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Abstract

It is known that the critical points of the distance function induced by a dense sample P of
a submanifold Σ of Rn are distributed into two groups, one lying close to Σ itself, called the
shallow, and the other close to medial axis of Σ, called deep critical points. We prove that under
(uniform) sampling assumption, the union of stable manifolds of the shallow critical points have
the same homotopy type as Σ itself and the union of the stable manifolds of the deep critical
points have the homotopy type of the complement of Σ. The separation of critical points under
uniform sampling entails a separation in terms of distance of critical points to the sample. This
means that if a given sample is dense enough with respect to two or more submanifolds of Rn, the
homotopy types of all such submanifolds together with those of their complements are captured
as unions of stable manifolds of shallow versus those of deep critical points, in a filtration of the
flow complex based on the distance of critical points to the sample. This results in an algorithm
for homotopic manifold reconstruction when the target dimension is unknown.

1 Introduction

Surface reconstruction is the problem of producing from a discrete sample of a surface Σ a concisely
represented surface Σ̃ that closely approximates Σ and shares its topology, provided that the sample
is dense enough. Due to its many applications, this problem has a rich literature spanning several
disciplines. In computational geometry a great deal of attention has been given to algorithms that
guarantee topological and geometric accuracy of the output under assumptions on the density of
the sample; see e.g. [7, 3, 5, 4, 6, 2, 8, 9] or [13] for a survey. Traditionally, “topological equivalence”
has been interpreted as homeomorphism or even the stronger notion of ambient isotopy. This in
particular requires the reconstructed object Σ̃ to also be a manifold and of the same dimension as
the target surface Σ. In this paper, we relax this interpretation to homotopy equivalence (see [26] for
definitions). Thus we seek to homotopically reconstruct the target manifold which consists of finding
a concisely represented (here polyhedral) subset of Rn that is within small Hausdorff distance to
the original manifold and shares its homotopy type. We emphasize here that the outcome of a
homotopic reconstruction of a sampled manifold need not be a manifold itself.

An intuitive idea that has inspired several reconstruction algorithms [27, 1, 9] is to interpret the
reconstructed surface as the zero level set of a (signed) distance function which evaluates to (near)
zero in all of the sampled points. The distance function to the target surface itself is clearly one such
function. When the sample is sufficiently dense, the distance to the sample closely approximates the
distance to the target surface. Thus one may use the distance function induced by the sample as the
starting point for building the distance function that leads to the the reconstructed surface. Study
of distance functions as a natural approach to surface reconstruction has lead to the examination

∗Department of Computer Science, University of Toronto, Toronto, Ontario, Canada. The majority of work on
this paper was carried out when the author was at the University of Illinois at Urbana-Champaign.

1



of deeper properties of such functions such as their singularities, gradients, or steepest ascent flows
[32, 20].

The flow complex was introduced by Giesen and John [22] as a tool for geometric modeling
though much of the mathematical foundations behind the flow complex were well-explored prior to
that (see [24] and references therein). In essence, for a discrete set P ⊂ Rn, the cells of the flow
complex of P is a cell complex that partitions the entire space into a number of cells each of which
is a stable set (aka stable manifold) under a flow map φP that results from the integration of a
vector field vP that generalizes the gradient of the distance to P [28]. Each cell of the flow complex
is the stable manifold of (set of all points that flow into) a critical point of the distance function
induced by P . In [21], it was noted empirically that if P is a dense sample of a surface Σ, then the
flow complex of P contains a subcomplex that approximates Σ.

Prior to [21], flow methods were employed for surface reconstruction (e.g. [20]) but the first
of such algorithms with geometric and topological guarantees was found by Dey et al. [18] who
proved a sharp separation of critical points of the distance function induced by surface samples into
two groups. The points in the first group, called the shallow critical points lie close to the surface
itself, and those in the second group, called the deep critical points lie close to the medial axis of the
surface. They further showed that for surfaces in R3, the boundary of the union of stable manifolds
of inner or outer deep critical points is homeomorphic to the original surface, provided that the
sample is dense enough and meets extra regularity conditions.

Contributions. We prove important topological properties about the flow complex induced by
dense samples of submanifolds of Rn of arbitrary dimension and codimension. These properties in
a way generalize reconstruction result of [18], albeit with certain reservations. On the downside, we
strengthen the adaptive sampling assumption of [18] to the uniform sampling where the sample is a
subset of the manifold with bounded Hausdorff distance to it. Moreover, the notion of topological
equivalence is weakened from homeomorphism to homotopy equivalence, thus our results translate
to algorithms for homotopic reconstruction. On the upside, we prove that the union of stable
manifolds of the shallow critical points approximates the manifold and captures its homotopy type
while that of the deep ones does the same for the complement of the manifold. Plus, we show
that this works for any closed submanifold of a Euclidean space of any dimension not just for
(codimension-1) surfaces. Capturing the homotopy type of the complement in addition to that
of the manifold results in a much stronger topological guarantee. For example, all closed curves,
knotted or not, have the same homotopy type and are in fact homeomorphic, but it is the homotopy
types of their complements that allow us to distinguish knotted curves from each other or from the
unknotted ones. The homotopy equivalence of union of stable manifolds of shallow critical points
to the target manifold simply follows from a sequence of known results on the homotopy types of
flow shapes, alpha shapes, and union of balls [17, 29, 19, 11]. The other homotopy equivalence, i.e.
between the union of stable manifolds of deep critical points and the complement of the manifold, is
the core result of this paper and its raison d’etre. Standard distance flow arguments as those used
in [28, 15, 23] fail in this case; see Section 5. We thus use a novel proof method that successively
applies such flow arguments on a family of intermediate sets that are indexed by the indices of
shallow critical points.
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In many scientific settings, a subspace of interest from a high dimensional space is
expected to be a manifold or lie close to one. Naturally occurring data often have much
lower inherent dimension than the space in which they live. Inferring the topology of
such subspaces based on a collected sample poses a version of the manifold reconstruc-
tion problem in which the dimension of the target manifold is not known. In fact, it
can be the case that the given sample is a dense sample for multiple submanifolds of
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various dimensions of the larger space. For example, in the figure on the right, a sample of the
curve can also be regarded as a sample for the torus in which the curves is contained and given the
sample alone as input, either the curve or the torus can be returned as a reconstruction of the target
manifold. As a result, in recent years, there has been growing interest in manifold reconstruction
algorithms that are not supplied with a target dimension (See e.g. [25]).

For uniform samples, the separation of critical points, which is determined in terms of their
distance from the target manifold, translates into a separation in terms of the distance from the
sample itself. In other words, if one sorts the critical points in the order of their distance to the
sample, the shallow critical points make a prefix of this ordering. Thus if one filters the flow complex
by putting together the stable manifolds, i.e. cells associated to, critical points in all prefixes of
this ordered sequence, one is guaranteed to reach in this filtration a shape homotopy equivalent
to any manifold that is represented densely enough by the given sample. As mentioned above,
the union of stable manifolds of the remaining critical points then captures the homotopy type of
the complement of that manifold. Notice that this filtration is independent of the manifold and
is simply a function of the given sample. Thus in the above example of the curve on the torus, if
the given sample is dense for both the curve and the torus, the above filtration results homotopic
reconstruction of both the curve and the torus, as well as their complements, in different stages.

Two important remarks are in order:

1. The significance of the results of this paper is primarily theoretical as in practice the flow
complex is expensive to compute. Numerical issues can affect the structural accuracy of this
complex and its exact computation has only been implemented in R3 [12]. This is in contrast
to much more robustly manageable and more efficiently computable structures such as offset
surfaces, alpha-shapes, or witness complexes (See e.g. [16]). Nevertheless, distance functions
have been repeatedly used as the basis of many reconstruction algorithms and we believe that
the stable manifolds of the flow induced by these functions capture much of the structure of
these functions and elucidate their role in manifold reconstruction.

2. Although the results presented in this paper are stated for uniform noise-free samples of
smooth submanifolds of Rn, they all generalize to considerably broader settings at the cost
of adjustments of constants: noisy (but uniform) samples can be accommodated using the
results of [15]. Furthermore, the assumption of the target shape being a smooth manifold
can be dramatically relaxed to allow arbitrary compacts subsets of Rn with positive µ-reach
in which case the sample can be taken as any finite (µ, κ)-approximation of the shape for an
appropriate choice of κ (See [14] for the definitions as well as a more general separation result).
We omit these generalizations from this manuscript and leave them for the full-version of this
paper.

The structure of the paper is as follows: In Section 2 we formally introduce the flow map φP
induced by a point set P as well as the resulting flow complex. In Section 3 we prove a slightly
different version of the critical points separation result of [18] for uniform samples of submanifolds
of Rn of arbitrary dimension. In Section 4 we show that the union of stable manifolds of the
shallow critical points capture the homotopy type of the manifold. Then in Section 5 we prove the
corresponding result for the deep critical points and the complement of the manifold. Concluding
remarks are provided in Section 6.
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2 Background and Preliminaries

Let P be closed nonempty subset of Rn. The complement of P is the open set P c = Rn \ P .
For any point x ∈ P c, let hP (x) = infy∈P ‖x − y‖ be the distance function defined by P and let
AP (x) = {y ∈ P : ‖x− y‖ = hP (x)}.

While the distance function hP is not smooth, it induces a vector field vP over P c which
behaves like the gradient of hP in the sense that vP (x) 6= 0 if and only if there is a unique direction
of steepest ascent for hP at x in which case the direction of this steepest ascent is given by vP (x)
(see [24] for more general statement and details). The vector vP (x) at a point x is characterized

by vP (x) = x−dP (x)
hP (x) , where dP (x), called driver of x is the center of the smallest enclosing ball of

AP (x), or equivalently, the closest point in convAP (x), the convex hull of AP (x), to x. The critical
points of hP are those points x for which vP (x) = 0, or equivalently, x = dP (x) ∈ convAP (x).

Lieutier [28] proved that if P c is bounded, then Euler schemes defined by vP on P c uniformly
converge and this results in a flow map φP : R+×P c → P c (where R+ is the set of non-negative reals)
which he also proved to be continuous in both variables (in fact some of these results on distance
functions were discovered earlier in higher generality on semi-concave functions [30]). Intuitively,
φP (t, x) is the point y that is reached from following the vector field vP for time interval of length
t, starting at x, by infinitesimal movements proportional to the magnitude of vP . The map φP has
the classical properties of a flow map, namely φP (0, x) = x, φP (s+ t, x) = φP (s, φP (t, x)), and for
any point x and any t ≥ 0, vP (φP (t, x)) is the right-derivative of φP (t, x). Lieutier also proved that
hP along any flow orbit, i.e. t 7→ hP (φP (t, x)) is increasing and in addition satisfies

hP (φP (t, x)) = hP (x) +

∫ t

0
‖vP (φP (τ, x))‖2dτ. (1)

The special case where P is finite is of particular interest to us and the rest of this section goes
over special properties of the flow maps in this case. Let VorP and DelP respectively denote the
Voronoi and Delaunay complexes induced by P . For any point x ∈ Rn, we represent by VP (x) the
lowest dimensional face of VorP that contains x, and by DP (x) the face in DelP dual to VP (x).
The set AP (x) is the vertex set of DP (x) and dP (x) becomes the closest point on DP (x) to x. It
can be verified that all points in the relative interior of the same Voronoi face have the same driver.
Since the affine hulls of a Voronoi face and its dual are orthogonal with total dimension n, they
intersect in exactly one point. Thus if VP (x) and DP (x) intersect, then this intersection consists
of a single critical point which is the driver of x. All critical points (except for the maximum at
infinity) are characterized the same way (as intersection points of duals). Following [22], we make
a general position assumption that all pairs of Voronoi and Delaunay objects that are dual to and
intersect each other, do so in their relative interiors. The index of a critical point c is defined as
the dimension of DP (c).

For a given flow map φP , the flow orbit of a regular point x, denoted φP (x) is defined as
φP ([0,+∞), x). For a set T we use φP (T ) for

⋃
x∈T φP (x). Notice that by this definition T ⊆ φP (T ).

For a critical point c of hP , the set of all points x whose flow orbit converges to c is called the
stable manifold of c and denoted by Sm(c) = {x : φP (+∞, x) = c}. Although there is no flow out
of a critical point c, we study the orbits of points very close to c. Some of these points flow into c
while other flow away from it. We define the unstable manifold Um(c) of a critical point c, as the
set of all points into which points arbitrarily close to c flow. Formally, Um(c) =

⋂
ε>0 φP (B(c, ε)),

where B(c, ε) denotes the open ball of radius ε centered at c. In other words, the unstable manifold
of c consists of c and all the integral lines that start infinitesimally close to c.

Proposition 2.1 Let P be finite. For a critical point c of hP , Um(c) = φP (VP (c)).
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A set T is said to be flow-tight for φP if φP (T ) = T . Stable and unstable manifolds of critical
points and their union and intersections are flow tight. Let CP be the set of critical points of hP
induced by P (including the critical point at infinity). The (stable) flow complex of P , denoted
SfcP is the collection of stable manifolds of all critical points in CP . Generically, the cell associated
to an index k critical point is a topological open k-ball. Moreover, if for critical points c, c′ ∈ CP ,
c ∈ ∂ Sm(c′), then Sm(c) ⊂ ∂ Sm(c′). The following lemma states an important structural property
of the stable and unstable flow complex that follows from the correctness of the algorithms for
computing these complexes [31, 10].

Lemma 2.2 If for c ∈ CP , ind c = k, then every critical point c′ ∈ ∂ Sm(c) has index less than
k, provided that Sm(c) does not intersect the (n − k − 1)-skeleton of VorP . Under the same
assumption, if c ∈ ∂Um(c′), then ind c′ < ind c.

All but a measure-0 set of points P satisfy the requirement that Sm(c) must stay clear from
faces of VorP of dimension n− k − 1 or smaller (see [31]).

Terminology. For the rest of this paper, by a manifold we refer to a C2-smooth closed submani-
fold Σ of Rn of arbitrary codimension. The medial axis M(Σ) of Σ consists of points in space with
2 or more closest points in Σ. The reach of Σ is the minimum distance of any point of M(Σ) to
Σ. The C2-smoothness of Σ implies that its reach is strictly positive. Any point x 6∈ M(Σ), has a
unique closest point x̂ in Σ. The half-line bounded at x̂ through x hits M(Σ) for the first time at
a point x̌ (or at infinity).

A point set P ⊂ Σ is a uniform ξ-sample of Σ if ∀x ∈ Σ ∃p ∈ P : ‖x − p‖ ≤ ξ. For a given
parameter r ≥ 0, the union of balls

⋃
p∈P B(p, r) is denoted by B(r)(P ). The α-shape of P of

parameter r, denoted K(r)(P ) is the underlying space of restriction of DelP to B(r)(P ) (see [19]).
The flow shape of P for parameter r, denoted F (r)(P ) is the union of stable manifolds of critical
points at distance ≤ r from P (see [17]).

3 Shallow versus deep critical points

For any point x ∈ Rn\(Σ∪M(Σ)) let µ(x) = ‖x̌− x̂‖. If x̌ is at infinity, then µ(x) =∞. Otherwise,

the ratio 0 < ‖x−x̂‖
‖x̌−x̂‖ < 1, is a relative measure of how close to Σ or M(Σ) the point x is. It turns out

[18, 15] that when a (possibly noisy) sample P of Σ satisfies some density requirements, then critical
points of hP are distributed, according to the above measure, into two distinguishable groups, one
lying very close to Σ and the other to M(Σ). We state an essentially weaker version of the lemma
that is formulated for uniform samples. A proof can be found in the Appendix. Variants of this
result for noisy samples, or for surfaces of positive µ-read can be found in [15] and [14].

Theorem 3.1 Let P be an ετ -sample of a manifold Σ of reach τ with ε ≤ 1/
√

3. Then for every
critical point c of hP , either ‖c− ĉ‖ ≤ ε2τ, or ‖c− ĉ‖ ≥ (1− 2ε2)τ. In the former case we call c a
shallow critical point and in the latter a deep critical point.

The following Corollary is a technical improvement of Proposition 7.1 in [15] or Lemma 3.3 in
[29].

Corollary 3.2 Let P be an ετ -sample of a manifold Σ of reach τ with ε ≤ 1/
√

3. Then, for
every shallow critical point c of hP , hP (c) ≤

√
5/3 · ετ , and for every deep critical point c′ of hP ,

hP (c′) ≥ (1− 2ε2)τ .
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Proof. Let c be a shallow critical point of hP and let λ = ‖c − ĉ‖/τ . Since c is shallow, λ ≤ ε2.
Since µ(c) ≥ τ , by Lemma A.1, hP (c) ≤ `(ε, λ)τ . Therefore

hP (c) ≤
√
λ2 + ε2(1 + λ) · τ ≤

√
ε4 + ε2(1 + ε2) · τ

=
√

1 + 2ε2 · ετ ≤
√

5

3
· ετ.

On the other hand, if c′ is a deep critical point, by Theorem 3.1, ‖c′− ĉ′‖ ≥ µ(c′)−2ε2τ ≥ (1−2ε2)τ .
The proof follows from the fact that hP (c′) ≥ ‖c′ − ĉ′‖. �

For any 0 ≤ δ < 1, the δ-tubular neighborhood of a manifold Σ of reach τ is defined as the set
Σδ = {x ∈ Rn : ‖x− x̂‖ ≤ δτ}. Notice that M(Σ) ⊂ Σc

δ.
The following statement is classical. A proof is supplied in the Appendix for completeness.

Lemma 3.3 For any 0 ≤ δ < 1, cl Σc
δ is homotopy equivalent to Σc. In fact, the former is a strong

deformation retract of the latter.

The following lemma is an adaptation of a similar lemma from [23] for uniforms samples. The
proof is provided in the Appendix.

Lemma 3.4 Let P be an ετ -sample of a manifold Σ of reach τ with ε ≤ 1/(1+
√

2). Then, cl Σc
δ is

flow-tight under the flow φP , for any ε2

1−ε < δ < 1− ε− ε2

1−ε . In particular this is true for δ = 1/2.

The above lemma implies that union of stable manifolds of shallow critical points is contained
in Σδ for δ = ε2/(1− ε) thus providing the Hausdorff distance guarantee for our homotopic recon-
structions. Alternatively, one can replace Σδ with a union of balls of an appropriately small radius
centered at all sample points and show that the complement of the this union is flow tight under
φP (See e.g. [15]).

4 Homotopy Type of the Manifold

In this section we show that in a dense enough sample of a submanifold of Rn, the union of stable
manifolds of the shallow critical points has the same homotopy type as the manifold itself. This
statement follows from the following sequence of results.

Lemma 4.1 [29] Let Σ be a manifold of reach τ and let P be an ετ -sample of Σ for any ε ≤
1
2

√
3/5. Then B(r)(P ) deformation retracts (and is in particular homotopy equivalent) to Σ, for

any 2ετ < r <
√

3/5 · τ .

Lemma 4.2 [19] For any r ≥ 0, B(r)(P ) and the α-shape K(r)(P ) are homotopy equivalent.

Lemma 4.3 [17, 11] For any r, the flow shape F (r)(P ) and the α-shapes K(r)(P ) are homotopy
equivalent.

Theorem 4.4 Let Σ be a manifold of reach τ and let P be an ετ -sample of Σ for ε ≤ 1
2

√
3/5.

Then Σ is homotopy equivalent to the union U of stable manifolds of shallow critical points of hP .

Proof. For a critical point c of hP , by Corollary 3.2 hP (c) ≤
√

5/3 · ετ if c is shallow and hP (c) ≥
(1 − 2ε2)τ if c is deep. For ε < 1

2

√
3/5 the latter bound is strictly greater than the former and

therefore there is a positive value r for which hP (c) < r for every shallow critical point c and
hP (c′) > r for every deep critical point c′. Thus the flow shape F (r)(P ) is precisely the union of
stable manifolds of shallow critical points of hP with respect to Σ. Lemmas 4.1, 4.2, 4.3 now imply
that this union is homotopy equivalent to Σ. �

6



5 Homotopy Type of the Complement of the Manifold

In this section we prove that the union of stable manifolds of deep critical points has the homotopy
type of Σc using the continuity of the flow map φP . The technique is inspired from the work of
Lieutier [28]. A proof can be found in [31] (Theorem 4.20, page 111).

Theorem 5.1 Let P be a finite set of points in Rn. If for sets Y ⊂ X ⊂ Rn, X and Y are both
flow-tight for φP , i.e. φP (X) = X and φP (Y ) = Y , and if X \Y is bounded, and, finally, if there is
a constant c > 0 for which ‖vP (x)‖ ≥ c for all x ∈ X \ Y , then X and Y are homotopy equivalent.

A difficulty in using the above theorem is that φP is proven in [28] to be continuous on P c as long
as it is a bounded set. This can be overcome by clipping the space with a very large ball, thus
letting P0 = P ∪ Bc where B is a very large ball satisfying P ⊂ 1

5B. It can then be verified that
within 1

2B, φP and φP0 agree which is enough for what we want to prove. In the sequel CΣ denotes
the set of shallow critical points of P where P is an ετ -sample of a manifold Σ of reach τ . The
value of ε is determined later. For shorthand, we write S for Σc as well Sδ for Σc

δ.

Lemma 5.2 Let c be a critical point of hP and let U ⊆ Rn be a flow-tight set for φP with c 6∈ U .
Let V = rel intVP (c). For r ≥ 0, let Vr = V ∩ B(c, r). Then for every r ≥ 0, if U ∩ B(c, r) ⊂ V ,
then U \ Vr is flow-tight for φP and U and U \ Vr have the same homotopy type.

Proof. We build a deformation retraction from U to U \ Vr. Since c is a critical point and V is the
relative interior of the lowest-dimensional Voronoi face that contains c, c is the driver of the points
in V . Consequently, if x 6= c is a point in V ∩ U , dP (x) = c and since U is flow-tight for φP , we
have

{x+ t(x− c) : t ≥ 0} ∩ clV ⊆ U.

Now, define the map ρr : Vr → ∂Vr (where ∂Vr is defined relative to the affine hull of Vr) as
ρr(x) = x + t(x − c) for the smallest t ≥ 0 such that ρr(x) ∈ ∂Vr. In other words, ρr(x) is the
point at which the ray shot from x in the direction x − c hits the boundary of Vr. Since Vr is
convex (it is the intersection of V and B(c, r) which are both convex), it is easy to see that the
map ρr is continuous (it is a central projection from a point in a convex set to the boundary of the
convex set) and because of the assumption that U ∩ B(c, r) ⊂ V this implies that the retraction
map ρ∗r : U → U \ Vr defined below is also continuous.

ρ∗r(x) =

{
ρr(x) x ∈ Vr,
x x ∈ U \ Vr.

We now define the map Rr : [0, 1]× U → U as

Rr(t, x) =

{
(1− t)x+ tρr(x) x ∈ Vr,
x x ∈ U \ Vr.

which gives us a straight line homotopy from the identity map of U to the retraction ρr.
If U ∩B(c, r) ⊂ V , then for any y ∈ Vr ∩ U , only points in Vr can flow into y. In other words,

y = φP (t, x) for some t ≥ 0 and x ∈ U implies that x ∈ Vr. Therefore, all flow lines that are
affected by removal of Vr from U start in Vr. But we saw above that each such flow line loses an
initial segment in U \ Vr. Thus U \ Vr is flow tight for φP . �

Theorem 5.3 Let ε ≤ 1
2

√
3/5. Let S̃ =

⋃
c∈C\CΣ Sm(c) be the union of stable manifolds of all

deep critical points of hP with respect to Σ. Then S̃ is homotopy equivalent to S.

7



(a) (b) (c) (d) (e)

Figure 1: Illustration of the steps in the proof of Theorem 5.3: a) The grayed region represents
S̃ = U0. The solid circles are sample points and the empty circles are the shallow index-1 critical
points. The Voronoi diagram is shown in thin gray lines and the dotted curve shows the boundary
of Sδ. b) A small neighborhood of shallow index-0 critical (sample) points is removed from U0 to
result U ′0. c) U ′0 is shown to be homotopy equivalent to U1 which is Sδ plus the unstable manifold
of shallow critical points of index 1 or higher, clipped to S̃. d) A small neighborhood of shallow
index-1 critical points are deleted from U1 to result U ′1, etc. e) We finally arrive at Sδ.

Proof. Let UΣ =
⋃
c∈CΣ Um(c) be the union of unstable manifolds of all shallow critical points and

let U = (Sδ ∪ UΣ)∩ S̃ for δ = 1/2. We show that U ' Sδ which proves this theorem since Sδ ' S by
Lemma 3.3. First notice that U is a flow-tight set. This is because Sδ and UΣ are both flow-tight
and so is S̃.

Recall that the index of a critical point c, ind c, is dimDP (c), i.e. the dimension of the Delaunay
face dual to the lowest dimensional Voronoi face of VorP that contains c. Equivalently ind c =
|AP (c)| − 1. Let CiΣ, i = 0, . . . , n denote the set of shallow critical points of index i. Thus
CΣ = C0

Σ ∪ · · · ∪ CnΣ. We define for every 0 ≤ i < n the set Ui ⊂ Rn as

Ui =

Sδ ∪⋃
j≥i

⋃
c∈CjΣ

Um(c)

 ∩ S̃.
In other words, Ui is the restriction to S̃ of the union of the reduced shape Sδ plus the unstable
manifolds of shallow critical points of index i or higher. Notice that since CΣ∩Sδ = ∅ (by Theorem
3.1) and because Sδ is flow tight for φP , every flow path that reaches Sδ belongs to the stable
manifold of some critical point in Sδ. Therefore Sδ ⊂ S̃. Also, notice that U0 = S̃ and Un = Sδ
because shallow critical points are not included in S̃ and the unstable manifold of a critical point
of index n, i.e. a maximum is the critical point itself.

To complete the proof, we show by induction on i that all Ui’s, i = 0, . . . , n, are homotopy
equivalent and this will prove the Theorem. To this end, first observe that all Ui’s are flow-tight
for φP by definition. For a base case, we show that U0 and U1 are homotopy equivalent. Observe
that every point x ∈ U0 \ U1 belongs to the unstable manifold of some critical point in C0

Σ, i.e.
a minimum which is simply a sample point in P . Since U0 and U1 are flow tight and U0 \ U1 is
bounded (by being contained in Σδ), it suffices to show that ‖vP (x)‖ > c for some c > 0, regardless
of the choice of x ∈ U0 \ U1. Recall that vP (x) = (x − dP (x))/hP (x). If VP (x) ∩DP (x) = ∅, the
distance between the driver dP (x) which is contained in DP (x) and x is bounded from below with
the distance between VP (x) (which contains x) and DP (x). Let ζ denote the smallest distance
between any pair of dual Delaunay and Voronoi objects that do not intersect. Since x ∈ Σδ which
is a bounded set and because P ⊂ Σδ, we get

‖vP (x)‖ =
‖x− dP (x)‖

hP (x)
≥ ζ

diam Σδ
.
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If, on the other hand, VP (x) ∩ DP (x) = {c}, then x ∈ Um(c). Since x ∈ U0 \ U1, c has to have
index 0 and therefore c = dP (x) and ‖vP (x)‖ = 1.

Thus we assume that U0 ' · · · ' Ui and prove that Ui ' Ui+1. We do this in two stages. First
we construct a set U ′i by removing a neighborhood of every index-i shallow critical point in such
a way that U ′i is still flow tight for φP . We then show that Ui ' U ′i ' Ui+1 (See Figure 1). The
construction of U ′i uses Lemma 5.2. We thus remove for each shallow critical point c a neighborhood
B(c, rc) from Ui for which rc > 0 is chosen small enough so that B(c, rc) ∩ Ui ⊂ VP (c). This is the
case unless the unstable manifold of some other shallow critical point c′ reaches arbitrarily close
to c and is not contained in Um(c). Lemma 2.2 now implies that in this case ind c′ < ind c. But
the unstable manifolds of shallow critical points of index less than i = ind c are not included in Ui.
Thus by Lemma 5.2 we can remove a neighborhood of every shallow critical point of index i from
Ui to get a set U ′i that is flow-tight for φP and is homotopy equivalent to U0.

Next we show that U ′i ' Ui+1. For this we use Theorem 5.1. Since U ′i and Ui+1 are both
flow-tight for φP , all we need to do is to find a lower bound for ‖vP (x)‖ for points x ∈ U ′i \ Ui+1.
For any such point x, the driver dP (x) is contained in DP (x). There are two cases to consider;
depending on whether VP (x) and DP (x) intersect or not.

If VP (x)∩DP (x) = ∅ then as argued above ‖vP (x)‖ ≥ ζ/(diam Σδ). On the other hand if VP (x)
and DP (x) do intersect, their intersection will (by definition) be a critical point c which coincides
with dP (x). In this case x ∈ Um(c).

Notice that c cannot be a deep critical point since these critical points and their unstable
manifolds are contained in S1−2ε2 ⊂ Sδ which is flow-tight for φP . Thus c is a shallow critical
point. But in that case c must have index ≤ i since unstable manifolds of shallow critical points of
index i+ 1 and higher are included in Ui+1 while c ∈ U ′i \ Ui+1. Therefore

‖vP (x)‖ =
‖x− c‖
hP (x)

≥
dist(U ′i ,

⋃i
j=0 C

j
Σ)

diam Σδ
> 0.

Theorem 5.1 now implies that U ′i ' Ui+1. The proof follows from the observation that Σδ ⊂ UΣ

and therefore S̃ ⊂ Sδ ∪ UΣ implying that U = S̃. �
The following corollary immediately follows from Corollary 3.1, Theorem 4.4, and Theorem

5.3. In essence, it enables us to reconstruct all the manifold a given sample densely represents (see
Figure 2).

Corollary 5.4 Let Σ1, . . . ,Σs be manifolds of various dimensions for all of which the same sample
P is an ετi-sample where τi is the reach of Σi, i = 1, . . . , s. If c1, . . . , cm are the set of critical
points of hP ordered such that hP (c1) < · · · < hP (cm), then for each i, there is a ji such that⋃
j≤ji Sm(cj) ' Σi and

⋃
j>ji

Sm(cj) ' Σc
i .

6 Conclusions

In this paper, we proved that the separation of critical points of a smooth submanifold of Rn leads to
a very natural way of homotopic reconstruction of the submanifold and its complement. Combined
with the fact that this separation can be formulated in terms of the distance from the sample, one
obtains a way of homotopic reconstruction of all submanifolds that are represented densely enough
by the input sample.

The main result of this paper generalizes to allow noisy samples, i.e. discrete point sets which
are within a small enough Hausdorff distance of the manifold. Using the original separation result of
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Figure 2: An example illustrating Corollary 5.4. Left: a torus knot is sampled densely. The yellow
curve is the reconstructed manifold, consisting of stable manifolds of shallow critical points (with
respect to the curve). The scattered white points are deep critical points whose stable manifolds
are not included. Right: the sample taken from the curve is dense enough for the torus surface to
reconstruct it as a union of stable manifolds of shallow critical points (with respect to the torus).
As can be seen the complements of these manifolds have the right homotopy type. In particular,
the complement of the torus knot shows that the given curve is knotted.

[18], Theorem 5.3 can be generalized to allow adaptive samples, where the sampling density varies
with the local feature size. The proof essentially remains unchanged modulo using the adaptive
analogue of 3.4 proven in [23]. For adaptive noisy samples, one can achieve a similar result using
a corresponding separation theorem of [15]. However, we know of no analogue for Theorem 4.4
or Corollary 5.4 under adaptive sampling. The obstacle in this case is that the union of stable
manifolds of shallow critical points may fail to be a flow shape, meaning that the shallow and
deep critical points are not separated in terms of their distance to the sample. Consequently, the
homotopy equivalence of flow shapes and alpha shapes (Lemma 4.3) may seize to hold.
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A Some Missing Proofs

The following lemma encapsulates some required calculations needed in the proof of Theorem 3.1.

Lemma A.1 Let τ be the reach of a submanifold Σ of Rn and let P be an ετ -sample of Σ. Let x ∈
Rn \ (Σ∪M(Σ)) be a point satisfying ‖x− x̂‖ = λτ for some 0 < λ < 1 and let µ0 = µ(x)/τ . Let Bµ be the
ball of radius µ(x) centered at x̌ and let Bτ be the ball of radius τ centered at a point xτ = x̂+τ(x̂−x)/‖x̂−x‖
and of radius τ . Define the set L(x) ⊂ Rn as

L(x) = B (x, `(ε, λ)τ) \ (Bµ ∪Bτ ) ,

where `(ε, λ) =
√
λ2 + ε2(1 + λ). Then,

1. AP (x) ⊂ L(x). In particular, the points in AP (x) are within distance `(ε, λ)τ from x.

2. L(x) ⊂ B (x, rµ0(ε, λ)τ) ⊆ B (x, r(ε, λ)τ) where rµ0(ε, λ) = ε
√

1+λ
1−λ/µ0

and r(ε, λ) = ε
√

1+λ
1−λ .

3. L(x) is contained in a cone with apex x, axis x̂−x, and half-angle ψ where ψ = ψ(ε, λ) = arcsin (r(ε, λ)/`(ε, λ)).

Proof of Lemma A.1. The interiors of both Bµ and Bτ are disjoint from Σ. By the sampling assumption,
there is a sample point in the ball Bε = B(x̂, ετ). Thus the closest point in P to x is within distance ` from
x, where ` is the distance between x and y, where y is a farthest point from p in the set L0 = Bε \ (Bµ∪Bτ ).
Notice that ` is an upper bound for hP (x). Figure 3 shows a planar section of this setting. In the figure, the
region L0 is shaded with the darkest gray. Let B` denote the ball B(x, `). Since P does not intersect Bµ or
Bτ , AP (x) must be contained in the region

L1 = L(x) = B` \ (Bµ ∪Bτ ).
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Let z be a point in this region farthest away from x̂ and let r = ‖x̂− z‖. Let γ be the angle between y − x̂
and the hyper-plane tangent to Σ at x̂ and normal to x− x̂. It can be easily seen from Figure 3 (right) that
sin γ = ε/2.

To simplify notation, let us take τ as unit length. Since the angle ](y − x̂, x − x̂) is π/2 + γ we have
using the cosine rule

`2 = ‖x− z‖2 = ‖x− y‖2

= λ2 + ε2 − 2ελ cos(π/2 + γ)

= λ2 + ε2 − 2ελ sin γ

= λ2 + ε2(1 + λ).

Now by applying the cosine rule to the triangle xzx̌, we have for the angle β = ](x− x̌, z − x̌)

cosβ =
µ2
0 + (µ0 − λ)2 − `2

2µ0(µ0 − λ)

=
µ2
0 + (µ0 − λ)2 − λ2 − ε2(1 + λ)

2µ0(µ0 − λ)

= 1− ε2

2µ2
0

· 1 + λ

1− λ/µ0
.

If we rewrite the above equality as

cosβ = 1− 2

(
ε

2µ0

√
1 + λ

1− λ/µ0

)2

,

and observe on the figure that sin(β/2) = (r/2)/µ0, we can use the identity cosβ = 1−2 sin2(β/2) to obtain,

r = ε ·

√
1 + λ

1− λ/µ0
.

To complete the proof, we need to only show that the angle β′ = ](x̂ − x, z − x) is smaller than ψ(ε, δ) as
given in the statement of the Lemma. From the figure sinβ′ = h/` where h is the distance between z and
the line supporting the segment xx̂. Since h ≤ r, sinβ′ ≤ r/l = sinψ. �

Proof of Theorem 3.1. For simplicity we scale the distances so as to have τ = 1. Refer Figure 3 in the
proof of Lemma A.1 (Appendix A). First observe that if č is at infinity, the open halfspace whose boundary
is tangent to Σ at ĉ and contains c, is disjoint from Σ and therefore from P . This immediately implies that
c cannot be a critical point. Thus we assume that č is at finite distance from ĉ.

By Lemma A.1, AP (x) ⊂ B` = B(x, `), where ` = `(ε, λ) as defined in Lemma A.1. On the other
hand AP (x) is disjoint from Bµ = B(x̌, µ) where µ = µ(x). Let H be the hyperplane normal to x̌ − x̂
through x and let R be the radius of the ball of intersection between H and Bµ. The plane H is at distance
‖x− x̌‖ = µ(x)− λ from x̌. By the Pythagorean theorem

R2 = µ2 − (µ− λ)2.

If the radius ` of B` is less than R, then B` \Bµ is strictly contained in the open half-spaces of Rn \H that
contains x̂. Since x ∈ H, this implies that x 6∈ conv(B` \ Bµ) which further entails that x 6∈ convAP (x).
Since dP (x) ∈ convAP (x), this would imply that ](x̌−x, vP (x)) < π/2. In particular, x cannot be a critical
point if R > ` or equivalently if

µ2 − (µ− λ)2 > λ2 + ε2(1 + λ).

Rearranging the above inequality gives us

2λ2 + (ε2 − 2µ)λ+ ε2 < 0.
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Solving for λ, we get λmin < λ < λmax, where λmin = 1
2

(
µ− ε2/2−

√
(µ− ε2/2)

2 − 2ε2
)

and λmax =

1
2

(
µ− ε2/2 +

√
(µ− ε2/2)

2 − 2ε2
)

. Since µ ≥ 1, ε ≤ 1/
√

3 is sufficient to have (µ−ε2/2)2−2ε2 ≥ 0. Thus

for ε ≤ 1/
√

3, both λmin and λmax are real. The assumption of ε ≤ 1/
√

3 can be written as 3ε2 ≤ 1 from
which

2ε2 + 1 ≤ 2− ε2 ≤ 2µ− ε2 = 2(µ− ε2/2).

Multiplying by 2ε2 ≥ 0, gives us
2ε2(2ε2 + 1) ≤ 4ε2(µ− ε2/2).

By adding (µ− ε2/2)2 to both sides and rearranging we get

(µ− ε2/2)2 − 2ε2 ≥
(
(µ− ε2/2)− 2ε2

)2
.

The smaller side being non-negative allows us to take square roots of both sides which by rearranging results
λmin ≤ ε2. As for λmax, using the inequality

√
1− t ≥ 1− t for 0 ≤ t ≤ 1

λmax =
1

2
(µ− ε2/2)

(
1 +

√
1− 2ε2

(µ− ε2/2)2

)

≥ 1

2
(µ− ε2/2)

(
2− 2ε2

(µ− ε2/2)2

)
= µ− ε2/2− ε2

µ− ε2/2
≥ µ− ε2/2− ε2

1− ε2/2
≥ µ− 2ε2.

Thus if ε2 < λ < µ − 2ε2, the point x is separated from convAP (x) and therefore x cannot be a critical
point. To complete the proof, we note that µ ≥ τ = 1. �

Proof of Lemma 3.3. Consider the retraction map r : Σc → cl Σcδ given by

r(x) =

{
x̂+ δτ · (x− x̂)/‖x− x̂‖ x ∈ Σc \ cl Σcδ
x x ∈ cl Σcδ

The map r is continuous on Σc \cl Σcδ since (x− x̂)/‖x− x̂‖ changes continuously with x̂ (because the surface
is smooth), the map x 7→ x̂ is continuous because the only points of discontinuity of this map are medial
axis points of which there are none in Σc \ cl Σcδ. The continuity of r on all of its domain follows from a
gluing argument using the fact that the points on the boundary of Σcδ are mapped to themselves both with
the identity map and with the mapping x 7→ x̂+ δτ · (x− x̂)/‖x− x̂‖.

If we now define the map R : [0, 1]× Σc → cl Σcδ as

R(t, x) =

{
(1− t)x+ tr(x) x ∈ Σc \ cl Σcδ
x x ∈ cl Σcδ,

the map R is a straight-line homotopy from the identity of Σc to the retraction map r. �

B Proof of Lemma 3.4

Lemma B.1 Let x be a point satisfying ‖x− x̂‖ = δτ . Then, the angle α that vP (x) makes with x̌− x is
bounded by

arccos

(
2δ(1− ε− δ)− ε2

2(1− δ)(δ + ε)

)
,

provided that the argument of the arccos is between 0 and 1.

Proof. Let c be the point on the line segment x̂x̌ at distance τ from x̂.
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x̂

α

x

u

θ

c

w

Let B = B(c, τ) and let B′ = B(x, (δ + ε)τ). The driver dP (x) of x has to
be contained in the convex hull of B′ \B. Let w be a point in the intersection
of ∂B and ∂B′. The inner angle of the triangle cxw at x is at least π−α. From
the cosine rule we get

cos(π − α) ≤ (1− δ)2τ2 + (δ + ε)2τ2 − τ2

2(1− δ)(δ + ε)τ2

=
2δ(δ + ε− 1) + ε2

2(1− δ)(δ + ε)
.

It follows

cosα ≥ 2δ(1− δ − ε)− ε2

2(1− δ)(δ + ε)
,

which implies the statement of the lemma. �
Proof of Lemma 3.4. Take a point x in the boundary of Sδ. For the statement of the theorem to hold, it
suffices to for the angle α as defined by Lemma B.1 to be smaller than π/2 or equivalently cosα > 0. Thus
as long as δ < 1, by the same Lemma, it suffices to have 2δ(1− δ − ε)− ε2 > 0. �
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