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Abstract

This thesis presents polynomial upper and lower bounds on the number of iterations

performed by Lloyd’s method for k-means clustering. The upper bounds are polynomial

in the number of points, number of clusters, and the spread of the point set. The

presented lower bound shows that in the worst case the k-means heuristic needs to

perform Ω(n) iterations, for n points on the real line and two centers. Surprisingly, the

spread of this lower bound construction is polynomial. This is the first construction

showing that the k-means heuristic requires more than a polylogarithmic number of

iterations. Furthermore, two alternative algorithms with guaranteed performances are

presented, which are simple variants of Lloyd’s method. Results of experimental studies

on these algorithms are also presented.
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1 Introduction

1.1 Clustering

In a general and informal sense, the purpose of clustering is to group a given set of

data elements into clusters in such a way that elements in each cluster more or less

resemble each other while elements from different clusters are substantially dissimilar.

Resemblance and difference are defined to suit the nature of data and the sought for

application of clustering. By strictly specifying the type of the considered elements,

the way in which similarity and difference are measured, and the desired form of opti-

mality in classification, numerous members of this loosely defined family of clustering

problems are composed. Many of these problems are of interest in various scientific and

computational disciplines and are widely studied from both theoretical and empirical

perspectives.

Consider for example the following real-world clustering problem. Suppose we need

to assign telephone area codes to towns and cities in a country. For each area code

a central switching facility has to be built and be connected to the switching centers

of all towns with that area code. Suppose our budget allows us to build only 20 such

switching centers. To minimize the amount of wiring job needed and perhaps many

other reasons, we like the total distance of the central switching facility in each area

code to the switching centers of the town with that area code to be as small as possible.

In fact, we wish to place central facilities and assign towns to them in such a way to

do as little total wiring job as we can. We can formulate all this into a the following

clustering problem.

1



Given a map showing the location of switching centers of the towns, we wish

to group the towns into 20 clusters, assigning each group a distinct area

code and a location for a central switching facility, in such a way that the

the total distance between the town switching centers to their corresponding

central switching facility is minimized.

As is the case in this example, clustering is often an optimization problems: there is

a way to quantify the quality of any given clustering and the goal is to find the best,

minimizing or maximizing the given quality function. It is almost always the case that

there is an underlying notion of distance between pairs of individual data elements based

on which the clustering quality function is defined. In geometric clustering problems,

the data elements are points in a space endowed with a notion of distance, i.e. a metric

space.

The desired number of clusters may or may not be known in advance and thus, accord-

ingly, may or may not be considered as part of the input to the clustering problem.

In certain applications, the number of clusters is to be determined by the clustering

algorithm and the final number of clusters returned can be a parameter in measuring

the quality of the clustering. However, the clustering problems studied in this thesis

does not belong to this group and the number of desired clusters is always an input

parameter.

1.2 Geometric Clustering

In this section, we formalize the notion of geometric clustering. It is important to notice

that the definition of “geometric clustering” given below does not fully encompass the

family of problems suggested by this term.

Definition 1.2.1 In a geometric clustering problem, we are given a finite set X ⊂ <d

of n points and an integer k ≥ 2, and we seek a partition (clustering) S = (S1, . . . , Sk) of
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X into k disjoint nonempty subsets along with a set C = {c1, . . . , ck} of k corresponding

centers, that minimizes a suitable cost function among all such k-clusterings of X. The

cost function typically represents how tightly each cluster is packed and how separated

different clusters are. A center ci is said to serve the points in its cluster Si.

Below we mention three of the most widely investigated classical geometric clustering

problems, characterized and distinguished from each other only by their cost functions.

The notation ‖·‖ denotes the Euclidean (`2) distance.

k-center. The goal in this clustering problem is to minimize, among all clusters, the

maximum distance of a point in the cluster to the center of the cluster. More

formally, the clustering cost function φ∞(S, C) of k-center is

φ∞(S, C) = max
i

max
x∈Si

‖x− ci‖.

k-median. The sum of distances between the points and their corresponding centers

is to be minimized. Thus, the clustering cost function is the following.

φ1(S, C) =
k∑
i=1

∑
x∈Si

‖x− ci‖ .

k-means. Similar to k-median with the difference that that squares of distances are

considered. Thus we seek to minimize the sum of the squares of distances between

the points and their corresponding centers.

φ2(S, C) =
k∑
i=1

∑
x∈Si

‖x− ci‖2 .

Throughout this thesis, we only consider the k-means clustering. Thus our clustering

cost function will be

φ2(S, C) =
k∑
i=1

ψ(Si, ci),
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where ψ(S, c) =
∑

x∈S ‖x− c‖
2. It can be easily observed that for any cluster Si, the

point c that minimizes the sum
∑

x∈Si
‖x− c‖2, is the centroid of Si, which we shall

denote by c(Si), and therefore in an optimal clustering, ci = c(Si). Thus the above cost

function can be written as

φ2(S) =
k∑
i=1

∑
x∈Si

‖x− c(Si)‖2 .

It can also be observed that in an optimal k-clustering, each point of Si is closer to

the center corresponding to Si than to any other center. Thus, an optimal k-clustering

is imposed by a Voronoi diagram whose sites are the centroids of the clusters. Such

partitions are related to centroidal Voronoi tessellations, (see [DFG99]).

1.3 Lloyd’s Method for k-means

A k-means clustering algorithm that is used widely because of its simplicity and ease

of implementation is the k-means heuristic, also called Lloyd’s method. This algorithm

starts with an arbitrary k-clustering S0 of X with the initial k centers chosen to be

the centroids of the clusters of S0. Then it repeatedly performs local improvements by

applying the following “hill-climbing” step.

Definition 1.3.1 Given a clustering S = (S1, . . . , Sk) of X, a k-Means step returns

a clustering S ′ = (S′1, . . . , S
′
k) by letting S′i equal to the intersection of X with the

Voronoi cell of c(Si) in the Voronoi partitioning imposed by centers c(S1), . . . , c(Sk).

The (new) center of S′i will be c(S′i). In a clustering S = (S1, . . . , Sk) of X, a point

x ∈ X is misclassified if there exists 1 ≤ i 6= j ≤ k, such that x ∈ Si but ‖x− c(Sj)‖ <

‖x− c(Si)‖. Thus a k-Means step can be broken into two stages: (i) every misclassified

point is assigned to its closest center, and (ii) Centers are moved to the centroids of

their newly formed clusters (see Figure 1.1).
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x x

Figure 1.1: A k-Means step.
Small circles represent the centers and clusters are determined by their Voronoi diagram.
On the left, the arrows point from the current centers to to the centroids of the clusters.
The point indicated as x becomes misclassified when centers move to centroid of their
clusters and is thus reassigned on the right.

Lloyd’s algorithm, to which we shall refer as “k-MeansMtd” throughout this thesis,

performs the k-Means step repeatedly and stops when the assignment of the points to

the centers does not change from that of the previous step. This happens when there

remains no misclassified points and consequently in the last k-Means step S ′ = S.

Clearly the clustering cost is reduced when each point is mapped to the closest center

and also when each center moves to the centroid of the points it serves. Thus, the

clustering cost is strictly reduced in each of the two stages of a k-Means step. This

in particular implies that no clustering can be seen twice during the course of execu-

tion of k-MeansMtd. Since there are only finitely many k-clusterings, the algorithm

terminates in finite time.

A slight technical detail involves the event of a center losing all the points it serves.

The original k-means heuristic does not specify a particular solution to this problem.

Candidate strategies used in practice include: placing the lonely center somewhere else

arbitrarily or randomly, leaving it where it is to perhaps acquire some points in futures

steps, or completely removing it. For the sake of convenience in our analysis, we adopt

the last strategy, namely, whenever a center is left serving no points, we remove that
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center permanently and continue with the remaining centers.

k-MeansMtd and its variants are widely used in practice [DHS01]. It is known that

the output of k-MeansMtd is not necessarily a global minimum, and it can be arbi-

trarily bad compared to the optimal and clustering and it is well known that the answer

returned by the algorithm and the number of steps depends on the initial choice of

the centers, i.e. the initial clustering [KMN+02]. These shortcomings of k-MeansMtd

has lead to development of efficient polynomial approximation schemes for the k-means

clustering problem both in low [Mat00, ES03, HPM] and high dimensions [dKKR03].

Unfortunately, those algorithms have had little impact in practice, as they are compli-

cated and probably impractical because of large constants. A local search algorithm

based on k-Means steps was suggested by Kanungo et al. [KMN+02], which yields a

constant-factor approximation, and it seems to perform reasonably well in practice.

Up to this point, no meaningful theoretical bound was known for the number of steps

k-MeansMtd can take to terminate in the worst case. Inaba et al. [IKI94] observe

that the number of distinct Voronoi partitions of a given n-point set X ⊂ <d induced

by k sites is at most O(nkd) which gives a trivial similar upper bound on the number

of steps of k-MeansMtd considering the fact that clustering cost monotonically de-

creases and as a result no k-clustering can be seen twice. However, the fact that k in

typical application can be in the hundreds together with the relatively fast convergence

of k-MeansMtd observed in practice, make this bound somewhat meaningless. The

difficulty of proving any super-linear lower bound further suggests the looseness of this

bound.

It thus appears that the combinatorial behavior of k-MeansMtd is far from being

well understood. This thesis provides a lower bound and several upper bounds on

the number of iterations performed by k-MeansMtd and some close variants. To our

knowledge, our lower bound is the first that is super-polylogarithmic. Our upper bounds

are polynomial in the spread ∆ of the input point set, k, and n (the spread of a point

set is the ratio between its diameter and the distance between its closest pair). The
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bounds are meaningful for most inputs.

In Chapter 2, we present an Ω(n) lower bound on the number of iterations performed

by k-MeansMtd. More precisely, we show that for an adversarially chosen initial two

centers and a set of n points on the line, k-MeansMtd takes Ω(n) steps. Note, that

this matches the trivial upper bound in 1d, as the number of Voronoi partitions in one

dimension with two centers is linear.

In Chapter 3, we provide a polynomial upper bound for the one-dimensional case. Chap-

ter 4 presents an an upper bound for the case where the points lie on a grid. In Chapter 5,

we investigate two alternative related algorithms, and provide polynomial upper bounds

on the number of iterations they perform. Some experimental results are presented in

Chapter 6. In Chapter 7, we conclude by mentioning a few open problems.
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2 A Linear Lower Bound

2.1 A One-Dimensional Construction for Two Clusters

In this section, we describe a set of 2n points, along with an initial pair of centers, on

which k-MeansMtd takes Ω(n) steps to terminate for n ≥ 2.

Fix n ≥ 2. Our set X will consist of 2n numbers

y1 < · · · < yn < xn < · · · < x1

with yi = −xi, for i = 1, . . . , n.

At the ith iteration, we denote by li and ri the current left and right centers, respectively,

and by Li and Ri the new sets of points assigned to li and ri, respectively. Furthermore,

for each i ≥ 0, we denote by αi the Voronoi boundary 1
2(li + ri) between the centers li

and ri. Thus

Li = {x ∈ X | x < αi} and Ri = {x ∈ X | x ≥ αi} .

Let x1 be an arbitrary positive real number and let x2 < x1 be a positive real num-

ber to be specified shortly. Initially, we let l1 = x2 and r1 = x1 and consequently

α1 = 1
2(x1 + x2). Thus in the first iteration, L1 = {y1, . . . , yn, xn, . . . , x2} and R1 =

{x1}. We will choose x2, . . . , xn such that at the end of the ith step we have Li =

{y1, . . . , yn, xn, . . . , xi+1} and Ri = {xi, . . . , x1} (see Figure 2.1). Suppose for the induc-
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tive hypothesis that at the (i− 1)th step we have

Li−1 = {y1, . . . , yn, xn, . . . , xi+1, xi} and Ri−1 = {xi−1, . . . , x1} .

Thus we can compute li and ri as follows

li =
y1 + · · ·+ yn + xn + · · ·+ xi

2n− i+ 1
and ri =

xi−1 + · · ·+ x1

i− 1
.

Since y1 + · · ·+ yn + xn + · · ·+ xi = −(xi−1 + · · ·+ x1), we get for αi:

αi =
1
2

(li + ri) =
1
2

(
xi−1 + · · ·+ x1

i− 1
− xi−1 + · · ·+ x1

2n− i+ 1

)
=

n− i+ 1
(i− 1)(2n− i+ 1)

(xi−1 + · · ·+ x1)

=
n− i+ 1

(i− 1)(2n− i+ 1)
· si−1,

where si−1 =
∑i−1

j=1 xj .

To guarantee that only xi deserts from Li−1 to Ri, in the ith iteration, we need that

xi+1 < αi < xi. Thus, it is natural to set xi = τiαi, where τi > 1, for i = 1, . . . , n.

Picking the coefficients τ1, . . . , τn is essentially the only part of this construction that is

under our control. We set

τi = 1 +
1

n− i+ 1
=
n− i+ 2
n− i+ 1

,

for i = 1, . . . , n. Since τi > 1, xi = τiαi > αi, for i = 1, . . . , n. Next, we verify that
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xi+1 < αi. By definition,

xi+1 = τi+1αi+1

= τi+1 ·
n− i

i(2n− i)
· si

= τi+1 ·
n− i

i(2n− i)
· (xi + si−1)

= τi+1 ·
n− i

i(2n− i)

(
τ−1
i +

(i− 1)(2n− i+ 1)
n− i+ 1

)
αi

=
n− i+ 1
i(2n− i)

(
n− i+ 1
n− i+ 2

+
(i− 1)(2n− i+ 1)

n− i+ 1

)
αi.

It can be verified through elementary simplifications that the coefficient of αi above is

always less than 1 implying that xi+1 < αi < xi, for i = 1, . . . , n− 1.

We can compute a recursive formula for xi+1 in terms of xi, as follows

xi+1 = τi+1αi+1

=
n− i+ 1
n− i

· n− i
i(2n− i)

· si

=
n− i+ 1
i(2n− i)

· (xi + si−1)

=
n− i+ 1
i(2n− i)

(
xi +

(i− 1)(2n− i+ 1)
n− i+ 1

· αi
)

=
n− i+ 1
i(2n− i)

(
xi +

(i− 1)(2n− i+ 1)
n− i+ 1

(
1 +

1
n− i+ 1

)−1

xi

)

=
n− i+ 1
i(2n− i)

(
1 +

(i− 1)(2n− i+ 1)
n− i+ 1

(
n− i+ 1
n− i+ 2

))
xi.

=
n− i+ 1
i(2n− i)

(
1 +

(i− 1)(2n− i+ 1)
n− i+ 2

)
· xi,

for i = 1, . . . , n− 1. Thus letting

ci =
n− i+ 1
i(2n− i)

(
1 +

(i− 1)(2n− i+ 1)
n− i+ 2

)
,

we get that

xi+1 = cixi, (2.1)
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Figure 2.1: The linear lower bound construction.
Vertical lines correspond to points and horizontal lines represent steps (from bottom
to top). The small circles stand for centers at each step and the blue small vertical
segments shows the Voronoi boundary location.

for i = 1, . . . , n− 1.

Theorem 2.1.1 For each n ≥ 2, there exists a set of 2n points on a line with two initial

center positions for which k-MeansMtd takes exactly n steps to terminate.

2.2 The Spread of the Point Set

It is interesting to examine the spread of the above construction. In particular, some-

what surprisingly, the spread of this construction is polynomial, hinting (at least intu-

itively) that “bad” inputs for k-MeansMtd are not that contrived.

By Eq. (2.1), we have xi+1 = cixi. Notice that by the given construction ci < 1

for all i = 1, . . . , n − 1 since xi+1 < xi. In the sequel we will show that xn is only

polynomially smaller than x1, namely xn = Ω(x1/n
4). We then derive a bound on the

distance between any consecutive pair xi and xi+1. These two assertions combined,

imply that the point set has a spread bounded by O(n5). The following lemma follows

from elementary algebraic simplifications.

Lemma 2.2.1 For each 1 ≤ i ≤ n/2, it holds that

ci ≥
(

1− 1
i

)2

,
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and for each n/2 < i < n− 1, it holds that

ci ≥
(

1− 1
(n− i+ 1)

)2

.

Furthermore, for i ≥ 2, we have

ci ≤
(

1− 1
2i

)
.

Corollary 2.2.2 For any n > 0 we have xn = Ω(x1/n
4).

Proof.

xn = c1 ·
n−1∏
i=2

ci · x1

≥ c1x1 ·
bn/2c∏
i=2

(
1− 1

i

)2

·
n−1∏

i=bn/2c+1

(
1− 1

n− i

)2

= c1x1 ·
(

1− 1
2

)2

. . .

(
1− 1
bn/2c

)2

·
(

1− 1
bn/2c

)2

. . .

(
1− 1

2

)2

= c1x1 ·

bn/2c∏
i=2

(i− 1)2

i2

2

= c1x1 ·
(

1
bn/2c

)4

The claim follows as c1 = n/(2n− 1) = Θ(1). �

Lemma 2.2.3 For each i = 1, . . . , n− 1, xi − xi+1 ≥ xi/3i.

Proof. Since xi+1 = cixi, we have xi − xi+1 = xi(1 − ci). For i = 1, we have c1 =

n/(2n− 1) ≤ 2/3, when n ≥ 2. Therefore we have x1− x2 ≥ x1/3. For i = 2, . . . , n− 1,

using Lemma 2.2.1 we get 1− ci ≥ 1/2i. Thus,

xi − xi+1 = xi(1− ci) ≥ xi ·
1
2i
>
xi
3i
,
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as claimed. �

Theorem 2.2.4 The spread of the point set constructed in Theorem 2.1.1 is O(n5).

Proof. By Lemma 2.2.3, for each i = 1, . . . , n − 1, xi − xi+1 ≥ xi/3i. Since xi > xn

and by Corollary 2.2.2, xn = Ω(x1/n
4), it follows that xi − xi+1 = Ω(x1/n

5). This

lower bound for the distance between two consecutive points is also true for yi’s due

to the symmetric construction of the point set around 0. On the other hand, since

xn = Ω(x1/n
4),

xn − yn = 2xn = Ω(x1/n
4).

Thus every pair of points are at distance at least Ω(x1/n
5). Since the diameter of the

point set is 2x1, we get a bound of O(n5) for the spread of the point set. �
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3 An Upper Bound for One
Dimension

In this section, we prove an upper bound on the number of steps of k-MeansMtd in

one dimensional Euclidean space. As we shall see, the bound does not involve k but is

instead related to the spread ∆ of the point set X. Without loss of generality we can

assume that the closest pair of points in X are at distance 1 and thus the diameter of

the set X is ∆. Before proving the upper bound, we mention a technical lemma from

[KMN+02]. The proof is included for completeness.

Lemma 3.0.5 ([KMN+02]) Let S be a set of points in <d with centroid c = c(S) and

let z be an arbitrary point in <d. Then

ψ(S, z)− ψ(S, c) =
∑
x∈S

(
‖x− z‖2 − ‖x− c‖2

)
= |S| · ‖c− z‖2 .

Proof. Using 〈u, v〉 to denote inner product of vectors u and v, we have

ψ(S, z)− ψ(S, c) =
∑
x∈S

(
‖x− z‖2 − ‖x− c‖2

)
=

∑
x∈S

(〈x− z, x− z〉 − 〈x− c, x− c〉)

=
∑
x∈S

(〈x, x〉 − 2 〈x, z〉+ 〈z, z〉 − (〈x, x〉 − 2 〈x, c〉+ 〈c, c〉))

= |S| 〈z, z〉 − |S| 〈c, c〉+ 2
∑
x∈S

(〈x, c〉 − 〈x, z〉)

= |S| 〈z, z〉 − |S| 〈c, c〉+ 2
∑
x∈S
〈x, c− z〉 .
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Since ∑
x∈S
〈x, c− z〉 =

〈∑
x∈S

x, c− z

〉
= 〈|S| c, c− z〉 = |S| 〈c, c− z〉 ,

we get

|S| 〈z, z〉 − |S| 〈c, c〉+ 2
∑
x∈S
〈x, c− z〉 = |S| 〈z, z〉 − |S| 〈c, c〉+ 2 |S| 〈c, c− z〉

= |S| 〈z, z〉 − 〈c, c〉 − 2 〈c, z〉+ 2 〈c, c〉

= |S| 〈c− z, c− z〉

= |S| · ‖c− z‖2 .

�

The above lemma quantifies the contribution of a center ci to the cost improvement

in a k-Means step as a function of the distance it moves. More formally, if in a

k-Means step a k-clustering S = (S1, . . . , Sk) is changed to the other k-clustering

S ′ = (S′1, . . . , S
′
k), then

φ(S ′)− φ(S) ≥
k∑
i=1

|S′i| ·
∥∥c(S′i)− c(Si)∥∥2

.

Note that in the above analysis we only consider the improvement resulting from the

second stage of k-Means step in which the centers are moved to the centroids of their

clusters. There is an additional gain from reassigning the points in the first stage of a

k-Means step that we currently ignore.

In all our upper bound arguments we use the fact that if the initial set of centers is

chosen from inside the convex hull of the input point set X (even if this is not the case,

all centers move inside the convex hull of X after one step), the initial clustering cost

is no more than n∆2. This simply follows from the fact that each of the n points in X

is at distance no more than ∆ from its assigned center.

Theorem 3.0.6 The number of steps of k-MeansMtd on a set X ⊂ < of n points

with spread ∆ is at most O(n∆2).

15



Proof. Consider a k-Means step that changes a k-clustering S into another k-clustering

S ′. The crucial observation is that in this step, there exists a cluster that is only extended

or shrunk from its right end. To see this consider the leftmost cluster S1. Either S1

is modified in this step, in which case this modification can only happen in form of

extension or shrinking at its right end, or it remains the same. In the latter case, the

same argument can be made about S2, and so on.

Thus assume that S1 is extended on right by receiving a set T from the cluster directly

to its right, namely S2 (S2 cannot lose all its points to S1 as it has at least one point

to the right of c2 and this point is closer to c2 than to c1 and cannot go to S1). Notice

that c(T ) is to the right of the leftmost point in T and at distance at least (|T | − 1)/2

from this leftmost point (because every pair of points are at distance one or more in T

and c(T ) gets closest to its leftmost point when every pair of consecutive points in T

are placed at the minimum distance of 1 from each other). Similarly, the centroid of S1

is to the left of the rightmost point of S1 and at distance at least (|S1| − 1)/2 from it.

Thus,

‖c(S1)− c(T )‖ ≥ |T | − 1
2

+
|S1| − 1

2
+ 1 =

|T |+ |S1|
2

,

where the extra 1 is added because the distance between the leftmost point in T and

the rightmost point in S1 is at least 1. The centroid of S′1 will therefore be at distance

|T |
|S1|+ |T |

‖c(S1)− c(T )‖ ≥ |T |
|S1|+ |T |

· |T |+ |S1|
2

=
|T |
2
≥ 1

2

from c(S1) and to its right. Consequently, by Lemma 3.0.5, the improvement in clus-

tering cost is at least 1/4.

Similar analysis implies a similar improvement in the clustering cost for the case where

we remove points from S1. Since the initial clustering cost is at most n∆2, the number

of steps is no more than n∆2/(1/4) = 4n∆2. �

Remark 3.0.7 The upper bound of Theorem 3.0.6 as well as all other upper bounds

proved later in this thesis can be slightly improved by observing that at the end of any
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k-Means step (or a substitute step used in the alternate algorithms considered later),

we have a clustering S = (S1, . . . , Sk) of the input point set X with centers c1, . . . , ck,

respectively, where for each i = 1, . . . , k, ci = c(Si). Let ĉ = c(X). By Lemma 3.0.5 we

can write for each i = 1, . . . , k

ψ(Si, ci) = ψ(Si, ĉ)− |Si| · ‖ĉ− ci‖2 .

Summing this equation up for every i = 1, . . . , k,

φ(S ′) =
∑
x∈X
‖x− ĉ‖2 −

k∑
i=1

|Si| . ‖ĉ− ci‖2 <
∑
x∈X
‖ĉ− x‖2 =

1
n

∑
x,y∈X

‖x− y‖2 ,

we get the better upper bound of 1/n
∑

x,y∈X ‖x− y‖
2 that can replace the trivial bound

of n∆2. Notice that depending on the point set X, this improved upper bound can be

by a factor of O(n) smaller than n∆2. Nevertheless, in all our upper bound results we

employ the weaker bound for the purpose of readability, while all those bounds can be

made more precise by applying the above-mentioned improvement.
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4 Upper Bound for Points on a
d-Dimensional Grid

In this section, we prove an upper bound on the number of steps of k-MeansMtd

when the input points belong to the integer grid {1, . . . ,M}d. This is the case in many

practical applications where every data point has a large number of fields with each field

having values in a small discrete range. For example, this includes clustering of pictures,

where every pixel forms a single coordinate (or three coordinates, corresponding to the

RGB values) and the value of every coordinate is restricted to be an integer in the range

0–255.

The main observation is that the centroids of any two subsets of {1, . . . ,M}d are either

equal or are suitably far away. Since each step of k-MeansMtd moves at least one

center or else stops, this observation guarantees a certain amount of improvement to

the clustering cost in each step.

Lemma 4.0.8 Let S1 and S2 be two nonempty subsets of {1, . . . ,M}d with |S1|+|S2| ≤

n. Then, either c(S1) = c(S2) or

‖c(S1)− c(S2)‖ ≥ 1
n2
.

Proof. If c(S1) 6= c(S2) then they differ in at least one coordinate. Let u1 and u2

be the values of c(S1) and c(S2) in one such coordinate, respectively. By definition,

u1 = s1/|S1| and u2 = s2/|S2| where s1 and s2 are integers in the range {1, . . . , nM}. In

other words |u1−u2| is the difference of two distinct fractions, both with denominators
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less than n. It follows that |u1 − u2| ≥ 1/n2 and consequently

‖c(S1)− c(S2)‖ ≥ |u1 − u2| ≥ 1/n2.

�

Theorem 4.0.9 The number of steps of k-MeansMtd when executed on a point set

X taken from the grid {1, . . . ,M}d is at most dn5M2.

Proof. Note, that U = n · (
√
dM)2 = ndM2 is an upper bound of for the clustering

cost of any k-clustering of a point set in {1, . . . ,M}d and that at each step at least

one center moves by at least 1/n2. Therefore, by Lemma 3.0.5, at every step the cost

function decreases by at least 1/n4 and the overall number of steps can be no more than

U/(1/n4) = dn5M2. �
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5 Arbitrary Point Sets and
Alternative Algorithms

Unfortunately proving any meaningful bounds for the general case of k-MeansMtd,

namely with points in <d with d > 1 and no further restrictions, remains elusive.

However, in this section, we present two close relatives of k-MeansMtd for which we

can prove polynomial bounds on the number of steps. The first algorithm differs from

k-MeansMtd in that it moves a misclassified point to its correct cluster, as soon as the

misclassified point is discovered (rather than first finding all misclassified points and

then reassigning them to their closest centers as is the case in k-MeansMtd). The

second algorithm is basically the same as k-MeansMtd with a naturally generalized

notion of misclassified points. Our experimental results (Chapter 6) further support the

kinship of these two algorithms with k-MeansMtd.

As was the case with our previous upper bounds, our main approach in bounding the

number of steps in both these algorithms is through showing substantial improvements

in the clustering cost at each step.

5.1 The SinglePnt Algorithm

We introduce an alternative to the k-Means step which we shall call a SinglePnt

step.

Definition 5.1.1 In a SinglePnt step on a k-clustering S = (S1, . . . , Sk), a misclas-

sified point x is chosen, such that x ∈ Si and ‖x− c(Sj)‖ < ‖x− c(Si)‖, for some

1 ≤ i 6= j ≤ k, and a new clustering S ′ = (S′1, . . . , S
′
k) is formed by removing x from Si
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and adding it to Sj . Formally, for each 1 ≤ l ≤ k,

S′l =


Sl l 6= i, j,

Sl \ {x} l = i,

Sl ∪ {x} l = j.

The centers are updated to the centroids of the clusters, and therefore only the centers

of Si and Sj change. Note that updating the centers takes constant time.

In a SinglePnt step, if the misclassified point is far away from at least one of c(Si) and

c(Sj), then the improvement in clustering cost made in the SinglePnt step cannot be

too small.

Lemma 5.1.2 Let S and T be two point sets of sizes n and m, respectively, and let

s = c(S) and t = c(T ). Suppose that x is a point in T with distances dS and dT from s

and t, respectively, and such that dS < dT . Let S′ = S ∪ {x} and T ′ = T \ {x} and let

s′ = c(S′) and t′ = c(T ′).

ψ(S, s) + ψ(T, t)− ψ(S′, s′)− ψ(T ′, t′) ≥ (dS + dT )2

2(n+m)
.

Proof. Indeed,

c(S′) =
n

n+ 1
c(S) +

1
n+ 1

x.

Thus

∥∥s− s′∥∥ =
∥∥c(S)− c(S′)

∥∥
=

∥∥∥∥ 1
n+ 1

c(S)− 1
n+ 1

x

∥∥∥∥
=

1
n+ 1

‖c(S)− x‖

=
dS
n+ 1

.
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Similarly, ∥∥t− t′∥∥ =
dT

m− 1
.

Thus using Lemma 3.0.5 we get

ψ(S′, s)− ψ(S′, s′) = (n+ 1)
(

dS
n+ 1

)2

=
d2
S

n+ 1
,

and similarly

ψ(T ′, t)− ψ(T ′, t′) =
d2
T

(m− 1)
.

As such, since dS < dT , we have that

ψ(S, s) + ψ(T, t) ≥ ψ(S′, s) + ψ(T ′, t),

and

ψ(S, s) + ψ(T, t)− ψ(S′, s′)− ψ(T ′, t′)

≥ ψ(S′, s) + ψ(T ′, t)− ψ(S′, s′)− ψ(T ′, t′)

≥
d2
S

n+ 1
+

d2
T

m− 1

≥
d2
S

n+m
+

d2
T

n+m

=
d2
S + d2

T

n+m

≥ (dS + dT )2

2(n+m)
.

�

Our modified version of k-MeansMtd, to which we shall refer as “SinglePnt”, re-

places k-Means steps with SinglePnt steps. Starting from an arbitrary clustering of

the input point set, SinglePnt repeatedly performs SinglePnt steps until no misclas-

sified points remain. Notice that unlike the k-Means step, the SinglePnt step does

not maintain the property that the clustering achieved at the end of the step is imposed

by some Voronoi diagram. However, when the algorithm stops no misclassified points

are left, and this property must hold since otherwise further steps would be possible.
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Theorem 5.1.3 On any input X ⊂ <d, SinglePnt makes at most O(kn2∆2) steps

before termination.

Proof. Once again, we assume that no two points in X are less than unit distance apart.

Call a SinglePnt step weak, if the misclassified point it considers is at distance less

than 1/8 from both involved centers, i.e., its current center and the center closest to

it. We call a SinglePnt step strong if it is not weak. Lemma 5.1.2 shows that in a

strong SinglePnt step the clustering cost improves by at least 1/(128n). In the sequel

we shall show that the algorithm cannot take more than k consecutive weak steps, and

thus at least one out of every k+ 1 consecutive steps must be strong and thus result an

improvement of 1/(128n) to the clustering cost; hence the upper bound of O(kn2∆2).

For a fixed point in time, let c1, . . . , ck denote the current centers, and let S1, . . . , Sk

denote the corresponding clusters; namely, Si is the set of points served by ci, for i =

1, . . . , k. Consider the balls B1, . . . , Bk of radius 1/8 centered at c1, . . . , ck, respectively.

Observe that since every pair of points in X are at distance at least 1 from each other,

each ball Bi can contain at most one point of X. Moreover, the intersection of any

subset of the balls B1, . . . , Bk can contain at most one point of X. For a point x ∈ X,

let B(x) denote the set of balls among B1, . . . , Bk that contain the point x. We refer to

B(x) as the batch of x.

By the above observation, the balls (and the corresponding centers) are classified ac-

cording to the point of X they contain (if they contain such a point at all). Let BX

be the set of batches of balls that are induced by X and contain more than one ball.

Formally,

BX = {B(x) : x ∈ X, |B(x)| > 1} .

The set of balls
⋃
BX is the set of active balls.

A misclassified point x can participate in a weak SinglePnt step only if it belongs to

more than one ball; i.e., when |B(x)| > 1. Observe that, if we perform a weak step, and
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one of the centers move such that the corresponding ball Bi no longer contains any point

of X in its interior, then for Bi to contain a point again, the algorithm must perform

a strong step. To see this, observe that (weakly) losing a point x may cause a center

move a distance of at most 1/8. Therefore, once a center ci loses a point x, and thus

moves away from x, it does not move far enough for the ball Bi to contain a different

point of X.

Hence, in every weak iteration a point x changes the cluster it belongs to in B(x). This

might result in a shrinking of the active set of balls. On the other hand, while only weak

SinglePnt steps are being taken, any cluster Sj can change only by winning or losing

the point xi that stabs the corresponding ball Bj . It follows that once a set Sj loses the

point x, then it can never get it back since that would correspond to an increase in the

clustering cost. Therefore the total number of possible consecutive weak SinglePnt

steps is bounded by ∑
x∈X,|B(x)|>1

|B(x)| ≤ k.

�

5.2 The Lazy-k-Means Algorithm

Our second variant to k-MeansMtd, which we name “Lazy-k-Means”, results from a

natural generalization misclassified points (Definition 1.3.1). Intuitively, the difference

between the Lazy-k-Means and k-MeansMtd is that Lazy-k-Means at each step

only reassigns those misclassified points to their closest centers that are substantially

misclassified, namely the points that benefit from reclassification by at least a constant

factor.

Definition 5.2.1 Given a clustering S = (S1, . . . , Sk) of a point set X, if for a point
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x ∈ Si there exists a j 6= i, such that

‖x− c(Si)‖ > (1 + ε) ‖x− c(Sj)‖ ,

then x is said to be (1 + ε)-misclassified for center pair (c(Si), c(Sj)). The centers c(Si)

and c(Sj) are referred to as switch centers for x. We also say that c(Si) is the losing

center and c(Sj) is the winning center for x.

Thus Lazy-k-Means with parameter ε starts with an arbitrary k-clustering. In each

step, it (i) reassigns every (1 + ε)-misclassified point to its closest center and (ii) moves

every center to the centroid of its new cluster. Indeed, k-MeansMtd is simply Lazy-

k-Means with parameter ε = 0. Naturally, the algorithm stops when no (1 + ε)-

misclassified points are left.

In the sequel we bound the maximum number of steps taken by Lazy-k-Means. We

shall use the following fact from elementary Euclidean geometry.

Fact 5.2.2 Given two points c and c′ with ‖c− c′‖ = `, the locus of the points x with

‖x− c′‖ > (1 + ε) ‖x− c‖ is an open ball of radius R = `(1 + ε)/(ε(2 + ε)) called the

ε-Apollonius ball for c with respect to c′. This ball is centered on the line containing

the segment cc′ at distance R+ `ε/(2(2 + ε)) from the bisector of cc′, and on the same

side of the bisector as c (see Figure 5.1).

Lemma 5.2.3 For any three points x, c, and c′ in <d with ‖x− c‖ ≤ ‖x− c′‖ we have

∥∥x− c′∥∥2 − ‖x− c‖2 = 2h
∥∥c− c′∥∥ ,

where h is the distance from x to the bisector of c and c′.

Proof. Let y be the intersection point of the segment cc′ with the (d − 1)-dimensional

hyperplane parallel to the bisector of c and c′ and containing x. By Pythagorean

equality we have ‖x− c‖2 = ‖x− y‖2 + ‖y − c‖2 and ‖x− c′‖2 = ‖x− y‖2 + ‖y − c′‖2.
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c′ c`

r
(1 + ε)r

R

Figure 5.1: The ε-Apollonius ball for c with respect to c′.

Subtracting the first equality from the second, we obtain

∥∥x− c′∥∥2 − ‖x− c‖2 =
∥∥y − c′∥∥2 − ‖y − c‖2

= (‖y − c‖+
∥∥y − c′∥∥)(‖y − c‖ −

∥∥y − c′∥∥)

= 2h
∥∥c− c′∥∥ ,

since ‖y − c‖ − ‖y − c′‖ = 2h. �

Theorem 5.2.4 The number of steps of the Lazy-k-Means algorithm with parameter

ε is O(n∆2ε−3).

Proof. We will show that every two consecutive steps of Lazy-k-Means with parameter

ε make an improvement of at least

λ∗ =
ε3(2 + ε)

256(1 + ε)2
≥ ε3

512
= Ω(ε3).

Let `0 = ε(2+ε)/(16(1+ε)). Notice that `0 < 1/8 for 0 < ε ≤ 1. We call a misclassified

point x strongly misclassified, if its switch centers c and c′ are at distance at most `0

from each other, and weakly misclassified otherwise.
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If at the beginning of a Lazy-k-Means step there exists a strongly misclassified point x

for a center pair (c, c′), then since every point in the ε-Apollonius ball for c′ with respect

to c is at distance at least `0ε/(2(2 + ε)) from the bisector of cc′, by Lemma 5.2.3 the

reclassification improvement in clustering cost resulting from assigning x to c′ is

‖x− c‖2 −
∥∥x− c′∥∥2 =

`20ε

2 + ε
≥ ε3(2 + ε)

256(1 + ε)2
= λ∗.

Thus we assume that all misclassified points are weakly misclassified. Let x be one such

point for center pair (c, c′). By our assumption ‖c− c′‖ < `0. Observe that in such a

case, the radius of the ε-Apollonius ball for c′ with respect to c is `(1 + ε)/(ε(2 + ε)) <

1/16. In particular, since there exists a ball of radius 1/16 containing both x and c′,

the ball of radius 1/8 centered at c′, which we denote by B(c′, 1/8), includes x. Also

since ‖c− c′‖ < 1/8 as verified above, we get c ∈ B(c′, 1/8) as well. In other words,

both switch centers c and c′ are at distance less than 1/4 from x. Now, since every

pair of points in X are at distance 1 or more, any center can be a switch center for at

most one weakly misclassified point. This in particular implies that in the considered

Lazy-k-Means step, no cluster is modified by more than a single point.

When the misclassified points are assigned to their closest centers, the centers that do

not lose or win any points stay at their previous locations. A center c′ that wins a

point x moves closer to x since x is the only point it wins while losing no other points.

Similarly, a center c that loses a point x moves away from x since x is the only point it

loses without winning any other points. A losing center c moves away from its lost point

x by a distance of at most ‖c− x‖ < 1/4 since its previous number of served points

was at least 2 (otherwise, we would have c = x and thus x could not be misclassified).

Therefore, when c moves to the centroid of its cluster (now missing x), ‖x− c‖ < 1/2

and consequently ‖c− y‖ > 1/2 for any x 6= y ∈ X. As a result, c can not be a switch

center for any weakly misclassified point in the subsequent Lazy-k-Means step.
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On the other hand, the winning center c′ to whose cluster x is added, moves closer to x

and since no center other than c and c′ in B(x, 1/4) moves (as there is no point other

than x they can win or lose), x will not be misclassified in the next Lazy-k-Means

step.

It follows from the above discussion that the next Lazy-k-Means step cannot have

any weakly misclassified points and thus either the algorithm stops or some strongly

misclassified point will exist, resulting an improvement of at least λ∗. Thus the total

number of steps taken by Lazy-k-Means with parameter ε is at most 2n∆2/λ∗ =

O(n∆2ε−3). �
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6 Experimental Results

We introduced both SinglePnt and Lazy-k-Means alternatives to k-MeansMtd

as similar, equally easy to implement algorithms that are simpler to analyze than k-

MeansMtd itself. However, as mentioned in the introduction, k-MeansMtd is mainly

of interest only in practice because of its ease of implementation and its relatively fast

termination (small number of steps). It thus raises the question of how our alternative

algorithms perform in practice in comparison to k-MeansMtd.

We performed a series of experiments analogous to those done in [KMN+02], as de-

scribed below, to compare the number of rounds, number of reclassified points, and

quality of final clustering produced by these two alternative algorithms with those of

k-MeansMtd. We use the same inputs used by Kanungo et al. for our experiments.

See [KMN+02] for detailed description of those inputs. We have tried to implement each

of the algorithms in the simplest possible way and avoided using any advanced point

location or nearest neighbor search structure or algorithm. Due to the great similarity

between the three algorithms considered here, it is expected that any technique used

for improving the performance of any of these algorithms, to be suitable for improving

the other two variants in a somewhat similar way.

k-MeansMtd and Lazy-k-Means iterate over points and assign each point to the

closest center. While doing this the new set of centers are calculated and existence

of a (1 + ε)-misclassified point is checked. SinglePnt examines the points one by

one, moving to the first point when reaching the end of the list, checking if they are

misclassified or not. When a misclassified point is discovered it is assigned to its closest

center and the location of the two switching centers is updated. The algorithm stops
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when it cannot find a misclassified point for n consecutive steps1.

Our experimental results are summarized in Table 6.1 and Table 6.2. In conformance

to [KMN+02] the costs referred to in these tables is the total final clustering cost,

divided by the number of points. In that sense we report the “average” cost per point.

Table 6.1 is produced by running, only once, each of the four algorithms with the same

set of randomly chosen center for each combination of point set and number of centers

considered. By studying several such tables it seems that the total number of reclassified

points and the quality of clustering found by SinglePnt tends to be very close to those

of k-MeansMtd. Notice that in Table 6.1, the number of steps of SinglePnt are left

blank as they are equal to the number of reclassified points and cannot be compared

with the number of steps of k-MeansMtd or Lazy-k-Means.

Table 6.2 summarizes the results of running 100 tests similar to the one reported in

Table 6.1 each with different initial set of centers picked randomly from the bounding

box of the given point set. The best, worst, and average final clustering costs are

reported in each case.

We have not discussed the running times as we made no effort in optimizing our im-

plementations. It is however interesting that both of the two alternative algorithms

tend to be faster than k-MeansMtd’s in a typical implementation such as ours. Sin-

glePnt seems to be typically more than 20% faster than Lloyd. In particular, we

emphasize, that our simple implementation is considerably slower than the implemen-

tation of Kanungo et al. [KMN+02] that uses data structure similar to kd-tree to speed

up the computation of the Voronoi partitions. We believe that we would get similar

performance gains by using their data structure.

Below are the the descriptions of the test point sets used in these experiments [KMN+02].

ClusGauss: The data consists of 10,000 points in <3, generated from a distribution
1The input point sets used in these experiments together with the source-code of our implementation

is available on the web at http://www.uiuc.edu/~sariel/papers/03/lloyd kmeans.
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Data Set k Method Steps Reclassified Final Cost

ClusGauss
n = 10, 000
d = 3

25

k-MeansMtd 24 4748 0.081615
SinglePnt - 4232 0.081622
Lazy-k-Means, ε = 0.05 17 2377 0.082702
Lazy-k-Means, ε = 0.20 18 1554 0.089905

50

k-MeansMtd 20 4672 0.031969
SinglePnt - 4391 0.031728
Lazy-k-Means, ε = 0.05 16 2244 0.032164
Lazy-k-Means, ε = 0.20 22 1974 0.034661

100

k-MeansMtd 22 5377 0.009639
SinglePnt - 4958 0.009706
Lazy-k-Means, ε = 0.05 15 2512 0.010925
Lazy-k-Means, ε = 0.20 19 1748 0.013092

MultiClus
n = 10, 000
d = 3

50

k-MeansMtd 21 2544 0.033870
SinglePnt - 2419 0.033941
Lazy-k-Means, ε = 0.05 16 1121 0.034622
Lazy-k-Means, ε = 0.20 25 722 0.038042

100

k-MeansMtd 18 1744 0.009248
SinglePnt - 1732 0.008854
Lazy-k-Means, ε = 0.05 11 740 0.009902
Lazy-k-Means, ε = 0.20 15 584 0.010811

500

k-MeansMtd 12 1768 0.002495
SinglePnt - 1694 0.002522
Lazy-k-Means, ε = 0.05 9 528 0.002757
Lazy-k-Means, ε = 0.20 11 444 0.002994

Lena22
n = 65, 536
d = 4

8

k-MeansMtd 36 62130 335.408625
SinglePnt - 57357 335.440866
Lazy-k-Means, ε = 0.05 27 50298 338.594668
Lazy-k-Means, ε = 0.20 21 44040 355.715258

64

k-MeansMtd 211 111844 94.098422
SinglePnt - 81505 94.390640
Lazy-k-Means, ε = 0.05 88 55541 97.608823
Lazy-k-Means, ε = 0.20 24 30201 120.274428

256

k-MeansMtd 167 111110 48.788216
SinglePnt - 101522 48.307815
Lazy-k-Means, ε = 0.05 92 57575 51.954810
Lazy-k-Means, ε = 0.20 79 32348 61.331614

Lena44
n = 16, 384
d = 16

8

k-MeansMtd 63 18211 2700.589245
SinglePnt - 16467 2700.587691
Lazy-k-Means, ε = 0.05 20 9715 2889.747540
Lazy-k-Means, ε = 0.20 27 9201 3008.783333

64

k-MeansMtd 61 21292 1525.846646
SinglePnt - 16422 1615.667299
Lazy-k-Means, ε = 0.05 45 13092 1555.520952
Lazy-k-Means, ε = 0.20 16 7527 1907.962692

256

k-MeansMtd 43 21394 1132.746162
SinglePnt - 28049 1122.407317
Lazy-k-Means, ε = 0.05 28 12405 1156.884049
Lazy-k-Means, ε = 0.20 27 7993 1320.303278

Kiss
n = 10, 000
d = 3

8

k-MeansMtd 18 5982 687.362264
SinglePnt - 7026 687.293930
Lazy-k-Means, ε = 0.05 18 3277 690.342895
Lazy-k-Means, ε = 0.20 23 2712 720.891998

64

k-MeansMtd 202 29288 202.044849
SinglePnt - 35228 185.519927
Lazy-k-Means, ε = 0.05 92 12471 221.936175
Lazy-k-Means, ε = 0.20 44 6080 263.497185

256

k-MeansMtd 144 17896 105.438490
SinglePnt - 16992 106.112133
Lazy-k-Means, ε = 0.05 61 7498 120.317362
Lazy-k-Means, ε = 0.20 27 3479 150.156231

Table 6.1: A comparison of all algorithms in a typical run.
Number of steps, number of reclassified points, and final average clustering cost in a
typical execution of each of the four algorithms on data sets mentioned in [KMN+02].
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Data Set k Method Minimum Cost Maximum Cost Average Cost

ClusGauss
n = 10, 000
d = 3

25

k-MeansMtd 0.068462 0.087951 0.07501276
SinglePnt 0.067450 0.083194 0.07486010
Lazy-k-Means, ε = 0.20 0.074667 0.100035 0.08510598
Lazy-k-Means, ε = 0.05 0.070011 0.092658 0.07803375

50

k-MeansMtd 0.028841 0.040087 0.03335312
SinglePnt 0.028376 0.040623 0.03308624
Lazy-k-Means, ε = 0.20 0.031175 0.046528 0.03719264
Lazy-k-Means, ε = 0.05 0.029626 0.040811 0.03384180

100

k-MeansMtd 0.011425 0.016722 0.01401549
SinglePnt 0.010106 0.017986 0.01365492
Lazy-k-Means, ε = 0.20 0.011928 0.022015 0.01565268
Lazy-k-Means, ε = 0.05 0.011730 0.020600 0.01442575

MultiClus
n = 10, 000
d = 3

50

k-MeansMtd 0.027563 0.034995 0.03051698
SinglePnt 0.027412 0.034167 0.03083110
Lazy-k-Means, ε = 0.20 0.029507 0.055160 0.03620397
Lazy-k-Means, ε = 0.05 0.028457 0.046314 0.03260643

100

k-MeansMtd 0.002477 0.004324 0.00308144
SinglePnt 0.002390 0.004179 0.00303798
Lazy-k-Means, ε = 0.20 0.002758 0.005175 0.00356282
Lazy-k-Means, ε = 0.05 0.002331 0.004789 0.00322593

500

k-MeansMtd 0.002142 0.002731 0.00240768
SinglePnt 0.002136 0.002805 0.00244548
Lazy-k-Means, ε = 0.20 0.002539 0.003567 0.00292354
Lazy-k-Means, ε = 0.05 0.002206 0.002890 0.00254321

Lena22
n = 65, 536
d = 4

8

k-MeansMtd 263.644420 348.604787 299.78905632
SinglePnt 263.659829 348.527023 307.12394164
Lazy-k-Means, ε = 0.20 278.337133 414.679356 345.07986265
Lazy-k-Means, ε = 0.05 271.041374 409.802396 322.99259307

64

k-MeansMtd 82.074376 102.327255 88.53558757
SinglePnt 82.190945 104.574941 89.24323986
Lazy-k-Means, ε = 0.20 100.601485 147.170657 111.93562151
Lazy-k-Means, ε = 0.05 82.798308 106.231864 94.20319250

256

k-MeansMtd 44.637740 51.482531 47.66542537
SinglePnt 44.699224 51.685618 47.81799127
Lazy-k-Means, ε = 0.20 56.906620 71.491475 62.00216985
Lazy-k-Means, ε = 0.05 47.178425 54.946136 50.82872342

Lena44
n = 16, 384
d = 16

8

k-MeansMtd 2699.721266 3617.282065 2903.30164756
SinglePnt 2699.663310 3216.854024 2894.42713876
Lazy-k-Means, ε = 0.20 2834.438965 4452.875383 3293.73084140
Lazy-k-Means, ε = 0.05 2725.907276 3649.518829 2977.33094524

64

k-MeansMtd 1305.357406 1694.965827 1503.17431782
SinglePnt 1345.821487 1811.663769 1515.08195678
Lazy-k-Means, ε = 0.20 1564.252624 2385.794013 1785.93841955
Lazy-k-Means, ε = 0.05 1410.883673 1793.704755 1565.18092988

256

k-MeansMtd 1044.017122 1311.942456 1151.64441691
SinglePnt 1055.788028 1308.459754 1168.30843808
Lazy-k-Means, ε = 0.20 1262.487865 1653.820840 1400.49905496
Lazy-k-Means, ε = 0.05 1094.884884 1385.345314 1219.27000492

Kiss
n = 10, 000
d = 3

8

k-MeansMtd 687.278119 714.789442 700.352315760
SinglePnt 687.279479 714.731416 697.292832560
Lazy-k-Means, ε = 0.20 727.017538 947.779405 802.256735040
Lazy-k-Means, ε = 0.05 689.779010 861.853344 719.140385820

64

k-MeansMtd 158.607749 208.946701 178.21703676
SinglePnt 151.642447 203.102940 177.17793706
Lazy-k-Means, ε = 0.20 222.646398 324.435479 259.62118455
Lazy-k-Means, ε = 0.05 170.571861 248.648363 208.64482062

256

k-MeansMtd 96.272602 115.294309 105.30212380
SinglePnt 97.141907 125.009357 107.08187899
Lazy-k-Means, ε = 0.20 124.378185 158.922757 140.72908431
Lazy-k-Means, ε = 0.05 103.672482 129.685819 116.73971102

Table 6.2: Summary of 100 tests.
Minimum, maximum, and average clustering cost on 100 executions of each of the
algorithms on each of the data sets with initial centers picked randomly.
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consisting of 100 clusters of almost equal size, with centers uniformly distributed

in [−1, 1]3. The points in each cluster are drawn from a multivariate Gaussian

distribution centered at the cluster center, where each coordinate has a standard

deviation of 0.05.

MultiClus: The data consists of 10,000 points in <3 which were generated from a

distribution consisting of a number of multivariate Gaussian clusters of various

sizes and standard deviations. Again cluster centers where sampled uniformly

from a the cube [−1, 1]3. The cluster sizes are powers of 2. The probability of

generating a cluster of size 2i is 1/2i, and hence there are many small clusters.

The standard deviation of a cluster of size m is 0.05/
√
m, and hence each cluster

is expected to have roughly equal distortion of 0.025.

Lena22 and Lena44: These were taken from an application in image compression

through vector quantization. The data were generated by partitioning a 512×512

gray-scale Lena image into 65, 536 2 × 2 tiles. Each tile is treated as a point in

a 4-dimensional space. Lena44 was generated using 4 × 4 tiles, thus generating

16,384 points in 16-dimensional space.

Kiss: This is from a color quantization application. 10,000 RGB pixel values were

sampled at random from a color image of a painting “The Kiss” by Gustav Klimt.

This resulted in 10,000 points in 3-space.
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7 Conclusions

We presented several results on the number of iterations performed by the k-MeansMtd

clustering algorithm. To our knowledge, our results are the first to provide combinatorial

bounds on the performance of k-MeansMtd. We consider this thesis to be a first step

in understanding the Lloyd’s method. It is our belief that both our lower and upper

bounds are loose, and one might need to use other techniques to improve them. In

particular, we mention some open problems:

1. There is still a large gap between our lower and upper bounds. In particular, a

super-linear lower bound would be interesting even in high-dimensional space.

2. Our current upper bounds include the spread as a parameter. It would be inter-

esting to prove (or disprove) that this is indeed necessary.

3. We have introduced alternative, easy to analyze algorithms, that are comparable

to k-MeansMtd both in their description and their behavior in practice. It would

be interesting to show provable connections between these algorithms and compare

the bounds on the number of steps they require to terminate.

Recently, independently of our results, Sanjoy Dasgupta [Das03] announced results

which are similar to a subset of our results. In particular, he mentions the one-

dimensional lower bound, and a better upper bound for k < 5 but only in one dimension.

This work of Sanjoy Dasgupta and Howard Karloff seems to be using similar arguments

to ours (personal communication) although to our knowledge it has not been written or

published yet.
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