
1

2
vQ(x)

(
e2t − 1

)
.

Proof. Notice that the φQ(t, x) is a point on the line segment connecting x and φQ(T, x). This
direction of this segment is indicated by vQ(x). Thus, for simplicity we align the real line with
vQ(x) in such a way that dQ(x) becomes the origin and x lies on the positive side of the real
line. We indicate the distance to origin on this real line of the point φQ(t, x) by ψ(t). Thus
φQ(t, x) is related to ψ(t) by the equation

φQ(t, x) = dQ(x) +
vQ(x)

‖vQ(x)‖
ψ(t). (1)

We have

ψ(0) = ‖x− dQ(x)‖
ψ̇(t) = 2ψ(t),

where ψ̇ denotes dψ(t)/dt. This gives the differential equation

dψ

ψ
= 2dt,

which has the solution
ψ(t) = ψ(0)e2t.

Replacing in (1) gives us

φQ(t, x) = dQ(x) +
vQ(x)

‖vQ(x)‖
· ‖x− dQ(x)‖e2t

= x− 1

2
vQ(x) +

vQ(x)

‖vQ(x)‖
· 1

2
vQ(x)e2t

= x+
1

2
vQ(x)

(
e2t − 1

)
.

�
A vector field v defined on Rn is k-semi-Lipschitz if for every pair of vectors x and y

〈x− y, v(x)− v(y)〉 ≤ k · ‖x− y‖2.
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Lemma 5.2 Let Q be a set of weighted points in Rn. Then the vector field vQ is 2-semi-
Lipschitz, i.e. for any x, y ∈ Rn,

〈x− y, vQ(x)− vQ(y)〉 ≤ 2‖x− y‖2.

Proof. Let p be a point in AQ(x) and q ∈ AQ(y). We show that

〈x− y, p− q〉 ≥ 0. (2)

Since p ∈ AQ(x), πp(x) ≤ πq(x) or equivalently

‖x− p‖2 − ‖x− q‖2 ≤ wp − wq.

Similarly since q ∈ AQ(y), πp(y) ≥ πq(y) and therefore

wp − wq ≤ ‖y − p‖2 − ‖y − q‖2.

Eliminating wp − wq from the above two inequality we obtain

〈x− p, x− p〉 − 〈x− q, x− q〉 ≤ 〈y − p, y − p〉 − 〈y − q, y − q〉.

Expanding we get
〈x, q〉 − 〈x, p〉 ≥ 〈y, q〉 − 〈y, p〉,

which gives (2) by rearranging.
Inequality (2) can be written also as

〈x− y, p− y〉 ≥ 〈x− y, q − y〉. (3)

The above inequality in particular holds for the point p0 ∈ AQ(x) minimizing 〈x − y, p0 − y〉
and the point q0 ∈ AQ(y) maximizing 〈x − y, q0 − y〉. Therefore the hyperplane Π = {z ∈
Rn : 〈x − y, z − y〉 = γ}, where γ = 1

2 (〈x − y, p0 − y〉 + 〈x − y, q0 − y〉), separates the two
sets AQ(x) and AQ(y) as well as their convex hulls and in particular dQ(x) ∈ conv(AQ(x)) and
dQ(y) ∈ conv(AQ(y)). Thus we get

〈x− y, dQ(x)− dQ(y)〉 ≥ 0. (4)

Now to prove the statement of the lemma we write

〈x− y, vQ(x)− vQ(y)〉 = 〈x− y, 2(x− dQ(x))− 2(y − dQ(y))〉
= 2〈x− y, (x− y)− (dQ(x)− dQ(y))〉
= 2‖x− y‖2 − 2〈x− y, dQ(x)− dQ(y)〉
≤ 2‖x− y‖2,

where the final inequality follows (4). �

Lemma 5.3 Let ∆ be an upper bound for the diameter of convQ. Then for any point x,

‖vQ(x)‖ ≤ 2(∆ + dist(x, Q̃)).

Proof. By definition vQ(x) = 2(x− dQ(x)). Let p be a point in conv Q̃. By triangle inequality

‖x− dQ(x)‖ ≤ ‖x− p‖+ ‖p− dQ(x)‖. Since dQ(x) ∈ convAQ(x) ⊂ conv Q̃, ‖p− dQ(x)‖ ≤ ∆.

Thus ‖x− dQ(x)‖ ≤ ∆ + dist(x, Q̃) and this implies the statement of the lemma. �
Our main goal in this section is to prove that the flow φQ is continuous on its second variable.

This, along with its continuity on its first variable, guarantees that the map φQ : R+×Rn → Rn
is a continuous map and can therefore be used for the role of map H in Proposition 8.1 for
establishing homotopy equivalences.

Since the flow path φQ([0, T ], x) is a piece-wise linear curve, we can study the flow in indi-
vidual linear pieces of a flow path.
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Lemma 5.4 The map t 7→ ‖vQ(φ(t, x))‖2 is the right-derivative of t 7→ hQ(φQ(t, x)). In other
words, for any x and ε > 0, there exists a t0 > 0, such that for any t ∈ [0, t0],∣∣hQ(φQ(t, x))−

(
hQ(x)− t‖vQ(φQ(t, x))‖2

)∣∣ < tε. (5)

Proof. Again it is enough to prove the lemma for the first linear piece of φQ(x). Let y = φQ(t, x)
and let λ = ‖x − y‖. Let p be a point in AQ(x) and in the hyper-plane Π containing dQ(x)
and orthogonal to vQ(x). Notice that such a point must exist since by definition dQ(x) is the
closest point to x on convAQ(x) and Π is a supporting hyper-plane orthogonal to x − dQ(x).
Thus convAQ(x) must have a vertex on Π. Let α = ](x− dQ(x), x− p). Since y is in the same
linear pieces of the flow line as x, AQ(x) = AQ(y) and therefore p ∈ AQ(y). Using the cosine
law on triangle xyp we get

‖y − p‖2 = ‖x− p‖2 + λ2 + 2λ‖x− p‖ · cosα.

Subtracting wp from both sides gives

hQ(y) = hQ(x) + λ2 + 2λ‖x− p‖ · cosα.

From Lemma 5.1, λ = 1
2‖vQ(x)‖γ where γ = e2t−1. Thus we have for the left hand side of the

inquality (5)∣∣hQ(y)− hQ(x) + t‖vQ(y)‖2
∣∣

=
∣∣λ2 + 2λ‖x− p‖ · cosα− t‖vQ(y)‖2

∣∣
=
∣∣λ2 + 2λ‖x− p‖ · cosα− t(‖vQ(x)‖+ 2λ)2

∣∣
=
∣∣λ2 + 2λ‖x− p‖ · cosα− 4tλ2 − t‖vQ(x)‖2 − 4tλ‖vQ(x)‖

∣∣
=

∣∣∣∣‖vQ(x)‖2
(

1

4
γ2 − tγ2 − 2tγ − t

)
+ ‖vQ(x)‖γ‖x− p‖ cosα

∣∣∣∣ .
From our choice of p and the discussion above,

‖x− p‖ · cosα = ‖x− dQ(x)‖ =
1

2
‖vQ(x)‖.

Thus we have∣∣hQ(y)− hQ(x) + t‖vQ(y)‖2
∣∣ = ‖vQ(x)‖2

∣∣∣∣(1

4
− t
)
γ2 − 2tγ − t+

1

2
γ

∣∣∣∣
Therefore, for (5) to hold we must have for any ε > 0,

‖vQ(x)‖2
∣∣∣∣(1

4
− t
)
γ2 − 2tγ − t+

1

2
γ

∣∣∣∣ < tε,

when t is sufficiently small. Substituting e2t − 1 for γ the above inequality becomes

‖vQ(x)‖2
∣∣∣∣(1

4
− t
)(

e2t − 1
)2 − 2t

(
e2t − 1

)
− t+

1

2

(
e2t − 1

)∣∣∣∣ < tε,

which leads to the following inequality after simplification and rearrangement

1

t

∣∣∣∣(1

4
− t
)
e4t − 1

4

∣∣∣∣ < ε

‖vQ(x)‖2
.

The left hand side of the above inequality is an increasing continuous function on t ∈ (0,+∞)
which converges to 0 when t→+ 0 and this completes the proof of the Lemma.

�
The above Lemma immediately implies the following Corollary.
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Corollary 5.5 For any x ∈ Rn and any t ∈ [0,+∞),

hQ(φQ(t, x)) = hQ(x) +

∫ t

0

‖vQ(φQ(τ, x))‖2dτ.

In particular, the map t 7→ hQ(φQ(t, x)) is strictly increasing.

Theorem 5.6 The flow map φQ is continuous on its second variable. In other words for all
x ∈ Rn and for all t ≥ 0 and for all ε > 0, there exists a δ > 0, such that for every y ∈ Rn
satisfying ‖x− y‖ < δ, ‖φQ(t, x)− φQ(t, y)‖ < ε.

Proof. Consider two points x and y and real number t and let for each 0 ≤ τ ≤ t, x(τ) = φQ(t, x)
and y(τ) = φQ(t, y). The two flow lines τ 7→ x(τ) and τ 7→ y(τ) for τ ∈ [0, t] are piecewise linear
curves each with a finite number of turns. Let 0 = t1 < t2 < · · · < tr = t be the set of times
at which at least one of these two curves makes a turn (enters a new Voronoi cell and switches
drivers). We show that for each of the intervals [ti, ti+1], 1 ≤ i ≤ r − 1,

‖x(ti+1)− y(ti+1)‖ ≤ ‖x(ti)− y(ti)‖ · eti+1−ti .

This will implies that

‖x(tr)− y(tr)‖ ≤ ‖x(0)− y(0)‖ ·
r−1∏
i=1

eti+1−ti = et · ‖x(0)− y(0)‖.

In particular, for any ε > 0, if y ∈ B(x, δ) where δ ≤ ε/et, then

φQ(t, y) ∈ B(φQ(t, x), ε).

It suffices to prove the above claim only for the first interval [t1, t2]; the claim will then hold
for the subsequent intervals by a reparameterization of time. Equivalently, it will be enough to
show that the claim is valid for the case where each of the two flow paths x([0, t]) and y([0, t])
is a single line segment.

For 0 ≤ τ ≤ t, we define the function λ(τ) as the square of the distance between x(τ) and
y(τ), i.e.

λ(τ) = ‖x(τ)− y(τ)‖2.
Then we have

dλ(τ) = λ(τ + dτ)− λ(τ)

= ‖x(τ + dτ)− y(τ + dτ)‖2 − ‖x(τ)− y(τ)‖2

= ‖x(τ) + vQ(x(τ))dτ − y(τ)− vQ(y(τ))dτ‖2 − ‖x(τ)− y(τ)‖2

= 2 〈x(τ)− y(τ), vQ(x(τ))− vQ(y(τ))〉 dτ + ‖vQ(x(τ))− vQ(y(τ))‖2(dτ)2

≤ 2‖x(τ)− y(τ)‖2dτ + ‖vQ(x(τ))− vQ(y(τ))‖2(dτ)2,

in which the last inequality follows from Lemma 5.2. This results

dλ(τ))

dτ
≤ 2λ(τ) + ‖vQ(x(τ))− vQ(y(τ))‖2dτ

Lemmas 5.3 and 5.4 bound ‖vQ(x(τ))−vQ(y(τ))‖2 as a function of τ . Since dτ is infinitesimally
small, we get the differential inequality

dλ(τ)

dτ
≤ 2λ(τ),

which for 0 ≤ τ ≤ t, yields to the solution

‖x(τ)− y(τ)‖2 = λ(τ) ≤ λ(0) · e2τ .

In particular for τ = t,
‖x(t)− y(t)‖ ≤ et · ‖x(0)− y(0)‖.

�
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Corollary 5.7 For any finite set Q of weighted points in Rn, the induced flow map φQ is
continuous on [0,+∞)× Rn.

6 Flow on Tubular Neighborhoods

As mentioned before, our topological proofs hinge upon using the continuous map φQ1
as a

homotopy. The main result of this section is that the tubular neighborhood Σδ of Σ is tight for
the flow φQ1

when δ is at a suitable range. This appears to be crucial in proving the homotopy
equivalence results in Section 8.

The power of a point x with respect to a ball B = B(c,R) is denoted by πB(x) and is defined
as

πB(x) := ‖x− c‖2 −R2.

In other words, the power of a point x with respect to a ball of radius R centered at c is
equivalent to the square of the distance between x and the point c with weight R2. Thus πB(x)
is positive outside B, zero on ∂B and negative inside B.

The following proposition is a well-known result on the structure of the Delaunay complex.
The proof is included for completeness.

Proposition 6.1 Let P be a set of points in Rn and let x be point in a Delaunay n-simplex
τ ∈ DelP . Let B be the ball circumscribing τ and let B′ be an arbitrary empty ball. Then
πB(x) ≤ πB′(x). In other words, of all the empty balls, B is the one with respect to which the
power of x is the smallest.

Proof of Proposition 6.1. Consider a mapping from Rn → Rn+1 given by x 7→ x∗ where

x∗ =

(
x1, . . . , xn,

n∑
i=1

x2
i

)
,

when x = (x1, . . . , xn). In other words, every point is lifted to the standard paraboloid with
equation xn = x2

1 + · · · + x2
n. It can be verified that lifted image of a sphere ρ in Rn lies in a

hyperplane Hρ in Rn+1 and a sphere ρ in Rn is empty if and only if Hρ is below the image p∗ of
every p ∈ P . Furthermore, given a sphere ρ and a point x, πρ(x) is the signed vertical distance
between x∗ and Hρ. So, for a given point x, the empty ball B containing x that minimizes
πB(x) must have H∂B below every p∗ with p ∈ P but must vertically be as far away as possible
above x∗. This makes H∂B a supporting hyperplane of the lower hull of P ∗ = {p∗ : p ∈ P} and
thus B must be a Delaunay ball. �

Lemma 6.2 Consider an ε-sample of the surface Σ1 with ε ≤ 1/10. For a 0 < δ < 1, let x be a
point on the boundary of Σδ, i.e. ‖x− x̂‖/f(x̂) = δ with x̂ ∈ Σ. Let τ be a Delaunay n-simplex
in DelP1 that contains x and let c be the circumcenter of τ . If c is at the same side of Σ as x,
then for the angle α = ](c− x, x− x̂), cosα ≥ 1− δ − 6ε.

Proof of Lemma 6.2. Let u and v be the two points on the line normal to Σ at x̂ and at
distance f(x̂) from it, with u being on the same side of Σ as x. The balls Bu = B(u, f(x̂)) and
Bv = B(v, f(x̂)) are disjoint from Σ and their boundaries are tangent to it.

Consider the line segment cv. Since we assumed c is in the same side of Σ as x (and u), cv
intersects Σ in at least one point. Let z be an arbitrary point in cv ∩ Σ. Let us denote ‖c− v‖
by d and ‖z − v‖ by b. Notice that d ≥ b ≥ f(x̂).

Since the local feature size function is 1-Lipschitz, using the triangle inequality we get

f(z) ≤ ‖z − x̂‖+ f(x̂) ≤ ‖z − v‖+ ‖v − x̂‖+ f(x̂) = b+ 2f(x̂).

By the ε-sampling condition, there must be a sample point in P within εf(z) ≤ ε(b+2f(x̂)) from
z. The ballBc = B(c,R) circumscribing τ does not intersect P and therefore, ‖z−c‖+εf(z) ≥ R,
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Figure 6: Proof of Lemma 6.2.

or else z does not meet the sampling condition. Using ‖z − c‖ = d − b and the above upper
bound for f(z), we get

R ≤ d− b+ ε(b+ 2f(x̂))

= d− (1− ε)b+ 2εf(x̂)

≤ d− (1− ε)f(x̂) + 2εf(x̂)

= d− f(x̂) + 3εf(x̂). (6)

Consequently if B′v denote the ball centered at v with radius (1− 3ε)f(x̂), then Bc ∩B′v = ∅.
On the other, using Proposition 6.1 for Delaunay ball B and empty ball Bu we can write

‖x− c‖2 −R2 ≤ (1− δ)2f(x̂)2 − f(x̂)2. (7)

Using the cosine rule on the triangle cxv for angle ](x− c, x− v) = π − α we obtain

cos(π − α) =
‖x− v‖2 + ‖x− c‖2 − ‖c− v‖2

2‖x− v‖‖x− c‖
=

(1 + δ)2f(x̂)2 + ‖x− c‖2 − ‖c− v‖2

2(1 + δ)f(x̂)‖x− c‖
.

Combining this with inequalities (6) and (7), and defining r = R/f(x̂) results

cosα ≥ 2r(1− 3ε)− 6ε− 2δ2 + 9ε2

2(1 + δ)
√
r2 + (1− δ)2 − 1

.

The right hand side of the of the above inequality is a function of r (taking ε and δ as constants)
defined for r2 > 1− (1− δ)2 (notice that r = R/f(x̂) is always positive). It can be verified that
its derivative has a unique root corresponding to a global minimum. Calculating the value of
the function at this minimum gives us

cosα ≥
−2δ2 − 6ε+ 9ε2 + 4(1−3ε)(2−9ε+9ε2)

2+3ε

2(1 + δ)
√
−1 + (1− δ)2 + 4(2−9ε+9ε2)2

(2+3ε)2

Elementary algebraic simplifications assuming that ε ≤ 1/10 entails the statement of the Lemma.
�

Let us observe that if the sample considered in Lemma 6.2 is a uniform ε-sample for ε ≤
1
10fmin, one can redo the proof at every point x at distance δ · fmin from Σ by assuming f(x̂) =
fmin. Thus the above result for uniform samples can be states as follows.
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Lemma 6.3 Let P be a uniform ε-sample of the surface Σ1 with ε ≤ 1/10·fmin. For a 0 < δ < 1,
let x be a point on the boundary of Σδ, i.e. ‖x− x̂‖ = δ · fmin with x̂ ∈ Σ. Let τ be a Delaunay
n-simplex in DelP1 that contains x and let c be the circumcenter of τ . If c is at the same side
of Σ as x, then for the angle α = ](c− x, x− x̂), cosα ≥ 1− δ − 6ε.

Lemma 6.4 Let P1 be an ε-sample of the surface Σ1 with ε < 1/3. Let x be a point on the
boundary of Σδ for δ > 9ε2. Finally, let τ be a Delaunay n-simplex in DelP1 containing x and
let B = B(c,R) be the circumsphere of τ . Then c and x are on the same side of Σ.

Proof of Lemma 6.4. Suppose to the contrary that x and c are in opposite sides of Σ. Let u
be the point on normal to Σ at x̂ at the same side of Σ as x, satisfying ‖x̂ − u‖ = f(x̂). Since
c is on the opposite side of Σ from x (and u), the segment cu must intersect Σ at a some point
z. Let d = ‖c− u‖ and b = ‖z − u‖ ≥ f(x̂). Using the 1-Lipschitzness of local feature size, we
can bound f(z) as

f(z) ≤ ‖z − x̂‖+ f(x̂) ≤ ‖z − u‖+ ‖u− x̂‖+ f(x̂) = b+ 2f(x̂).

Thus z must have a sample point within εf(z) ≤ ε(b+ 2f(x̂)) in P . This puts an upper bound
on the radius R of the empty ball B:

R ≤ ‖c− z‖+ εf(z) ≤ d− b+ ε(b+ 2f(x̂)).

Since b ≥ f(x̂) we get:
R ≤ (d− 1 + 3ε)f(x̂). (8)

On the other hand, since x is in τ and Bu = B(u, f(x̂)) is empty, πBc
(x) ≤ πBu

(x), i.e.

‖x− c‖2 −R2 ≤ ‖x− u‖2 − f(x̂)2, (9)

Using ‖x− u‖ = (1− δ)f(x̂) and the cosine rule on the triangle cux we can write ‖x− c‖2 as

‖c− x‖2 = (1− δ)2f(x̂)2 + d2 − 2d(1− δ)f(x̂) cosα,

where α = ](u− c, u− x). Combining with Equation (9) and using cosα ≤ 1 gives us

R2 ≥ d2 − 2d(1− δ)f(x̂) + f(x̂)2. (10)

Combining Equations (8) and (10) using using the fact that d ≥ f(x̂), implies δ ≤ 9ε2, which is
a contradiction. �

Lemma 6.5 Let x be a point on the boundary of Σδ for 0 < δ < 1 and let v be a vector
satisfying tanα ≤ 1−δ

2δ , where α = ](x − x̂, v). Then there is a real number t0 > 0, such that
x+ vt ∈ Σδ for every 0 ≤ t ≤ t0.

Proof of Lemma 6.5. For simplicity we take f(x̂) as unit length. Let c be a point between x̂
and x̌ satisfying ‖c − x̂‖ = f(x̂) = 1. Consider a point y = x + tv, close enough to x so that
y ∈ Bc = B(c, 1). Let θ represent the angle ](c− x, c− y). It is easy to see that the parameter
t in the statement of the lemma can be replaced with the angle θ corresponding to t. Indeed,
we prove that there exists a θ0 such that all points on the segment xy0 where y0 represents the
point corresponding to angle θ0, are all in Σδ.

Since ŷ can be no farther away from y that x̂, ŷ must be inside the ball By := B(y, ‖y− x̂‖).
Considering the fact that Bc is disjoint from Σ, ‖x̂− ŷ‖ cannot be larger than the diameter of
the spherical cap ∂By \Bc. Thus ‖x̂− ŷ‖ ≤ 2 sin θ and therefore,

f(ŷ) ≥ f(x̂)− ‖x̂− ŷ‖ ≥ 1− 2 sin θ. (11)

Let us denote ‖c − y‖ by `. Also, assume without loss of generality that v is a unit vector
and therefore ‖x− y‖ = t. From the sine law on the triangle cxy, we have

` = (1− δ) sinα/ sin(α− θ).
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Since ‖y − ŷ‖ ≤ ‖y − x̂‖, sing the cosine law on triangle cyx̂ we have

‖y − ŷ‖2 ≤ ‖y − x̂‖2

= 1 + `2 − 2` cos θ

= 1 +
(1− δ)2 sin2 α

sin2(α− θ)
− 2(1− δ) sinα cos θ

sin(α− θ)
. (12)

Let us denote the right hand side of (12) as g(θ) (taking α and δ as constants). Thus from (11)
and (12) we have

‖y − ŷ‖2

f(ŷ)2
≤ g(θ)

(1− 2 sin θ)2
.

The statement of the Lemma follows if the function h(θ) := g(θ)/(1 − 2 sin θ)2 ≤ δ2 when
θ belongs to some interval [0, θ0). However, since h(0) = δ2, this amounts to verifying that
(dh/dθ)(0) ≤ 0 and (d2h/dθ2)(0) < 0 when (dh/dθ)(0) = 0. These claims can be verified
algebraically when the specified bound on α is applied. �

Corollary 6.6 For ε ≤ 1/10 and 9ε2 < δ ≤ 3/10− 2ε, no flow line of φQ1
leaves the δ-tubular

neighborhood Σδ. In other words, Σδ is flow-tight for φQ.

Proof of Corollary 6.6. By Lemmas 6.5 and 6.4, it suffices choose δ in such a way that
β = ](x̂ − x, vQ(x)) is smaller than the angle α required in Lemma 6.2. In other words, it
suffices to have

tanβ ≤ 1− δ
2δ

,

or equivalently
1

cos2 β
≤ 1 +

(1− δ)2

4δ2
.
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By Lemma 6.2, cosβ ≥ 1− δ − 6ε. Thus it suffices to choose δ in such a way that

1

(1− δ − 6ε)2
≤ 1 +

(1− δ)2

4δ2
.

It can be verified that for ε ≤ 1/10, the inequality is enforced when 9ε2 < δ ≤ 3/10− 2ε. �

7 Geometric Quality

The purpose of this section is to prove that the set O of simplices removed from DelP by the
Wrap algorithm advances close to the actual surface Σ. In particular, this entails that the
symmetric difference between the output I of Wrap and the original shape S is contained in
the tubular neighborhood Σ9ε2 . One use of this result is proving a gap between the points in I
and exterior medial axis critical points which is important in our homotopy proofs.

The following Lemma is close in spirit to Theorem 2.1. The proofs and the analyses are
closely related but the analysis in the following lemma is slicker. In essence, it shows that if the
Voronoi face dual to a Delaunay simplex τ is not entirely far from the surface, then τ is entirely
very close to the surface.

Tangent Feature-size Balls

For a point x on Σ, B+
x and B−x respectively denote the outer and inner balls of radius f(x)

tangent to Σ at x.

Lemma 7.1 Let x be a point on the boundary of Σλ for 0 < λ < 1. Define the set L(x) ⊂ Rn
as

L(x) := B (x, `(ε, λ)f(x̂)) \
(
B+
x̂ ∪B

−
x̂

)
,

where
`(ε, λ) =

√
λ2 + ε2(1 + λ).

Then,

1. AP1
(x) = AP (x) ⊂ L(x). In particular, the points in AP (x) are within distance `(ε, λ)f(x̂)

from x.

2. L(x) ⊂ B (x, r(ε, λ)f(x̂)) where

r(ε, λ) = ε

√
1 + λ

1− λ
.

3. L(x) is contained in a cone with apex x, axis x̂− x, and half-angle γ where

ψ = ψ(ε, λ) = arcsin

(
r(ε, λ)

`(ε, λ)

)
.

Proof. Let c+ be a point on the line normal to Σ at x̂ at the same side of Σ as x and at distance
f(x̂) from x̂. Let c− be the point symmetrically opposite to c+ with respect to x̂. For simplicity
we normalize the distances so that f(x̂) = 1. Let B+ = B(c+, 1) and B− = B(c−, 1) be balls of
radius 1, i.e. f(x̂), tangent to Σ at x̂. By the definition of local feature size, these balls avoid
Σ. By the ε-sampling assumption, there is a sample point in the ball Bε = B(x̂, ε). Thus the
closest point in P to x is within distance ` from x, where ` is the distance between x and y, a
farthest point from p in L0 = Bε \ (B+ ∪ B−). Figure 8 shows a planar section of this setting.
In the figure, the region L0 is shaded with the darkest gray. Let B` = B(x, `). All closest points
to x in P must lie in the region L1 = L(x) = B` \ (B+ ∪ B−). Let z be a point in this region
farthest away from x̂ and let r = ‖x̂− z‖. Let γ be the angle between y− x̂ and the hyper-plane
tangent to Σ at x̂. It can be easily seen from the right hand side of Figure 8 that sin γ = ε/2.
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Figure 8: Proof of Lemma 7.2

Since the angle ∠(y − x̂, x− x̂) is π/2 + γ we have using the cosine rule

`2 = ‖x− z‖2 = ‖x− y‖2 = λ2 + ε2 − 2ελ cos(π/2 + γ)

= λ2 + ε2 − 2ελ sin γ

= λ2 + ε2(1 + λ).

Now by applying the cosine rule to the triangle xzc+, we have for the angle β = ∠(x −
c+, z − c+)

cosβ =
1 + (1− λ)2 − `2

2(1− λ)

=
1 + (1− λ)2 − λ2 − ε2(1 + λ)

2(1− λ)

= 1− ε2

2
· 1 + λ

1− λ
.

If we rewrite the above equality

cosβ = 1− 2

(
ε

2

√
1 + λ

1− λ

)2

,

and observe on the figure that sin(β/2) = r/2, we can use the identity cosβ = 1 − 2 sin2(β/2)
to obtain,

r = ε ·
√

1 + λ

1− λ
.

To complete the proof, we need to only show that the angle β′ = ](x̂−x, z−x) is smaller than
ψ(ε, δ) as given in the statement of the Lemma. From the figure sinβ′ = h/` where h is the
distance between z and the line supporting the segment xx̂. Since h ≤ r, sinβ′ ≤ r/l = sinψ.
�

Lemma 7.2 Let P1 be an ε-sample of the surface Σ1 for ε ≤ 1/10. For a simplex τ in DelP1,
if the face of VorP1 dual to τ intersects Σλ for λ ≤ 1/2, then the simplex τ is contained entirely
in Σδ for δ ≥ 5

2ε
2.
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Proof of Lemma 7.2. We use the setting of the proof of Lemma 7.1 (refer to Figure 8). Let
r = r(ε, λ) and ` = `(ε, λ). Consider the hyper-plane H+ passing through z and parallel to the
tangent plane to Σ at x̂. Let H− be the hyper-plane parallel to H+ and symmetric to it with
respect to x̂. The hyper-planes H+ and H− intersect the balls B+ and B− respectively in two
similar disks C+ and C− both centered on the segment c+c−. The region L(x) is contained in
the convex hull of C+∪C− which is a cylinder L2 whose central axis lies on c+c−. Since L2 and
τ are both convex, τ ⊂ L2. The important observation is that since the disks C+ and C− are
respectively contained in the balls B+ and B− in opposite sides of Σ, every segment parallel to
c+c− connecting a point from C+ to its corresponding point in C− must intersect Σ. This is in
particular true for those of such segments that intersect τ . Thus the length of these segments
is an upper bound on the distance between any point in τ and Σ. This length, i.e. the distance
between C+ and C− is simply 2(1− cosβ). Thus for every point u ∈ τ :

‖u− û‖ ≤ 2(1− cosβ) = ε2 · 1 + λ

1− λ
.

On the other hand by the triangle inequality

‖û− x̂‖ ≤ ‖û− u‖+ ‖u− x‖ ≤ ‖û− u‖+ r ≤ ε2 · 1 + λ

1− λ
+ ε ·

√
1 + λ

1− λ
.

Since the local feature size is a 1-Lipschitz function

f(û) ≥ f(x̂)− ‖x̂− û‖ ≥ 1− ε2 · 1 + λ

1− λ
+ ε ·

√
1 + λ

1− λ
.

Therefore
‖u− û‖
f(û)

≤
ε2 · 1+λ

1−λ

1− ε ·
√

1+λ
1−λ − ε2 · 1+λ

1−λ

≤ 5

2
ε2,

for λ < 1/2 and ε ≤ 1/10. �

Lemma 7.3 Let λ < 1/2 and let D be the subcomplex of DelP1 consisting of all n-simplices
whose circumcenters are contaiend in S∗λ, along with all proper faces of such simplices. Then
|D| covers convP1 ∩ S∗δ for δ > 9ε2.

Proof of Lemma 7.3. Every point x ∈ convP1 is in at least one Delaunay n-simplex. To
prove the lemma, we show that for every x ∈ convP1 ∩ S∗δ , the circumcenter of every n-simplex
τ ∈ DelP1 containing x is in S∗λ which implies that τ ∈ D.

Thus assume x ∈ convP1 ∩ S∗δ and let τ be a Delaunay n-simplex that contains x. Since
x ∈ S∗δ , ‖x− x̂‖ > 9ε2f(x̂). Thus by Lemma 6.4, the circumcenter c of τ is at the same side of
Σ as x and therefore c ∈ S∗. Now, by Lemma 7.2, ‖c − ĉ‖ ≥ 1

2f(ĉ) since otherwise τ ⊂ Σ2.5ε2

while x ∈ τ is in S∗9ε2 , a contradiction. Thus, c ∈ S∗λ and τ ∈ D and therefore the point x is
covered by |D|. Since this argument holds for every x ∈ convP1 ∩S∗δ , the proof is complete. �

We will need the following two lemmas from [1] and [9] respectively.

Lemma 7.4 Let x and y be points on Σ with ‖x− y‖ ≤ ξf(x) for ξ ≤ 1/3. Then ∠(n+
x , n

+
y ) ≤

ξ
1−3ξ . Likewise ∠(n−x , n

−
y ) ≤ ξ

1−3ξ .

Lemma 7.5 For points p, q, r ∈ Σ, let p be a vertex of the triangle τ with the largest angle. If
the circumradius of τ is ρ, then the angle between nτ , the normal to the plane of τ , and np, the
normal to Σ at p, is at most β(ρ/f(p)) where

β(λ) := arcsin(λ) + arcsin

(
2√
3

sin(2 arcsinλ)

)
.

In particular, when λ ≤ 1/4, β(λ) ≤ 4λ.
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Orienting Triangle Normals

In general, for a triangle τ let nτ denote the direction of the line normal to the plane of τ . It is
possible to orient nτ according to vector n+

p for a vertex p of τ . Thus of the two vectors parallel
to the direction nτ , we take the one with angle smaller than π/2 from n+

p as n+
τ and the other

one as n−τ . It is of course generally possible to get a conflicting orientation for nτ when we
repeat this using a different vertex of τ . We call a Delaunay triangle τ flat (to the surface) if
the orientations of nτ with respect to surface normals at all three of its vertices are consistent.
For flat triangles n+

τ and n−τ are well-defined without reference to any particular vertex. Next
we show that all Delaunay simplices whose dual intersect S∗λ for a large enough λ, are put in O
by Wrap. This entails that Wrap progresses in removing simplices from DelP (and putting
them in O) and reaches a close neighborhood of the surface. The proof of the main result of
this section, i.e. Theorem 7.8 depends on the following lemma the proof of which makes use
of of Lemma 7.5 from [9] which states that a Delaunay triangles with small circumradius is
almost tangent to surface at its vertices. This lemma is only proven for R3 and is believed not
to generalize to higher dimensions. Because of this, the guarantees provided in this paper only
hold in three dimensions. However, this is the only weak link in the provided chain of arguments
and a proof of the following lemma for arbitrary dimensions generalizes all the guarantees in
this paper.

Lemma 7.6 Let ε ≤ 0.03 and δ = ε. Let D be as defined in Lemma 7.3 for λ = δ = ε. Let τ
be a Delaunay triangle on the boundary of |D| and let vi be the vertex of the Voronoi edge dual
to τ that is contained in S∗δ . Furthermore, let x be any intersection point of e and the outer
boundary of Σδ. Then (1) τ is flat, (2) for every point y ∈ τ , the angle between the vectors
x− y and n+

τ (n−τ ), is at most

r

1− 3r
+ β

(
`

1− r

)
+ arcsin

(r
`

)
,

where r = r(ε, δ) and ` = `(ε, δ) are defined in Lemma 7.1. Finally (3) vi is on the same side of
the plane of τ as x and is farther from this plane than x.

Proof. For simplicity, we assume that f(x̂) = 1. By Lemma 7.1 hP (x) ≤ ` = `(ε, δ). Since x
is at equal distance from the vertices of τ , hP (x) is an upper bound for the circumradius of τ .
Moreover, by Lemma 7.1, ‖x̂ − p‖ ≤ r = r(ε, δ) which results, using Lipschitz property of the
local feature size, that f(p) ≥ 1− r. Therefore, by Lemma 7.5

](nτ , np) ≤ β
(

`

1− r

)
. (13)

Let n+
τ be the orientation of nτ that makes an acute angle with n+

p .
For any vertex q of τ , ‖q − x̂‖ ≤ r and therefore using the Lemma 7.4 we obtain

](n+
q , n

+
x̂ ) ≤ r

1− 3r
. (14)

Since (14) holds for every vertex of τ , it also holds for p and therefore

](n+
p , n

+
q ) ≤ ](n+

p , n
+
x̂ ) + ](n+

q , n
+
x̂ ) ≤ 2r

1− 3r
.

Thus we get

](n+
τ , n

+
q ) ≤ β

(
`

1− r

)
+

2r

1− 3r
≤ 13◦,

for our choices of ε and δ. Thus n+
τ and n−τ are well-defined and τ is flat.

For a point y ∈ τ , let α(y) be the angle between n+
τ and the vector x − y. Let x0 be

the intersection point of the affine hulls of e and τ . Since e and τ are orthogonal, cotα(y) is
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exactly ‖x−x0‖/‖y−x0‖. Thus α(y) depends only on the distance between y and x0 and grows
monotonically when ‖y−x0‖ grows. Therefore, over τ , α(y) achieves its maximum at every one
of the three vertices of τ .

Therefore, it suffices to prove the statement of the lemma only for y = p where p is the vertex
of τ with the largest face angle in τ . Equations (13) and (14) put a bound on angle between n+

τ

and nx̂:

](n+
τ , n

+
x̂ ) ≤ r

1− 3r
+ β

(
`

1− r

)
< 11◦,

for δ = ε ≤ 0.03. By Lemma 7.1 the angle between x− p and nx̂ is at most

](n+
x̂ , x− p) ≤ arcsin

(r
`

)
.

Combining, we get

](n+
τ , x− p) ≤ ](n+

τ , n
+
x̂ ) + ](n+

x̂ , x− p) ≤
r

1− 3r
+ β

(
`

1− r

)
+ arcsin

(r
`

)
.

Next we show that x and vi are on the same side of the plane Π of τ as x. First observe that
the above argument remains valid for every intersection point x of e and the outer boundary of
Σδ. Since for any such x, the angle between x− p and n+

τ is less than 90◦, all these points are
on the same side of Π. Among all such intersection points, we take x to be the one closest to
vi and prove that vi is on the same side of Π as x. First notice that since vi ∈ S∗δ and x is the
closest point to vi on the outer boundary of Σδ, the segment xvi is entirely contained in S∗δ . On
the other hand, as shown above, the angle between the segment xvi (parallel to nτ ) and nx̂ is
at most

r

1− 3r
+ β

(
`

1− r

)
.

For our choices of ε and δ, this is a smaller angle than θ = arctan
(

1−δ
2δ

)
and therefore the

segment xvi falls inside the double-cone with apex x, axis nx̂ and half angle arctan θ. On the
other hand, by Lemma 6.5, xvi cannot be inside the cone opening toward n−x̂ since every segment
xz in this cone must have an initial segment xz′ in Σδ while xvi is entirely in S∗δ . Thus vi has
to be in the cone opening toward n+

x̂ . Since we showed above that ](n+
x̂ , n

+
τ ) differ by at most

11◦, vi has to be on the same side of Π as x and farther away from Π than x. �

Lemma 7.7 Let P1 be an ε-sample of a surface Σ1 in R3 for ε ≤ 0.03. Let D be as defined in
Lemma 7.3. Then no flow line of φQ1

starting from a simplex in DelP1 \D enters the interior
of |D|.

Proof. We prove the theorem by analyzing the flow direction on the boundary of |D|. Specifically,
for every point x on a Delaunay triangle or edge on ∂|D|, we show that vQ(x) i‘s either tangent
to ∂|D| or points toward its exterior. Notice that Delaunay vertices, i.e. points in P , are maxima
(and thus sinks) of φQ and thus need not to be analyzed.

Let τ be a Delaunay triangle on ∂|D|. By definition the Voronoi edge e dual to τ has a
vertex vo in Σδ and the other vi in S∗δ thus intersecting the outer boundary of Σδ at some point
x. Pick x arbitrarily if there are multiple such intersections. By Lemma 7.6, τ is flat. Take the
plane Π of τ as the horizontal plane and the direction of e as vertical. Of the two Delaunay
tetrahedra incident to τ , let σi be the one included in D and let σo be the other one. Clearly,
σi is dual to the Voronoi vertex vi and σo is dual to vo. If vi and vo are on opposite sides of Π,
dQ(τ), the closest point to σ on e will be the intersection of the affine hulls of τ and e and the
flow on τ will be tangential in which case there is nothing to prove. Thus assume that vi and
vo are on the same side of Π.

The three points vi, x and vo are on a line orthogonal to Π with x between vi and vo. The
vertical order of σi and σo (in the direction of e) agrees with that of vi and vo. Thus the flow
on τ is toward σo if and only if vi is farther from Π than x. Lemma 7.6 guarantees that this is
indeed the case.
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Next, consider a Delaunay edge e on the boundary of |D| and let τ and τ ′ be two Delaunay
triangles incident to e and on the boundary of |D|. Let H and H ′ be half-planes, respectively
supporting τ and τ ′, and sharing the line through e for boundary. Let W be the set of all
tetrahedra incident to e but not in D and between τ and τ ′. |W | is a polytope that has e, τ ,
and τ ′ on its boundary. Let φ be the dihedral angle between τ and τ ′ measured from inside W .
We will also refer to wedge made by τ and τ ′ and contained locally inside W as W .

Let p be an endpoint of e and thus a common vertex of τ and τ ′. It is shown in the proof
of Lemma 7.6 that each of the two angle ](n+

τ , n
+
p ) and ](n+

τ ′ , n+
p ) are less than 13◦ when

ε ≤ 0.03. Thus the angle between n+
τ and n+

τ ′ is at most 26◦. Both n+
τ and n+

τ ′ point toward the
interior of W and therefore consistently orient τ and τ ′. Thus φ, the dihedral angle between τ
and τ ′, can only be between 180 − 26 = 154◦ and 180 + 26 = 206◦ (note that an inconsistent
orientation of τ and τ ′ puts φ in the range 0–26◦ or 334–360◦).

In the rest of this proof, we analyze this setting restricted only to the bisector plane Π of e.
Note that the Voronoi facet dual to e is a planar polygon P contained in Π and so is the driver
dQ(e), which is the closest point to e (or equivalently the mid-point m of e) on P . Let t and
t′ be intersections of τ and τ ′ with Π respectively. Thus t and t′ are line segments in Π, each
incident at one end to m. Voronoi edges s and s′ respectively dual to τ and τ ′ are edges of the
polygon P and are contained in Π. Also, let `, `′, λ, and λ′ be the supporting lines of t, t′, s,
and s′ in Π respectively.

To simplify the argument, in drawing this arrangement on Π, we place m at the origin and
draw the lines ` and `′ with a small (less than 26◦) angle from the horizontal axis of the plane.
The lines λ and λ′ make similar angles with the vertical axis. It is thus meaningful to talk
about the top or bottom planar wedge made by ` and `′ or by λ and λ′. In the sequel, the top
wedge made by ` and `′ is denoted by ` ↑ `′ and the bottom wedge by ` ↓ `′. The wedge W
corresponds to the planar wedge made by ` and `′ as determined by t and t′.

Observation 1 A first observation is that regardless of the position of t and t′ along ` and
`′ with respect to m, both s and s′, the Voronoi edges dual to τ and τ ′ respectively, intersect
` ↑ `′. This is a consequence of Lemma 7.6 which gives an upper-bound the angle between x−m
and n+

τ , where x is an intersection point of s and outer boundary of Σδ.

](x−m,n+
τ ) ≤ r

1− 3r
+ β

(
`

1− r

)
+ arcsin

(r
`

)
< 57◦,

for our choices of ε and δ. Thus then angle between x − m and ` is at least 90 − 57 = 33◦.
Recalling that n+

τ is the vector we get by orienting λ upward, shows that x is in ` ↑ `′. Similarly,
any intersection point x′ between s′ and the outer boundary of Σδ lies in the same wedge.

The second key observation is based on the definitions of Delaunay and Voronoi complexes.

Observation 2 The order of λ and P along the direction ` agrees with that of t and m. The
same holds with λ replaced with λ′ and t with t′.

We first look at the case where φ ≥ π. Refer to Figure 9. In this figure the obtuse angle
made by t and t′ corresponds to W . We want to show that the driver dQ(m) of m, i.e. the
closest point to m on P is not in ` ↓ `′. This would imply that vQ(m) points toward the interior
or W , which is what we wish to prove. By Observation 2, Since t is to the left of m, P must be
on the right of λ. Similarly, P must be on the left of λ′. Thus P must be in λ ↓ λ′ (grayed in the
figure). Since by Observation 1, P intersects ` ↑ `′, this wedge and λ ↑ λ′ must intersect. Thus,
the left case of Figure 9 cannot happen. Thus suppose λ ↑ λ′ intersects ` ↑ `′. We consider
two cases depending on whether m is in λ ↑ λ′ or not. If not (Figure 9 middle), suppose to the
contrary that the driver d = dQ(m) is in ` ↓ `′. Consider the line among λ and λ′ that separates
m and d, say λ′ as in the figure, and consider the angle between m− d and x′− d, where x′ is a
point of intersection of s′ and the outer boundary of Σδ. It is easy to observe that this angle is
acute. However, P being a convex polygon, the segment dx′ is contained in P and this segment
making an acute angle with mx is in contradiction with d being the closest point of P to m.
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Figure 10: Proof of Lemma 7.7: φ ≥ π

In the case where m is contained in the wedge λ ↓ λ′, suppose again to the contrary that the
driver d of m is the wedge ` ↓ `′. It is easy to observe that in this case, at least one of the angle
](x− d,m− d) and ](x′ − d,m− d) is acute. This results a contradiction in the same manner
of the previous case.

The case φ < π is similarly handled. Refer to Firgure 10. Here the wedge W determined by
t and t′ is exactly ` ↓ `′ and we want to prove that the driver d = dQ(m) is in the wedge ` ↑ `′
which entails that the flow in at m enters W . Notice that in this case, Observation 2 implies
that P ⊂ λ ↑ λ′. Thus if λ ↑ λ′ is contained in ` ↑ `′ (left figure), there is nothing to prove. If
λ ↑ λ′ is not contained in ` ↑ `′ but it doesn’t include m (middle figure), then let λ′ be the line
that separates P and m and let x′ be an intersection point of s′ and the outer boundary of Σδ.
If d ∈ W , then ](m − d, x′ − d) is acute leading to a contradiction as in the previous case. If
m is contained in λ ↑ λ′ and d ∈W , then as was done above, it is easy to observe that at least
one of the angle ](m− d, x′ − d) or ](m− d, x− d) resulting a contradiction with d being the
driver of m.

�
Using the previous lemma, the geometric guarantee of the Wrap algorithm is given by the

following theorem.

Theorem 7.8 For ε ≤ 0.03, the output I of the Wrap algorithm is contained in S ∪Σ9ε2 and
includes S9ε2 = S \ Σ9ε2 .
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Proof. Lemma 7.7 shows that no simplices of the subcomplex D of D = DelP1 is preceded by a
surface or an interior medial axis critical simplices. This means that all simplices in D ∩DelP
are picked by the Wrap algorithm and put in O. Since by Lemma 7.3, all simplices in D \D
are contained in S ∪ Σ9ε2 , the same is true for I = DelP \O, i.e. |I| ⊂ S ∪ Σ9ε2 .

To show that I ⊃ S \ Σ9ε2 , assume to the contrary that a simplex τ ∈ O reaches S \ Σ9ε2 .
Since by Corollary 6.6 Σ9ε2 is flow-tight, any point x ∈ τ ∩ S9ε2 can only be on the unstable
manifold of inner medial axis critical points and therefore τ is preceded by some inner medial
axis critical simplex. This contradicts the choice of τ . �

8 Topological Correctness

Following Lieutier [16] the following criterion is used throughout this paper to prove homotopy
equivalence between topological spaces. For the classical definition of homotopy equivalence
refer, for example, to [14].

Proposition 8.1 Let X and Y ⊆ X be arbitrary sets and let H : [0, 1]×X → X be a continuous
function on both variables satisfying the following three conditions. (1) ∀x ∈ X, H(0, x) = x,
(2) ∀x ∈ X, H(1, x) ∈ Y , and (3) ∀y ∈ Y, ∀t ∈ [0, 1], H(t, y) ∈ Y . Then X and Y have the same
homotopy type.

Intuitively, we may interpret the first argument of the map H as time. Using a simple
reparameterization in the first argument, we can replace the interval [0, 1] with any interval
[0, T ] where T > 0 is a real number. The finiteness of the considered time interval is crucial to
the definition. The above criterion for homotopy equivalence between X and Y continuously
maps points in X to those in Y during the time interval [0, T ]. At time 0, all points in X are
mapped to themselves and by time T , they all arrive in Y . Notice that it is important that the
points in Y stay in Y at all times.

Let Q be a set of (possibly weighted) points in Rn. If X and Y are subsets of Rn with
Y ⊂ X, in order to establish a homotopy equivalence between X and Y by applying Proposition
8.1 using φQ as H, one must show that

1. the flow orbit of every point in X stays in X, i.e. φQ(X) = X (and thus the map φQ can
be restricted to X alone),

2. the flow orbit of every point in Y stays in Y , i.e. φQ(Y ) = Y , and

3. within a finite amount of time, the flow orbit of every point in X ends in Y .

Notice that the first condition of Proposition 8.1 is automatically satisfied for any flow map
φQ because for every x ∈ Rn, φQ(0, x) = x. If X is bounded, the finiteness of flow time into Y
can be guaranteed using Corollary 5.5 provided there is a lower bound c for ‖vQ(x)‖ for every
x ∈ X \ Y : let ∆ be an upper bound on the diameter of X and assume that for some constant
c > 0, ‖vQ(x)‖ ≥ c for every x ∈ X \ Y . Let y = φQ(t, x) be in X \ Y . Since Y is flow-tight for
φQ, y 6∈ Y implies that φQ(τ, x) 6∈ Y for all 0 ≤ τ ≤ t. Consequently ‖vQ(φQ(τ, x))‖ ≥ c. Then
by Corollary 5.5 we have for y = φQ(t, x)

hQ(y) = hQ(φQ(t, x))

= hQ(x) +

∫ t

0

‖vQ(φQ(τ, x))‖2dτ

≥ hQ(x) +

∫ t

0

c2dτ

= hQ(x) + tc2. (15)
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But since X is flow-tight for φQ, y ∈ X and therefore

hQ(y) = min
q∈Q

(
‖y − q‖2 − wq

)
≤ max

x∈X,q∈Q̃
‖x− q‖2 −min

q∈Q
wq

≤
(

∆ + dist(X, Q̃) + diam Q̃
)2

−min
q∈Q

wq.

The latter quantity is bounded and this put a finite upper bound on the value of t in the
inequality (15). Thus we have proved the following theorem.

Theorem 8.2 Let Q be a finite set of (possibly weighted) points in Rn. If for sets Y ⊂ X ⊂ Rn,
X and Y are both flow-tight for φQ, i.e. φQ(X) = X and φQ(Y ) = Y , and there is a constant
c > 0 for which ‖vQ(x)‖ ≥ c for all x ∈ X \ Y , then X and Y are homotopy equivalent.

The above theorem is the key to all homotopy equivalence proofs in the rest of this mono-
graph. To invoke the theorem we need two flow-tight sets X and Y which we sometimes call
the source set and the sink set, respectively. Stable and unstable manifolds, their unions, and
their intersections are flow-tight by definition. However, these won’t be the only examples of
flow-tight sets we will consider.

Lemma 8.3 The two sets S′ = S ∪ Σδ and clS = S ∪ Σ are homotopy equivalent, for any
0 < δ < 1. In fact, the latter is a strong deformation retract of the former.

Proof of Lemma 8.3. Consider the retraction map r : S′ → clS given by

r(x) =

{
x̂ x ∈ S′ \ clS
x x ∈ clS

The map r is continuous on Σδ because Σδ ∩M(Σ) = and M(Σ) consists of the only points in
space where the map x 7→ x̂ is not continuous (in fact undefined). Since the map r is identity
on clS, r is continuous on all of its domain.

If we now define the map R : [0, 1]× S′ → S′ as

R(t, x) =

{
(1− t)x+ tx̂ x ∈ S′ \ clS
x x ∈ clS,

the map R is a straight-line homotopy from the identity on S′ to the retraction r. �

Lemma 8.4 Let E be the union of unstable manifolds of all surface and inner medial axis
critical points under φQ1

. Then S ∪ Σδ is homotopy equivalent to E for 9ε2 < δ < 3/10− 2ε.

Proof. By Corollary 6.6, Σδ ∪ S is flow-tight for φQ1 . On the other hand E is also flow-tight
for φQ1 since by definition φQ1(E) = E. Therefore Theorem 8.2 implies the desired homotopy
equivalence if we only show that ‖vQ1

(x)‖ is bounded from below for every x ∈ (S ∪ Σδ) \ E.
But ‖vQ1

(x)‖ = 2‖x−dQ1
(x)‖. When DQ1

(x)∩VQ1
(x) = ∅, the distance between x and dQ1

(x)
is at least the distance between VQ1

(x) and DQ1
(x). Since both VorQ1 and DelQ1 are finite

complexes, there is a lower bound on the distance between pairs of dual faces from the two
complexes that do not intersect.

On the other hand, if VQ1(x)∩DQ1(x) do intersect, then their intersection is a critical point
c coinciding with dQ1

(x). Thus x is by definition on the unstable manifold of c. If c is a surface
or inner medial axis critical point, then Um(c) ⊂ E and thus x ∈ E contradicting the choice of
c. Thus c can only be an outer medial axis critical point. But then, by Theorem 2.1, c is not
contained in Σ1−2ε. The Hausdorff distance between Σ1−2ε and Σδ being strictly positive puts
a lower bound on the distance between x and c. �
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Lemma 8.5 Let E be as in Lemma 8.4. If ε ≤ 0.03, then the output I of the algorithm Wrap
is homotopy equivalent to E.

Proof. We first observe that I is flow-tight for φQ1 . By definition, the set O in the Wrap
algorithm consists of those simplices in DelP that are only preceded by exterior medial axis
critical simplices (including ω). If a flow line leaves I it enters O. But by definition, simplices in
I are reachable from critical simplices other than the outer medial axis critical ones. Therefore
if a flow line enters O from I, it provides a path from a critical simplex of surface or inner medial
axis to some simplex in O contradicting the definition of O.

On the other hand, E is also flow-tight for φQ as was shown in the proof of Lemma 8.4. We
observe here that E ⊆ I. This is because E is by definition the locus of all points reachable
by some flow path starting at a critical simplex of inner medial axis or surface. Trivially, these
critical simplices are themselves in I. For every other point x ∈ E, there is a flow path φQ(y)
starting at a point y in the relative interior of some critical simplex τ in the mentioned group
reaching x. Let τ = τ0, . . . , τk be the set of simplices intersecting φQ(y) until it reaches x with
τk being the simplex containing x in its relative interior. The existence of this path implies that
τ0 ≺ · · · ≺ τk. Therefore τk cannot be placed in O by the Wrap algorithm and consequently
τk ∈ I. So, we have shown that E ⊆ I.

Thus in order to complete the proof we only need to show that at every x ∈ I\E, ‖vQ(x)‖ > c
for some c > 0 and then the homotopy equivalence between E and I follows from Theorem 8.2.
Similar to the proof of Lemma 8.4, we only need to show that the points in I \ E are at a
positive distance from every outer medial axis critical point. This follows by a similar argument
to the one in the proof of Lemma 8.4 using the fact that I ⊂ S ∪Σδ for δ = 9ε2 as is shown by
Theorem 7.8. �

The topological guarantee of the wrap algorithm follows from combining Lemmas 8.3, 8.4,
8.5.

Theorem 8.6 Let P be an ε-sample of a surface Σ embedded in R3 with ε < 0.03. Then the
output I of the Wrap algorithm is homotopy equivalent to the bounded shape S enclosed by
Σ.

9 Conclusions and Further Work

We have described a variant of the Wrap reconstruction algorithm that in 3D produces an
output with geometric and topolgical guarantees. It remains unclear, even in 3D, whether the
boundary of the shape output by the algorithm is a manifold. It appears that resolving this
requires a better understanding of how the Delaunay complex intersects the unstable manifolds
of the critical points on the surface. In this direction, a better general understanding of the
unstable manifolds for weighted point sets may be needed. As for higher dimensions, we currently
have no guarantees under the ε-sampling assumption. Our argument depends on showing that
Wrap manages to get very close to Σ by removing enough simplices from convP . Our proof
for this fact in 3D relies on a result that says a triangle with “small” circumradius lies “flat” to
the surface [3]. In particular, this result is not known to generalize to higher dimensions.
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