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Abstract

It is known that the critical points of the distance
function induced by a dense sample P of a submani-
fold Σ of Rn are distributed into two groups, one lying
close to Σ itself, called the shallow, and other close to
medial axis of Σ, called deep critical points. We prove
that under (uniform) sampling assumption, the union
of stable manifolds of the shallow critical points have
the same homotopy type as Σ itself and the union of
the stable manifolds of the deep critical points have
the homotopy type of the complement of Σ. The sep-
aration of critical points under uniform sampling en-
tails a separation in terms of distance of critical points
to the sample. This means that if a given sample is
dense enough with respect to two or more submani-
fold of Rn, the homotopy type of all such submanifolds
as well as that of their complements are captured as
unions of stable manifolds of shallow critical points, in
a filtration of the flow complex based on the distance
of critical points to sample.

1 Introduction

The flow complex was introduced by Giesen and John
[9] as a tool for geometry modeling. Much of the
mathematical foundations behind the flow complex
were well-explored; see [10] and references therein.
Further important properties of the flow map induced
by a generalized gradient of the distance function in-
duced by compact sets have been subject of recent
investigations, see e.g. [12]. In [8], it was noted em-
pirically that the flow complex derived from a dense
sample of a surface, though often much coarser than
the Delaunay complex of the same point set, does
contains a subcomplex that approximates the surface
much in the same was as the Delaunay complex.

Surface reconstruction is the problem of producing
from a discrete sample of a surface Σ a concisely rep-
resented surface Σ̃ that closely approximates Σ and
shares its topology, provided that the sample is dense
enough. This problem has a rich literature spanning
several disciplines; see [2] for a survey of Delaunay-
based algorithms which have particularly been the
most successful in providing geometric and topolog-
ical guarantees. Traditionally, “topological equiva-
lence” is interpreted as homeomorphism or even am-
bient isotopy. This in particular requires the recon-
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structed object to also be a manifold and of the same
dimension as the target surface. In this paper, we re-
lax this interpretation to homotopy equivalence (See
[11] for definitions). In other words, we seek to cap-
ture the homotopy type of a manifold by finding a
topological space that that is not necessarily a mani-
fold but approximates the original manifold in Haus-
dorff distance.

Prior to [8], flow methods were employed in surface
reconstruction (e.g. [7]) but the first of such algo-
rithms with geometric and topological guarantees was
found by Dey et al. [5] who proved a sharp separation
of critical points of the distance function induced by
surface samples into two groups one lying close to the
surface (shallow) and the other close to its medial axis
(deep). They further showed that in 3D, the bound-
ary of the union of stable manifolds of inner or outer
deep critical points is homeomorphic to the original
surface, provided that the sample is dense enough and
tight. However, this does not generalize to higher di-
mensions. This paper aims to achieve this, albeit with
certain modifications. On the down-side, we use uni-
form sampling (as opposed to adaptive sampling used
in [5]) although we relax the tightness requirement.
Moreover, homeomorphism is weakened to homotopy
equivalence. On the upside, we prove that the union
of stable manifolds of shallow critical points approx-
imates the manifold and captures its topology while
that of deep ones does the same for the complement
of the manifold. Plus, we show that this works for
any closed submanifold of a Euclidean space of any
dimension not just for (codimension-1) surfaces. Cap-
turing the homotopy type of the complement in ad-
dition to that of the manifold substantially improves
the quality of topological guarantee. For example, all
closed curves have the same homotopy type (in fact
are homeomorphic) and its is the homotopy type of
the complement of the curve that distinguishes knots
from one another. Similarly, a knotted torus is homeo-
morphic to an unknotted one while their complements
have different homotopy types.

For uniform samples, the separation of critical
points which is determined in terms of their dis-
tance from the manifold translates into a separation
in terms of distance from the sample itself. In other
words, if one sorts the critical points in the order of
their distance to the sample, shallow critical points
make a prefix of this ordering. Thus if one filters
the flow complex by putting together the stable man-
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ifolds, i.e. cells associated to, critical points in all pre-
fixes of this order, one is guaranteed to reach in this
filtration a shape homotopy equivalent to the mani-
fold in question.
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As mentioned above, the union of
stable manifolds of the remaining criti-
cal points then captures the homotopy
type of the complement of the manifold.
Since the filtration is regardless of the
manifold, this statement is true for any
manifold for which the given sample is
a dense enough sample. For example, if the given
sample is dense for a curve embedded on a torus and
for the torus itself, the above filtration results homo-
topy equivalent reconstruction of both the curve and
the torus, as well as their complements, in different
stages.

2 Background and Preliminaries

Let P be closed nonempty subset of Rn. The com-
plement of P is the open set P c = Rn \ P . For any
point x ∈ P c, let hP (x) = infy∈P ‖x − y‖ be the dis-
tance function defined by P and let AP (x) = {y ∈ P :
‖x− y‖ = hP (x)}.

While the distance function hP is not smooth, it
induces a vector field vP over P c which behaves like
the gradient of hP in the sense that vP (x) 6= 0 if
and only if there is a unique direction of steepest as-
cent for hP at x in which case the direction of this
steepest ascent is given by vP (x) (See [10] for more
general statement and details). The vector vP (x) at
a point x is characterized by vP (x) = x−dP (x)

hP (x) , where
dP (x), called driver of x is the center of the smallest
enclosing ball of AP (x), or equivalently, the closest
point in convAP (x), the convex hull of AP (x), to x.
The critical points of hP are those points x for which
vP (x) = 0, or equivalently, x = dP (x) ∈ convAP (x).

Lieutier [12] proved that if P c is bounded, then Eu-
ler schemes defined by vP on P c uniformly converge
and this results in a flow map φP : R+ × P c → P c

(where R+ is the set of non-negative reals) which
he also proved to be continuous (on both variables).
Intuitively, φP (t, x) is the point y that is reached
from following the vector field vP for time interval
of length t, starting at x, by infinitesimal movements
proportional to the magnitude of vP . The map φP
has the classical properties of a flow map, namely
φP (0, x) = x, φP (s + t, x) = φP (s, φP (t, x)), and for
any point x and any t ≥ 0, vP (φP (t, x)) is the right-
derivative of φP (t, x). Lieutier also proved that hP
along any flow orbit, i.e. t 7→ hP (φP (t, x)) is increas-
ing and in addition satisfies

hP (φP (t, x)) = hP (x) +
∫ t

0

‖vP (φP (τ, x))‖2dτ. (1)

The special case where P is finite is of particular
interest to us and the rest of this section goes over
special properties of the flow maps in this case. Let
VorP and DelP respectively denote the Voronoi and
Delaunay complexes induced by P . For any point
x ∈ Rn, we represent by VP (x) the lowest dimensional
face of VorP that contains x, and by DP (x) the face
in DelP dual to VP (x). The set AP (x) is the vertex
set of DP (x) and dP (x) becomes the closest point on
DP (x) to x. It can be verified that all points in the
relative interior of the same Voronoi face have the
same driver. Since the affine hulls of a Voronoi face
and its dual are orthogonal with total dimension n,
they intersect in exactly one point. Thus if VP (x)
and DP (x) intersect, then this intersection consists of
a single critical point which is the driver of x. All
critical points (except for the maximum at infinity)
are characterized the same way (as intersection points
of duals). Following [9], we make a general position
assumption that all pairs of Voronoi and Delaunay
objects that are dual to and intersect each other, do
so in their relative interiors. The index of a critical
point c is defined as the dimension of DP (c).

For a given flow map φP , the flow orbit of a regular
point x, denoted φP (x) is defined as φP ([0,+∞), x).
For a set T we use φP (T ) for

⋃
x∈T φP (x). Notice

that by this definition T ⊆ φP (T ).
For a critical point c of hP , the set of all

points x whose flow orbit converges to c is called
the stable manifold of c and denoted by Sm(c) =
{x : φP (+∞, x) = c}. Although there is no flow out
of a critical point c, we study the orbits of points
very close to c. Some of these points flow into c while
other flow away from it. We define the unstable mani-
fold Um(c) of a critical point c, as the set of all points
into which points arbitrarily close to c flow. Formally,
Um(c) =

⋂
ε>0 φ(B(c, ε)), where B(c, ε) denotes the

open ball of radius ε centered at c. In other words,
the unstable manifold of c consists of c and all the
integral lines that start infinitesimally close to c.

Proposition 1 Let P be finite. For a critical point
c of hP , Um(c) = φP (VP (c)).

A set T is said to be flow-tight for φP if φP (T ) = T .
Stable and unstable manifolds of critical points and
their union and intersections are flow tight. Let CP be
the set of critical points of hP induced by P (includ-
ing the critical point at infinity). The (stable) flow
complex of P , denoted SfcP is the collection of stable
manifolds of all critical points in CP . Generically, the
cell associated to an index k critical point is a topo-
logical open k-ball. Moreover, if for critical points
c, c′ ∈ CP , c ∈ ∂ Sm(c′), then Sm(c) ⊂ ∂ Sm(c′).

Lemma 1 If for c ∈ CP , ind c = k, then every critical
point c′ ∈ ∂ Sm(c) has index less than k, provided that
Sm(c) does not intersect the (n − k − 1)-skeleton of
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VorP . Under the same assumption, if c ∈ ∂Um(c′),
then ind c′ < ind c.

All but a measure-0 set of points P satisfy the re-
quirement that Sm(c) must stay clear from faces of
VorP of dimension n− k − 1 or smaller (See [14]).

By a manifold we refer to a C2-smooth closed sub-
manifold Σ of Rn. The medial axis M(Σ) of Σ consists
of points in space with 2 or more closest points in Σ.
The reach of Σ is the distance between Σ and M(Σ).
We assume the reach of Σ is strictly positive. Any
point x 6∈ M(Σ), has a unique closest point x̂ in Σ.
The half-line bounded at x̂ through x hits M(Σ) for
the first time at a point x̌ (or at infinity).

A point set P ⊂ Σ is a uniform ξ-sample of Σ if
∀x ∈ Σ ∃p ∈ P : ‖x − p‖ ≤ ξ. For a given parameter
r ≥ 0, the union of balls

⋃
p∈P B(p, r) is denoted by

B(r)(P ). The α-shape of P of parameter r, denoted
K(r)(P ) is the underlying space of restriction of DelP
to B(r)(P ) (See [6]). The flow shape of P for parame-
ter r, denoted F (r)(P ) is the union of stable manifolds
of critical points at distance ≤ r from P (See [4]).

3 Shallow versus deep critical points

For any point x ∈ Rn \(Σ∪M(Σ)) let µ(x) = ‖x̌− x̂‖.
If x̌ is at infinity, then µ(x) =∞. Otherwise, the ratio
0 < ‖x−x̂‖

‖x̌−x̂‖ < 1, is a relative measure of how close to
Σ or M(Σ) the point x is. It turns out [5, 3] that
when a (possibly noisy) sample P of Σ satisfies some
density requirements, then critical points of hP are
distributed, according to the above measure, into two
distinguishable groups, one lying very close to Σ and
the other to M(Σ). We use a weaker version of the
Lemma for uniform samples here.

Theorem 2 Let P be an ετ -sample of a manifold Σ
of reach τ with ε ≤ 1/

√
3. Then for every critical

point c of hP , either ‖c− ĉ‖ ≤ ε2τ, or ‖c− ĉ‖ ≥ (1−
2ε2)τ. In the former case we call c a shallow critical
point and a in the latter case a deep one.

Corollary 1 Under the settings of Theorem 2, for
every shallow critical point c of hP , hP (c) ≤

√
5/3·ετ ,

and for every deep critical point c′ of hP , hP (c′) ≥
(1− 2ε2)τ .

For any 0 ≤ δ < 1, the δ-tubular neighborhood of
a manifold Σ of reach τ is defined as the set Σδ =
{x ∈ Rn : ‖x− x̂‖ ≤ δτ}. Notice that M(Σ) ⊂ Σcδ.

Lemma 3 For any 0 ≤ δ < 1, cl Σcδ is homotopy
equivalent to Σc. In fact, the former is a strong de-
formation retract of the latter.

Lemma 4 Let P be an ετ -sample of a manifold Σ of
reach τ with ε ≤ 1/(1 +

√
2). Then, cl Σcδ is flow-tight

under the flow φP , for any ε2

1−ε < δ < 1− ε− ε2

1−ε . In
particular this is true for δ = 1/2.

The above lemma implies that union of stable mani-
folds of shallow critical points is contained in Σδ for
δ = ε2/(1 − ε) thus providing the Hausdorff distance
guarantee for our reconstructions.

4 Homotopy Type of the Manifold

In this section we show that in a dense enough sample
of a submanifold of Rn, the union of stable manifolds
of the shallow critical points has the same homotopy
type as the manifold itself. This statement follows
from the following sequence of results.

Lemma 5 [13] Let Σ be a manifold of reach τ and
let P be an ετ -sample of Σ for any ε ≤ 1

2

√
3/5. Then

B(r)(P ) deformation retracts (and is in particular ho-
motopy equivalent) to Σ, for any 2ετ < r <

√
3/5 · τ .

Lemma 6 [6] For any r ≥ 0, B(r)(P ) and the α-
shape K(r)(P ) are homotopy equivalent.

Lemma 7 [4, 1] For any r, the flow shape F (r)(P )
and the α-shapes K(r)(P ) are homotopy equivalent.

Theorem 8 Let Σ be a manifold of reach τ and let P
be an ετ -sample of Σ for ε ≤ 1

2

√
3/5. Then Σ is ho-

motopy equivalent to the union U of stable manifolds
of shallow critical points of hP .

Proof. For a critical point c of hP , by Corollary
1 hP (c) ≤

√
5/3 · ετ if c is shallow and hP (c) ≥

(1 − 2ε2)τ if c is deep. For ε < 1
2

√
3/5 the latter

bound is strictly greater than the former and there-
fore there is a positive value r for which hP (c) < r for
every shallow critical point c and hP (c′) > r for every
deep critical point c′. Thus the flow shape F (r)(P )
is precisely the union of stable manifolds of shallow
critical points of hP with respect to Σ. Lemmas 5, 6,
7 now imply that this union is homotopy equivalent
to Σ. �

5 Homotopy Type of the Complement of the
Manifold

In this section we prove that the union of stable man-
ifolds of deep critical points has the homotopy type
of Σc using the continuity of the flow map φP . The
technique is inspired from the work of Lieutier [12].
A proof can found in [14].

Theorem 9 Let P be a finite set of points in Rn. If
for sets Y ⊂ X ⊂ Rn, X and Y are both flow-tight
for φP , i.e. φP (X) = X and φP (Y ) = Y , and if X \Y
is bounded, and, finally, if there is a constant c > 0
for which ‖vP (x)‖ ≥ c for all x ∈ X \ Y , then X and
Y are homotopy equivalent.
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A difficulty in using the above theorem is that φP is
proven in [12] to be continuous on P c as long as it is
a bounded set. This can be overcome by clipping the
space with a very large ball, thus letting P0 = P ∪Bc
where B is a very large ball satisfying P ⊂ 1

5B. It can
then be verified that within 1

2B, φP and φP0 agree
which is enough for what we want to prove. In the
sequel CΣ denotes the set of shallow critical points of
P where P is an ετ -sample of a manifold σ of reach
τ . The value of ε is determined later. For shorthand,
we write S for Σc as well Sδ for Σcδ.

Lemma 10 Let c be a critical point of hP and let
U ⊆ Rn be a flow-tight set for φP with c 6∈ U . Let
V = rel intVP (c). For r ≥ 0, let Vr = V ∩ B(c, r).
Then for every r ≥ 0, U and U \ Vr have the same
homotopy type and if U ∩B(c, r) ⊂ V then U \ Vr is
flow-tight for φP .

Theorem 11 Let ε ≤ 1
2

√
3/5. Let S̃ =⋃

c∈C\CΣ Sm(c) be the union of stable manifolds of
all deep critical points of hP with respect to Σ. Let
UΣ =

⋃
c∈CΣ Um(c) be the union of unstable mani-

folds of all shallow critical points. Then S̃ is homo-
topy equivalent to S.

Proof. (sketch) We use Theorem 9 to show that
X = S is homotopy equivalent to Y = S̃1/2 which
is itself homotopy equivalent to S by Lemma 3. The
main difficulty in the proof is that although both X
and Y are flow-tight for φP , ‖vP ‖ can be arbitrarily
small in X \ Y because the boundary of X can con-
tain critical points that drive points in the interior of
X arbitrarily close to them. To handle this difficulty,
a first idea is to use Lemma 10 to remove from X a
neighborhood of these critical points, thus creating a
strictly positive distance between these critical points
and points in the trimmed X. However, in order to
do this in a manner that ensures the trimmed X is
still flow tight, this has to be done in several steps
where the i-th step gets rid of critical points of in-
dex i. We thus first delete from X a neighborhood
of every critical point of index-0 to get a flow-tight
set X0 that by Theorem 9 will be homotopy equiva-
lent to the set X̃0 consisting of the union of Y and
the unstable manifolds of critical points of index 1
and higher on boundary of X, restricted to X. One
can then remove from x a neighborhood of all index-1
critical points resulting a set X1 that using Lemmas
1 and 10 is flow-tight for φP . Applying Theorem 9
then results a set X̃1 consisting of the union of Y
and unstable manifolds of critical points of index 2 or
higher clipped by X. Continuing this way, all criti-
cal points on the boundary of X can be eliminated
resulting a sequence of homotopy equivalent shapes
X0, X̃0, X1, X̃1, . . . , Xn, X̃n the first of which is ho-
motopy equivalent to X and the last one to Y . �

Corollary 2 Let Σ1, . . . ,Σs be manifolds of various
dimensions for all of which the same sample P is an
ετi-sample where τi is the reach of Σi, i = 1, . . . , s. If
c1, . . . , cm are the set of critical points of hP sorted
such that hP (c1) < · · · < hP (cm), then for each
i, there is a ji such that

⋃
j≤ji Sm(cj) ' Σi and⋃

j>ji
Sm(cj) ' Σci .
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