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Abstract

The medial axis of a shape is known to carry a lot of information about the shape. In
particular, a recent result of Lieutier establishes that every bounded open subset of Rn has the
same homotopy type as its medial axis. In this paper we provide an algorithm that computes
a structure we call the core for the approximation of the medial axis of a shape with smooth
boundary from a discrete sample of its boundary. The core is a piecewise linear cell complex
that is guaranteed to capture the topology of the medial axis of the shape provided the sample of
its boundary is sufficiently dense but not necessarily uniform. We also present a natural method
for augmenting the core in order to extend it geometrically while maintaining the topological
guarantees. The definition of the core and its extension are based on the steepest ascent flow
map that results from the distance function induced by the sample point set. We also provide
a geometric guarantee on the closeness of the core and the actual medial axis.

1 Introduction

The medial axis of a bounded open set S in Rn is the set of points in S with at least two closest
points in the boundary of S. In the following we sometimes refer to bounded open subsets of Rn
as shapes. A recent result of Lieutier [16] establishes that any shape and its medial axis have the
same topological type or, more precisely, are homotopy equivalent. Consequently, the medial axis
can be used to answer topological queries about the shape. Such queries are employed in many
applications including, but not limited to, shape analysis, motion planning, and mesh partitioning.
Therefore, it is sensible to expect any medial axis approximation algorithm to capture the topology
of the medial axis.

As a geometric object, the medial axis is unstable since small changes of a shape can cause
comparatively large changes in its medial axis. This instability of the medial axis bears two conse-
quences. First, it makes the medial axis hard to compute exactly because of numerical instabilities;
consequently, exact computation of medial axis has only been attempted for a few limited classes
of shapes, see for example [7]. Second, the complete medial axis may be less interesting in practice
than an approximation of it which carries the same topological type but is more stable under small
perturbations of the shape. Approximations of the medial axis of a shape are often sought with a
sample of the boundary of the shape provided as input. Chazal and Lieutier [8] defined the λ-medial
axis, a subset of the medial axis, which has the desired stability, and is guaranteed to have the
same homotopy type as the medial axis for suitably small values of the parameter λ. The largest
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topologically safe value of λ depends on the shape and can be very small and hard to determine
[3]. Finally, the existing algorithm for computing the λ-medial axis requires a very dense uniform
sample of the boundary of the shape [8].

The ε-sampling theory of Amenta and Bern [1] provides a framework for the analysis of algo-
rithms that either reconstruct the boundary of a shape or approximate its medial axis. The local
density of an adaptive ε-sample in this framework may vary but is guaranteed to adapt locally to
the features of the shape. Several results were obtained in this framework, some of the earliest con-
cerning the medial axis are due to Amenta, Bern, and Eppstein [2], and Boissonnat and Cazals [5],
each establishing that a subset of the Voronoi vertices in the Voronoi diagram of the sample points
lies close to the medial axis. Later, Amenta, Choi, and Kolluri [4] designed an algorithm that
computes an approximation of the medial axis, in the form of a cell complex, that is provably ho-
motopy equivalent to the medial axis of the shape, provided that that shape boundary is sampled
densely enough. The output of this algorithm tends to be noisy and needs to be cleaned up using
heuristics for practical use. The cell complex produced by this algorithm is not contained in the
Voronoi 2-skeleton of the sample points, a property considered natural since the Voronoi 2-skeleton
is the medial axis of the sample points and that effective filtering of it often produces good results
in practice. Dey and Zhao [10] designed an algorithm that outputs a sub-complex of the Voronoi
2-skeleton for medial axis approximation. The geometrically pleasing output of this algorithm is
guaranteed to converge to the true medial axis when the sample grows infinitely dense, i.e., when
ε → 0, but suffers lacking of any topological guarantees. In fact, with a poor choice of filtering
parameters the provided output can be flawed topologically. The results of the present paper can
be used to mend this deficiency.

Our Contributions Given a sample of the surface of a shape, we compute a piece-wise linear
cell complex, which we call the core (of the medial axis approximation). The core is extracted from
a refinement of the Voronoi 2-skeleton of the input sample called the unstable flow complex. The
idea and the algorithm to compute this complex and the core are derived from the critical point
theory of the distance function to the sample points and their induced steepest ascent flow, which
we refer to as the discrete flow.

We analyze the properties of the core in the Amenta-Bern framework. Dey et al. [9] show that
the critical points of the distance function to an ε-sampling of the boundary of a shape are naturally
separated: each such critical point is either very close to the surface or very close to the medial
axis of the shape. The two classes of critical points can be separated algorithmically provided that
the sample is sufficiently dense. The core we compute is the union of the unstable manifolds of
the critical points close to the medial axis. The unstable manifold of a critical point consists of
all points that can be reached from an infinitesimally small neighborhood of that critical point
following the discrete flow. We characterize the structure of the unstable manifolds and show how
to compute them from the Voronoi complex of the sample points in R3. Our main result states
that the core and the medial axis are homotopy equivalent for dense enough samples.

Once the core is computed, it can be extended to better capture the geometry of the medial axis
while maintaining its homotopy type. To extend the core one picks, using any algorithm at hand,
a set of points that approximates a subset of the medial axis of the target shape and adds this set
to the computed core along with its flow closure under the discrete flow. We show that as long as
the chosen approximating set of points does not get too close to the surface of the shape, adding
the closure keeps the homotopy type of the core. Because of this property, computing the core can
be used to augment most medial axis approximation algorithm into a topologically accurate one.
The algorithm of Dey and Zhao [10] is especially suited for augmenting the core since computing
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the flow closure of Voronoi facets is easy.
Finally we provide an upper-bound on the rate at which the distance of a point to the medial

axis can grow as the point moves along its flow line in the discrete flow. This shows that the
discrete flow closure of points near the medial axis does not escape the medial axis rapidly. One
consequence of such a geometric guarantee is that the core gets closer and closer to the medial axis
and is contained in it at the limit as ε → 0. Moreover, if the core is extended using a set that
converges to the real medial axis when ε→ 0, such as the Voronoi facets filtered by the algorithm of
Dey and Zhao, then the extended core also converges to the real medial axis in Hausdorff distance
all the while staying homotopy equivalent to it.

The structure of the paper is as follows. In Section 2 we introduce basic definitions and state
some known results. Section 3 establishes several homotopy equivalences , most importantly the
homotopy equivalence of the medial axis, the core, and the extended core. Section 4 describes how
to provide geometric guarantees for the core and flow closures. In Section 5 we present algorithms
for computing the unstable flow complex, the core, and flow closures of Voronoi faces. Concluding
remarks and experimental results are provided in Section 6.

2 Preliminaries

In this section we review some basic definitions as well as some required background material. It
is important to note that although we present all the definitions for R3, all the statements and
results of the present section as well as those in Sections 3 and 4 generalize to higher dimensional
Euclidean spaces. Only the algorithms presented in Section 5 are designed specifically for R3.

Basic Notions For a point x ∈ R3 and r > 0, we denote by B(x, r) the open ball of radius r
centered at x, i.e., B(x, r) = {y ∈ R3 : ‖x − y‖ < r}, and by B(x, r) the closure of B(x, r), i.e.,
B(x, r) = {y ∈ R3 : ‖x− y‖ ≤ r}. We also refer to B(x, r) as the r-neighborhood of x. For x ∈ R3

and any subset S ⊂ R3, we define the distance between x and S as dist(x, S) = infy∈S ‖x− y‖. By
Sc we denote the complement of S in R3.

Surface, Shape and Medial Axis We consider smooth closed connected orientable 2-manifolds
embedded in R3. We call such manifolds surfaces. Throughout, our target surfaces, from which
the sample is taken, is denoted by Σ. Any surface Σ is associated with the two open components
of its complement Σc. One of these two components is bounded and the other one unbounded.
We sometimes call the former the inner component or shape and the latter the outer component
of the surface. When referring to our target surface Σ, the inner component is denoted by S and
the outer one by S∗. The medial axis M(S) of the open set S is the set of all points in S that
have at least two closest points in Σ, i.e., M(S) = {x ∈ S : |AS(x)| > 1}, where AS(x) is the set
of closest points to x in Σ, i.e. AS(x) = {y ∈ ∂S : ‖x − y‖ = dist(x, ∂S)}. Note that since Σ is
compact, AS(x) is well-defined and non-empty for every x ∈ S. The medial axis M(Σ) of a surface
Σ is the union of the medial axes of the inner and outer components S and S∗ associated to Σ,
i.e., M(Σ) = M(S) ∪M(S∗). We also call M(S) and M(S∗) the inner and the outer, respectively,
medial axis of Σ. Thus, M(Σ) consists of all points in R3 that have at least two closest points in
Σ. In what follows, M represents the medial axis M(Σ) of our target surface Σ.

Feature Size and Surface Samples By definition, every point of M c has a unique closest
point in Σ. For any point x ∈ (Σ ∪M)c we denote by x̂ the unique closest surface point to x, i.e.,
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x̂ = argminy∈Σ‖x−y‖, and by x̌ ∈M we denote the center of the medial ball tangent to Σ at x̂ and
at the same side of Σ as x. The medial feature size is the function µ : (Σ∪M)c → R∪{∞} defined
as µ(x) = ‖x̂−x̌‖. The function f : Σ→ R, x 7→ infy∈M ‖x−y‖, which assigns to each point in Σ its
distance to the medial axis M , is called the local feature size. Note that for x ∈ (Σ∪M)c it always
holds that f(x̂) ≤ µ(x). It can also be easily seen that f is 1-Lipschitz, i.e. for every x, y ∈ Σ,
|f(x) − f(y)| ≤ ‖x − y‖. Throughout this paper, we assume that every point x ∈ Σ has non-zero
local feature size and that the infimum of the local feature size function over Σ, f0 = infx∈Σ f(x),
sometimes called the reach of Σ is bounded away from zero.

For a constant ε > 0, a finite sample P ⊂ Σ is called an ε-sample if for all x ∈ Σ, there exists a
sample point p ∈ P within distance εf(x) from x.

Distance Functions and Derived Concepts Given an open set, S we define the distance
function hS induced by S as

hS(x) : S → R, x 7→ dist(x, Sc).

If S is a shape enclosed by a surface Σ, then hS(x) = dist(x,Σ) and we can expand the domain of
the function to the entire R3 and denote it by hΣ. Distance functions have been extensively studied
in the literature (see for example [13]) and are known to carry a great deal of information about
the sets inducing them. For example, Σ itself is simply given by h−1

Σ (0) and the medial axis M of
Σ turns out to consist of all points in Σc at which hΣ is not differentiable. In the context of this
paper where our understanding of the target surface Σ is limited to a discrete ε-sample P of it,
we aim at extracting similar information from the distance function induced by P , hP . The latter
function is in a sense an approximation of hΣ.

The function hS (also hΣ and more generally any distance function) is 1-Lipschitz and therefore
continuous. However, it is not differentiable everywhere in S and in particular ∇hS is undefined
over a certain subset of S. As mentioned above, this subset is precisely the medial axis M(S) of S.
Nevertheless, a unique direction of steepest ascent for hS exists and can be determined everywhere
in S except for a set of isolated critical points of hS [13]. A vector field vS can then be characterized
everywhere in S that agrees whit this direction of steepest ascent at every non-critical (or regular)
point of hS and vanishes at critical points. Furthermore, vS agrees with ∇hS on S \M(S) where
the latter is defined. A critical point of hS is a point x ∈ S that is contained in the convex hull of
AS(x). Every other point of S is regular.

In order to characterize the vector field vS at a point x ∈ S, let dS(x) be the center of the
smallest enclosing ball of AS(x) and let rS(x) be its radius (Figure 1). We define the flow vector
at x (with respect to S) as

vS(x) =
x− dS(x)

hS(x)
.

The vector vS(x) agrees with ∇hS(x) at every point x ∈ S for which this gradient is defined
and extends the gradient of hS everywhere else by determining the direction of steepest ascent for
hS [16]. The points x for which vS(x) = 0 are exactly the critical points of hS . It can be easily
verified using Pythagoras’s theorem that

‖vS(x)‖2 = 1−
(
rS(x)

hS(x)

)2

. (1)

By showing the convergence of Euler schemes, Lieutier [16] proved that for any bounded open
set S, the flow vector field vS as described above can be integrated, to give a flow map φS :

4



x

vS
(x)

r
S (x)

dS(x)

θS(x)

hS(x)

S

Figure 1: Characterization of the steepest ascent direction for a point x ∈ S. Solid points on the
boundary of S represent AS(x).

R+ × S → S that is continuous in both variables and satisfies for all x ∈ S: (1) φS(0, x) = x and
(2) φS(s, φS(t, x)) = φS(s+ t, x) for all s, t ∈ R+.

Starting at any point x ∈ S, the flow map t 7→ φS(t, x) defines a continuous path in S, called
the orbit of x and denoted φS(x), where t varies from 0 to +∞. In other words,

φS(x) = {φS(t, x) : t ∈ [0,∞]} .

More generally, for any set T , we define the orbit of T as the union of orbits of the points in T , i.e.

φS(T ) =
⋃
x∈T

φS(x).

At any point y = φS(t, x) the flow vector vS(y) determines the direction of the flow at y.
Lieutier further proved that when S is a bounded open set then for any point x ∈ S both of the
maps t 7→ hS(φS(t, x)) and t 7→ rS(φS(t, x)) are increasing and that the former map is continuous
and satisfies the following integral equation:

hS(φS(t, x)) = hS(x) +

∫ t

0
‖vS(φS(τ, x))‖2dτ. (2)

It turns out that the critical points of hS are the fixed points of the flow map, i.e., if c is a
critical point of hS , then φS(t, c) = c for all t ∈ R+.

As motivated above, given a sample P of Σ, it is natural to try to compare the distance function
hS with the function

hP : R3 → R, x 7→ min
p∈P
‖x− p‖,

that assigns to each point its distance to the sample P of Σ. The finite set P is the boundary of
the open set P c = R3 \ P and we can define the distance function hP c and the corresponding flow
vector field φP c induced by P c as we did for S. Since hP c and hP are exactly the same function,
in a slight abuse of notation we will denote both of these distance function with hP and let

AP (x) = {y ∈ P | ‖x− y‖ = hP (x)}.
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We shall also denote the center of the smallest ball containing AP (x) as dP (x) and the associated
flow vector field as vP . Note that dP (x) is the closest point on the Delaunay face dual to the
lowest dimensional Voronoi face that contains x. Sometimes dP (x) is referred to as the driver of
x. Technically speaking, since P c is unbounded, hP has a critical point (a maximum) at infinity.
All other critical points of hP can be characterized as the intersection points of Delaunay faces
with their dual Voronoi faces [12]. Indeed if VP (x) denotes the lowest dimensional Voronoi face in
Vor(P ), the Voronoi complex defined by P , that contains x and DP (x) denotes its dual in Del(P ),
the Delaunay complex of the same point set, then convAP (x) = DP (x) and since the affine hulls
of DP (x) and VP (x) are always orthogonal and therefore intersect in exactly one point, for every
critical point c of hP , we get {c} = DP (c) ∩ VP (c).

Notice that in in the above interpretation of the vector field vP , we assume that the the Delaunay
face DP (x) and the Voronoi face VP (x) both contain their relative boundaries and are therefore
closed cells. Delaunay cells are indeed compact since they are always bounded. Following [12] we
make the genericity assumption that if a Voronoi face and its dual intersect, they do so in their
relative interiors. In other words, if VP (x) ∩DP (x) = {c}, then c belongs to the relative boundary
of neither VP (x) nor DP (x). This is indeed a sensible assumption [11] since point-sets P for which
this assumption is violated are a measure zero subset of all finite point-sets. In other words, any
small perturbation of any point set results a point-set that is generic in the above sense.

It is also helpful to reexamine the definition of the driver of a point for the distance function
hP . As shown by Giesen and John [12], the driver of a point x is the closest point of DP (x)
to x. The orthogonality of affine hulls of VP (x) and DP (x) entails that if VP (x) = VP (y), then
dP (x) = dP (y). In particular, all the points in the relative interior of every Voronoi face have the
same driver. Consequently, if for a Voronoi face V , the driver of the points in the relative interior
of V lies in the affine hull of V , the the restriction of the flow lines of φP to V are lines segments
(or half lines) whose extensions concur at the common driver of the points in V . If on the other
hand, the driver is not included in the affine hull of V , then the flow through V moves transversally
to a coface V ′ of V . It was shown in [15] that the driver of the points of the relative interior of
V ′ in this case coincide with the driver of those of V . As a result, the flow orbit φP (x) of every
point x is a piece-wise linear curve (a polyline) that turns only when it enters the relative interior
of new Voronoi face through a proper coface of that face. An important consequence of the map
t 7→ rP (φP (t, x)) being non-decreasing in this case is that no flow line of φP reaches the same
Voronoi faces twice. In other words, any flow line can turn at most as many times as there are
Voronoi faces in Vor(P ).

If the shape S is bounded, then the flow orbit φS(t, x) stays inside S. In general, the orbit of a
point may converges to a critical (fixed) point hS , or to a cycle, as t→ +∞. Notice that we include
the critical point or the cycle in the flow orbit of x. For a critical point c of the flow φS , the set
of all points x whose flow orbits converges to c is called the stable manifold of c and is denoted by
Sm(c). In other words,

Sm(c) = {x | φS(+∞, x) = c} .
Although there is no flow out of a critical point c of hS , it is interesting to know where the points
very close to c flow. We define the unstable manifold Um(c) of a critical point c, as the set of all
points into which points arbitrarily close to c flow. Formally,

Um(c) =
⋂
ε>0

⋃
y∈B(c,ε)

φS(y).

In the special case of hP , flow orbits are piece-wise linear and cannot enter the same face of
Vor(P ) twice. Consequently, flow orbits either reach critical points or go to infinity. In other words,
the union of stable manifolds of critical points cover the space.
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Figure 2: Left: critical points of a sampled curve in R2. Sample points are index-0 critical points.
Index-1 critical points are shown by hollow dots. Surface critical points (other than the sample
points) are shown in blue and medial axis critical points in red. Right: the core, i.e. union of
unstable manifolds of medial axis critical points, is shown in blue.

Separation of Critical Points Dey, et al. [9] observed that if P is an ε-sample of the smooth
boundary Σ of a shape S, then the critical points of the distance function hP cannot reside every-
where in S. Rather they have to be either very close to Σ or very close to M (Figure 2).

Theorem 2.1 [9] Let P be an ε-sample of a smooth surface Σ. Then for every critical point c of
hP , either ‖c− ĉ‖ ≤ ε2f(ĉ), or ‖c− č‖ ≤ 2εµ(c).

Thus the critical points of hP can be classified based on whether they are close to Σ or close
to M . We refer to the first class of critical points as surface critical points and to the second class
as medial axis critical points. We further subdivide the medial axis critical points hP into two
subgroups: inner medial axis critical points are those that are close to M(S) and outer medial axis
critical points are those close to M(S∗).

Core The union of the unstable manifolds of the inner medial axis critical points of hP will play
an important role in our paper. We refer to this union as the inner core determined by the sample
P or simply core when the determining sample P is clear from the context (Figure 2). We will
show that for a sufficiently dense sample P of Σ the core is homotopy equivalent to the medial axis
M(S) of the inner shape S.

Unstable Flow Complex We can define a cell complex decomposition of space by grouping
together, as cells, the points of the space that are contained in the unstable manifolds of the same
set of critical points. We define a relation ∼ on the pairs of points in R3: x ∼ y if and only if x
is contained in the unstable manifolds of the same set of critical points as y. Obviously ∼ is an
equivalence relation. The unstable flow complex induced by a point set P , denoted U(P ), or just U
when P is understood, is the cell complex whose cells are connected components of the subdivision
of space into equivalence classes of the ∼ relation. In Section 5 we study the structure of this
complex more closely.

3 Homotopy Equivalences

As in the previous section, we always assume that Σ is a connected smooth surface with associated
inner and outer components S and S∗. Furthermore, we assume that P is ε-sampling of Σ. Let C

be the core as defined in Section 2, i.e., C is the union of unstable manifolds of the inner medial
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axis critical points of the distance function hP . Here we want to show that C and the medial axis
M(S) of S are homotopy equivalent.

Following Lieutier [16] the following criterion is used throughout this paper to prove homo-
topy equivalence between topological spaces. For the standard definition of homotopy equivalence
see [14].

Proposition 3.1 Let X and Y ⊆ X be arbitrary sets and let H : [0, 1]×X → X be a continuous
function on both variables satisfying the following three conditions.

1. ∀x ∈ X, H(0, x) = x,

2. ∀x ∈ X, H(1, x) ∈ Y , and

3. ∀y ∈ Y, ∀t ∈ [0, 1], H(y, t) ∈ Y .

Then X and Y have the same homotopy type.

Intuitively, we may interpret the first argument of the map H as time. Using a simple re-
parameterization in the first argument, we can replace the interval [0, 1] with any interval [0, T ]
where T > 0 is a real number. It is important that the time interval considered has finite length.
The above criterion for homotopy equivalence between X and Y continuously maps points in X to
those in Y during the time interval [0, T ]. At time 0, all points in X are mapped to themselves and
at time T , they have all arrived in Y . Notice, the important property that the points in Y stay in
Y all the time.

In the following we want to plug in φS and φP (the flow resulted from integrating vP after
circumventing the technical difficulty of unboundedness of P c) for the map H mentioned above.
When distance flow maps are used for H, the first condition of Proposition 3.1 is automatically
satisfied since φS(0, x) = x for all x (the same holds for φP ). Satisfying the second condition when
using flows corresponds to proving that every point in X flows into Y in finite time. Finally, the
third condition of Proposition 3.1 requires the set Y to be flow-tight under the applied flow map,
meaning that no point of Y flows out of it and therefore φS(Y ) = Y .

Crucial to our homotopy equivalence proofs is the concept of reduced shapes.

3.1 Reduced Shapes

Reduced Shapes Let S be a shape whose boundary is a smooth 2-manifold Σ and let 0 < δ < 1.
The δ-tubular neighborhood Σδ of Σ (See Figure 3) is the set

Σδ = Σ ∪ {x ∈ R3 \ (Σ ∪M) : ‖x− x̂‖ < δf(x̂)}.

and the δ-reduced shape Sδ is defined as Sδ = S \ Σδ. Notice that the definition of Σδ, puts the
medial axis M(S) of S into Sδ. The following lemma shows that every point of M(S) is in fact an
interior point of Sδ.

Lemma 3.2 For every 0 < δ < 1, every point of M(S) is an interior point of Sδ.

Proof. Take x ∈ M(S) and let B = B(x, ω) where ω = 1−δ
1+2δhS(x) > 0. We will show that B ⊂ Sδ

implying that x is an interior point of Sδ. Take any point y ∈ B. If y ∈ M(S), then y ∈ Sδ by
definition. Thus assume that y 6∈ M(S) and therefore has a unique closest point ŷ in Σ. Notice
that since B′ = B(x, hS(x)) ⊂ S but ∂B′ intersects Σ, we get

hS(x)− ω ≤ hS(y) ≤ hS(x) + ω. (3)
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Figure 3: Left: surface Σ and the associated bounded and unbounded shapes S and S∗. Right:
the δ-tubular neighborhood Σδ (grayed) and the reduced shapes Sδ and S∗δ .

Moreover, since x ∈M(S), we get

f(ŷ) ≤ hS(y) + ‖x− y‖ ≤ hS(y) + ω ≤ 2ω + hS(x). (4)

Combining Equations (3) and (4) and using the definition of ω we obtain

hS(y) ≥ hS(x)− ω = δhS(x) + 2δω ≥ δf(ŷ).

�
Note, that the previous lemma also implies that every boundary point of Sδ has a unique closest

point in Σ. The following lemma gives a complete characterization of the boundary points of Sδ.

Lemma 3.3 The boundary of Sδ consists of exactly those points x ∈ S\M(S) satisfying ‖x− x̂‖ =
δf(x̂).

Proof. Lemma 3.2 shows that no point of M(S) can be a boundary point for Sδ. For every other
point x ∈ S, there is a unique x̂ ∈ Σ. Consider the segment x̂x̌. For every point in this segment
the closest point in Σ is the same, i.e., x̂. Thus, all points in the relative interior of the segment
x̂x lie in Σδ and all points of the relative interior of xx̌ lie in Sδ. This implies that x is a boundary
point for Sδ.

We now show that Sδ has no other boundary points. First we show that no point x ∈ Sδ \M(S)
with hS(x) = λf(x̂) where λ > δ can be a boundary point of Sδ. Let B = B(x̌, µf(x̂)) be the
medial ball tangent to Σ at x̂ at the same side of Σ as x.

To this end, we show that the open ball centered at x and with radius

ω =
(µ− λ)(λ− δ)
µ− λ+ 2µδ

f(x̂) > 0

is entirely contained in Sδ. By definition B ⊂ S. Let y be a point at distance less than ω from x. The
angle α = ∠(x−x̌, y−x̌) grows when y moves away from x in the direction of y−x. When ‖x−y‖ is
fixed, α is maximized when ∠(x̌−y, x−y) = π/2 in which case sinα = ω/((µ−λ)f(x̂)). The point ŷ
can be at most as far away from y as x̂ is. Therefore, ŷ lies in the ball B′ = B(y, ‖x̂−y‖). Since B is
an empty ball, this implies that the distance between ŷ and x̂ is at most 2µf(x̂) sinα = 2µω/(µ−λ)
and from that we get

f(ŷ) ≤ f(x̂) + ‖x̂− ŷ‖ ≤ f(x̂) +
2µω

µ− λ
.
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On the other hand,

hS(y) ≥ hS(x)− ω = λf(x̂)− ω ≥ δ
(
f(x̂) +

2µω

µ− δ

)
≥ δf(ŷ).

Since y was taken arbitrarily from B(x, ω), it follows that B(x, ω) ⊂ Sδ, meaning x is an interior
point of Sδ.

Finally we show that no point of Σδ can be a boundary point of Sδ. Let x ∈ Σδ be a point
for which hS(x) = λf(x̂) where λ < δ. Let µ be as above. Consider the open ball of radius

ω = (δ−λ)(µ−λ)
µ−λ+2µδ f(x̂) > 0 and let y be a point in this ball. Similar to the previous case, we can show

that ‖ŷ − x̂‖ ≤ 2µω/(µ− λ) and therefore

f(ŷ) ≥ f(x̂)− 2µω

µ− λ
.

On the other hand hS(y) < hS(x) + ω. Combining these we get

hS(y) < hS(x) + ω = λf(x̂) + ω ≤ δ
(
f(x̂)− 2ω

µ− λ

)
< δf(ŷ).

�

3.2 Homotopy Proofs

Our proof that the core C and the medial axis M(S) of S are homotopy equivalent consists of the
following two steps.

(1) S and Sδ are homotopy equivalent for 0 < δ < 1.

(2) S2ε2 and C are homotopy equivalent for ε < 0.14.

The equivalences (1) and (2) together with the homotopy equivalence of S and M(S) [16] establish
the homotopy equivalence of M(S) and C.

As we mentioned earlier an essential part of each of the homotopy equivalence proofs consists
of showing, in correspondence to the second condition of Proposition 3.1, that a considered object
is flow-tight under some flow. Trivially, every open set S is flow-tight with respect to the flow φS
it induces. The medial axis M(S) of an open set S is also flow-tight under φS . This is because
M(S) precisely consists of the points x ∈ S for which |AS(x)| > 1 and consequently rS(x) > 0.
This observation, along with a result of Lieutier [16] that states that the map t 7→ rS(φS(t, x)) is
increasing for every x ∈ S, implies that the flow orbit of every point x ∈M(S) stays inside M(S).

Proposition 3.4 The medial axis M(S) of any open set S is flow-tight under the flow φS .

The following lemma, due to Lieutier [16], shows that every point x ∈ S arrives in M(S) under
φS in finite time. We reproduce the proof of the Lemma for the sake of completeness and because
it is a good example for demonstrating the technique we employ in homotopy equivalence proofs
in the sequel.

Lemma 3.5 [16] Let ∆ be an upper bound for the diameter of an open set S. Then for every
x ∈ S, we have φS(∆, x) ∈M(S).
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Proof. By Proposition 3.4, if φS(∆, x) 6∈ M(S), it must be that φS(t, x) 6∈ M(S) for all t ∈ [0,∆].
Since for every point x outside the medial axis rS(x) = 0 and therefore by Eq. (1) ‖vS(x)‖ = 1, if
φS(∆, x) 6∈M(S) by Eq. (2) we get

hS(φS(∆, x)) = hS(x) +

∫ ∆

0
‖vS(φS(τ, x))‖2dτ

≥ hS(x) +

∫ ∆

0
dτ = hS(x) + ∆.

However, hS(x) < ∆ for every point x ∈ S, a contradiction. �
The above lemma together with Proposition 3.4 and the fact that φS(0, x) = x for all x ∈ S

shows that φS fulfills the three conditions of Proposition 3.1 and therefore implies the following
result of Lieutier [16].

Corollary 3.6 [16] Every bounded open subset S of R3 is homotopy equivalent to its medial axis
M(S).

Next we show that the reduced shapes Sδ for 0 < δ < 1 are also flow-tight under the flow φS .
By Proposition 3.1 this implies that S and Sδ are homotopy equivalent for 0 < δ < 1.

Lemma 3.7 For any 0 < δ < 1, the reduced shape Sδ is flow-tight under the flow φS .

Proof. By Lemma 3.3, the boundary points of Sδ are exactly those x satisfying hS(x) = δf(x̂). The
flow vector vS(x) for any such point is exactly (x− x̂)/h(x) which is a unit vector in the direction
of normal to Σ at x̂. In fact, the flow direction remains constant on the relative interior of the
segment x̂x̌. For every such point y, ŷ = x̂ and therefore f(ŷ) = f(x̂) remains the same while the
distance to x̂ grows larger than δf(x̂) as soon as the flow passes through x. Thus, the flow direction
at every boundary point of Sδ points toward the interior of Sδ. �

Corollary 3.8 For any 0 < δ < 1, any bounded open set S is homotopy equivalent to its δ-reduced
shape Sδ.

To complete the proof of homotopy equivalence between S and C we now integrate the vector
field vP (induced by the sample P ) to get a flow map φP and show that the reduced shape Sδ
is also flow-tight under the flow φP for some range of suitable values of δ. However, in doing so,
we face a technical difficulty. The results of Lieutier [16] on existence and continuity of the flow
map only apply when the set of points that induces the map is bounded and open. Although P c is
open, it is not bounded. A standard technique lets us bypass this problem. Let B0 = B(c,∆/2)
be an open ball of center c and diameter ∆ such that S ⊂ B0 and thus ∆ is an upper bound for
diameter of S and let B1 = 3B0 = B(c, 3∆/2) be the result of scaling B0 three times around its
center. Finally let Q be the open set obtained by removing the sample points in P from B1, i.e.,
Q = B1 \ P . Notice that ∂Q = P ∪ ∂B1. For any point x in S, the closest boundary point of Q to
x is a point of P . This is because every boundary point of B1 is at distance strictly greater than
∆ or more from x while there is always a point of P within distance strictly less than ∆ from x.
This in particular means that the flow induced by Q in S, entirely depends on the arrangement of
the points in P only and is completely irrelevant to the boundary of B1. In other words, the flow
lines of the flow φQ agree with those of the discrete flow φP inside S as described by [12]. As such,
in the sequel we shall use the notation φP to denote the continuous flow induced by the open set
Q inside B0. In order to prove an analogue of Lemma 3.7 for the flow φP , we first prove following
two auxiliary lemmas. The proofs of these lemmas are primarily based on the Lipschitzness of the
local feature size function.

11



x

c

x̂

y
z

w
B

B′

αβ

θ

Figure 4: Proof of Lemma 3.9.

Lemma 3.9 Let x be a point on the boundary of Sδ. Any vector v at x that makes an angle α
less than

arctan

(
1− δ

2δ

)
with the vector x̌− x points into Sδ.

Proof. Let c be the point on the line segment x̂x̌ at distance f(x̂) from x̂. Without loss of generality
we assume that v = y − x, where y ∈ S is chosen close enough to x such that the inner angle θ of
the triangle xcy at c is less than π/2−α. Note that by definition α is the inner angle of the triangle
xcy at x, see Figure 4. Let B = B(c, f(x̂)) and let B′ = B(y, ‖x̂ − y‖). B does not contain any
point from Σ and ŷ ∈ B′. Therefore ŷ ∈ B′ \ B and ‖x̂− ŷ‖ ≤ 2f(x̂) sin θ, which in turn together
with the fact that f is 1-Lipschitz implies that

f(ŷ) ≤ f(x̂)(1 + 2 sin θ).

Let w be the intersection point of the boundary of B with the ray through y − c and let z be the
projection of x on this ray. By construction z ∈ B. Our assumption on θ implies that on the ray
through c− y the point y comes before the point z as seen from c. Putting everything together we
get

‖y − ŷ‖ ≥ ‖y − w‖
= ‖y − z‖+ ‖z − w‖
> ‖y − z‖+ ‖x− x̂‖
= ‖y − z‖+ δf(x̂)

= ‖x− z‖ cot(α+ θ) + δf(x̂)

= (1− δ)f(x̂) sin θ cot(α+ θ) + δf(x̂).

Thus,

‖y − ŷ‖
f(ŷ)

>
(1− δ)f(x̂) sin θ cot(α+ θ) + δf(x̂)

f(x̂)(1 + 2 sin θ)

=
(1− δ) sin θ cot(α+ θ) + δ

1 + 2 sin θ
.

12



x̂

α

x

u

θ

c

w

Figure 5: Proof of Lemma 3.10.

In order for y to be in Sδ we want this fraction to be larger than δ. This amounts to cot(α+ θ) >
2δ/(1 − δ) or equivalently tan(α + θ) < (1 − δ)/2δ. Since we assumed tanα < (1 − δ)/2δ we can
find by the continuity of the tangent function θ0 > 0 such that tan(α + θ) < (1 − δ)/(2δ) for all
0 < θ < θ0. This implies the existence of λ0 > 0 such that

(1− λ)x+ λy = x+ λ(y − x) = x+ λv ∈ Sδ

for all 0 ≤ λ < λ0, i.e., the vector v points into Sδ at x. �

Lemma 3.10 Let x be a point on the boundary of Sδ. The angle α that vP (x) makes with x̌− x
is bounded by

arccos

(
2δ(1− ε− δ)− ε2

2(1− δ)(δ + ε)

)
,

provided that the argument of the arccos is between 0 and 1.

Proof. Let c be the point on the line segment x̂x̌ at distance f(x̂) from x̂. Let B = B(c, f(x̂)) and
let B′ = B(x, (δ + ε)f(x̂)). The driver dP (x) of x has to be contained in the convex hull of B′ \B.
Let w be a point in the intersection of ∂B and ∂B′. Consider the triangle cxw, see Figure 5. The
inner angle of this triangle at x is at least π − α. From the cosine theorem we get

cos(π − α) ≤ (1− δ)2f(x̂)2 + (δ + ε)2f(x̂)2 − f(x̂)2

2(1− δ)(δ + ε)f(x̂)2

=
2δ(δ + ε− 1) + ε2

2(1− δ)(δ + ε)
.

It follows

cosα ≥ 2δ(1− δ − ε)− ε2

2(1− δ)(δ + ε)
,

which implies the statement of the lemma. �
Now we are ready to prove the analogue of Lemma 3.7 for the flow φP .

Lemma 3.11 The δ-reduced shape Sδ is flow-tight under the flow φP , respectively, for any ε2 ≤
δ ≤ 10ε2 if ε ≤ 0.14.

13



Proof. Using Lemmas 3.9 and 3.10 if parameters ε and δ are chosen in a way that

arccos

(
2δ(1− ε− δ)− ε2

2(1− δ)(δ + ε)

)
≤ arctan

(
1− δ

2δ

)
,

then at any point x on the boundary of Sδ, the vector vP (x) points into Sδ. It can be verified that
for ε ≤ 0.14, the above inequality is satisfied when δ falls in the interval [ε2, 10ε2]. �

Lemma 3.11 now allows us to prove that the core C and Sδ are homotopy equivalent. To do so
we need the following corollary and lemma.

Corollary 3.12 For any ε2 ≤ δ < 10ε2 and ε ≤ 0.14, every point of the reduced shape Sδ flows
under φP into an inner medial axis critical point of hP .

Proof. By Lemma 3.11 every point of Sε2 stays inside Sε2 under φP while all surface critical points
of hP are in Σε2 by Theorem 2.1. Since P is a finite point set and therefore all flow orbits converge
to critical points, the flow orbit φP (x) of every point x ∈ Sδ ⊆ Sε2 has to end at a critical point
contained in Sε2 , i.e. an inner medial axis critical point. �

Lemma 3.13 If ε ≤ 0.14 and ε2 ≤ δ ≤ 10ε2 then C ⊂ Sδ.

Proof. By Theorem 2.1, the inner medial axis critical points of hP are contained in S1−2ε2 ⊂ Sδ.
In fact, 1− 2ε2 > 10ε2 implies that for every inner medial axis critical point c, some neighborhood
of c is contained in Sδ in addition to c. Every point of x ∈ C is on the flow orbit φP (y) of a point y
infinitesimally close to some inner medial axis critical point c and is therefore in Sδ. On the other
hand, by Lemma 3.11, Sδ is flow-tight for our choices ε and δ. Thus x being on the orbit of a point
y ∈ Sδ has to be in Sδ as well. �

Lemma 3.14 For ε ≤ 0.14, if P is an ε-sample of Σ, then there is a constant T such that φP (T, x) ∈
C for all x ∈ S2ε2 .

Proof. Let ζ > 0 be the minimum distance between a Delaunay face D in the Delaunay complex
Del(P ) of P and its dual Voronoi face V that do not intersect. Consider the reduced set Sδ for
δ = 2ε2. By Corollary 3.12, Sδ is flow-tight under the flow φP . Therefore, every flow line of φP
in Sδ ends in some inner medial axis critical point of hP in the limit. Consider now any point
x ∈ Sδ \C and let V (x) be the cell in the Voronoi complex Vor(P ) that contains x and let D(x) be
its dual Delaunay cell in the Delaunay complex Del(P ). There are two cases to consider depending
on whether V (x) and D(x) intersect.
Case 1. V (x) ∩D(x) = ∅. In this case, the distance ‖x− dP (x)‖ ≥ ζ and since hP (x) ≤ ∆, we get

‖vP (x)‖ = ‖x− dP (x)‖/hP (x) ≥ ζ/∆.

Case 2. V (x) ∩ D(x) = {c}, where c is a critical point of hP . It can be easily observed that if c
is a medial axis critical point, then V (x) is entirely contained in the unstable manifold Um(c) of c
and this implies that x ∈ C, contradicting our choice of x. Therefore, c must be a surface critical
point and therefore c ∈ Σε2 while x ∈ S2ε2 . With a similar argument to the one used in Lemma

3.3, if we use δ = 2ε2 and λ = ε2, the open ball with center c and radius (δ−λ)(1−λ)
1−λ+2δ f(ĉ) is entirely

contained in Σ2ε2 and therefore ‖x− c‖ ≥ ξ := (1−ε2)ε2

1+3ε2
f0. Thus we get

‖vP (x)‖ = ‖x− c‖/hP (x) ≥ ξ/∆.
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Thus for every point x ∈ Sδ \ C, ‖vP (x)‖ ≥ ϑ where ϑ := min{ξ/∆, ζ/∆}. If φP (t, x) 6∈ C for
all t ∈ [0,∆/ϑ2] we get from Eq. (2)

hP (φP (∆/ϑ2, x)) = hP (x) +

∫ ∆
ϑ2

0
‖vP (φP (τ, x))‖2dτ

≥ hP (x) +

∫ ∆
ϑ2

0
ϑ2dτ = hP (x) + ∆.

This contradicts the fact that ∆ is an upper bound for the diameter of S. Thus if we set T = ∆/ϑ2,
then φP (T, x) ∈ C for all x ∈ Sδ \ C. �

Corollary 3.15 For ε ≤ 0.14, if P is an ε-sample of Σ, then C is homotopy equivalent to S2ε2 .

Proof. By definition, C is flow-tight under the flow φP . This along with the result of Lemma 3.13
and Lemma 3.14 shows that φP satisfies the conditions of Proposition 3.1, implying that C and
S2ε2 are homotopy equivalent. �

Combining the result of the above corollary with that of Corollary 3.8 gives us the theorem we
set out to prove.

Theorem 3.16 The shape S, its medial axis M(S), and the core C consisting of the the union of
unstable manifolds of inner medial axis critical points of hP , are homotopy equivalent.

3.3 Extending the Core

As mentioned in the Introduction section, an interesting property of the core is its flexibility when
being used with other medial axis approximation algorithms. The following theorem clarifies this
statement.

Theorem 3.17 Let W ⊂ S2ε2 be any set of points and let Ŵ = φP (W ) = {x | ∃w ∈ W : x ∈
φP (w)}. Then C ∪ Ŵ is homotopy equivalent to S.

Proof. By Lemma 3.14 all points in S2ε2 including those in Ŵ flow into C in finite time. On the
other hand, by definition C ∪ Ŵ is flow-tight for φP . These are all the requirements needed to
invoke Proposition 3.4 to establish the desired homotopy equivalence between C∪ Ŵ and S2ε2 . By
Corollary 3.8, the latter is itself homotopy equivalent to S. �

Computing the flow closure of all the points in W can be computationally difficult, depending
on the nature of W . However, If W is a sub-complex of the Voronoi complex Vor(P ) (this is for
example the case in the algorithm of Dey and Zhao [10]), computing the flow closure of all the
points in W can be done in bulk by computing the flow closures of a whole face at a time. An
algorithm for computing the flow closure of a Voronoi face can be found in Section 5. Note that
this algorithm can also be used for computing the core since the unstable manifold of a critical
point is the flow closure of the Voronoi face that contains it.

4 Geometric Approximation

Although Theorem 2.1 ensures that the medial axis critical points lie very close to the medial axis,
it provides no guarantee for the closeness of medial axis and the paths connecting medial axis
critical points on their unstable manifolds. The same concern is valid when we extend the core
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Figure 6: Extending the Core. Left: The core, i.e. the union of unstable manifolds of medial
axis critical points of the sampled curve is shown in bold in the middle. The three isolated short
segments also shown in bold represent geometrically intersesting parts of the medial axis of shape
enclosed by the curve. Right: The flow closure of the three segments are added to the core to result
a topologically valid approximation of the medial axis.

with a set of points close the medial axis: to guarantee the topology one must include the flow
closures of added points but it is not clear that this closure stays close to the medial axis as well.

For a point x in the core C or any other approximation of the medial axis, the relative approx-
imation error at x can be considered to be the ratio between the distance from x to M(S) and
hP (x). One would like to have that the distance to M(S) along a flow line would grow at most
linearly with hP (x) as this would correspond to maintaining a constant relative error all along the
path. However, proving this, if it is true at all, appears elusive. Nevertheless, in this section we
show that if we start from a point x close to the medial axis and follow the flow line φP (x), the
distance to M(S) along this path grows as a function of hP at a rate slightly super-linear at worst.
More precisely we will show that if we scale the space so that hP (x) has unit length, then if x has
a medial axis point within distance O(

√
ε), every point y in the flow line starting at x will have

a medial axis point within distance O(
√
ε)hP (y)1+O(

√
ε). This is achieved through a sequence of

observations stated through the following lemmas.

Lemma 4.1 For every point x ∈ S and for every p ∈ AP (x), ‖x − p‖2 ≤ hS(x)2 + ε2f(x̂)2 +
ε2hS(x)f(x̂).

Proof. Let B = B(x̂, εf(x̂)). By the ε-sampling condition, the closest sample point to x̂ is at
distance no more than εf(x̂) from x̂. In other words, B must contain at least one point from P .

Let Bi and Bo be two ball of radius f(x̂) tangent to Σ at x̂, with Bi contained in S and Bo
outside of it. Also, let xi and xo be the centers of Bi and Bo, respectively. Since Bi and Bo cannot
contain any sample points, the closest sample point to x̂ must lie in the region S = B \ (Bi ∪Bo).
It is easy to see that the points in S that are farthest from x are those in ∂B ∩ ∂Bo. Let y be one
such point. ‖x − y‖ is therefore an upper bound for hP (x). Consider the plane Π containing x, x̂
and y, and consequently x̌ and xo, see Figure 7. The intersection of B, Bi and Bo with Π are circles
to which we shall refer in Figure 7 with the names of the corresponding balls. Let z and z′ be the
points where the bisector of ∠x̂xoy meets the segment x̂y and the bisector of xixo, respectively.

The two triangles xox̂z
′ and zx̂z′ are similar and therefore α = ∠zxox̂ = ∠zx̂z′. Furthermore,

since ‖x̂− y‖ = εf(x̂), sinα = ε/2. We have for the distance of x and y:
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Figure 7: proof of Lemma 4.1

‖x− y‖2 = ‖x− x̂‖2 + ‖x̂− y‖2 − 2‖x− x̂‖ · ‖x̂− y‖ cos (π/2 + α)

= hS(x)2 + ε2f(x̂)2 + 2εhS(x)f(x̂) sinα

= hS(x)2 + ε2f(x̂)2 + ε2hS(x)f(x̂).

�
The driving angle of a point x with respect to the sample P is defined as θP (x) := ∠(−vP (x), y−

x) for any y ∈ AP (x). A critical point has driving angle equal to π/2 while points not on the 2-
skeleton of Vor(P ) have driving angles equal to 0. It is not hard to verify that cos θP (x) = ‖vP (x)‖.

The following lemma generalizes Theorem 2.1 although for simplicity it provides a weaker bound
for points near the surface. The proof is rather similar to the one given in [9].

Lemma 4.2 Let x be a point with driving angle 0 < θ ≤ π/2. Then, x is within distance
2ε

1−cos θµ(x) from one of x̂ or x̌.

Proof. Let λ = ‖x−x̌‖/µ(x) The ball B = B(x̌, µ(x)) contains no sample points. On the other hand,
there is a sample point within distance εµ(x) from x̂. By triangle inequality, this implies that there
is a sample point within distance (1−λ+ε)µ(x) from x. Consider the ball B′ = B(x, (1−λ+ε)µ(x)).
All sample points in AP (x) are contained in B′ \B. This implies that the angle ∠(−v(x), y− x) is
at least θ for any y ∈ ∂B′ ∩ ∂B. Thus using the cosine rule on the triangle x̌xy for any such y, we
get the following inequality.

µ(x)2 ≤ λ2µ(x)2 + (1− λ+ ε)2µ(x)2 + 2λµ(x)(1− λ+ ε)µ(x) cos θ,

or equivalently
2(1− cos θ)λ2 − 2(1 + ε)(1− cos θ)λ+ ε(2 + ε) ≥ 0.
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Solving this inequality for λ we conclude that either,

λ ≤ 1 + ε

2

(
1−

√
1− 2ε(2 + ε)

(1− cos θ)(1 + ε)2

)

≤ 1 + ε

2
· 2ε(2 + ε)

(1− cos θ)(1 + ε)2

≤ 2ε

1− cos θ
,

or

λ ≥ 1 + ε

2

(
1 +

√
1− 2ε(2 + ε)

(1− cos θ)(1 + ε)2

)

≥ 1 + ε

2

(
2− 2ε(2 + ε)

(1− cos θ)(1 + ε)2

)
≥ 1 + ε− ε(2 + ε)

(1− cos θ)(1 + ε)

≥ 1− 2ε

1− cos θ
,

�
Remark. A slicker analysis as the one used in the proof of the separation of critical points in

[9] can result tighter bounds for λ.
Recall that the driver dP (x) is the same for all points x of the relative interior of the same Voronoi

face in Vor(P ). In fact the flow orbit φP (t, x) turns exactly when the flow moves from one Voronoi
face to another. Consider a point x ∈ S that lies on the 2-skeleton of Vor(P ), i.e., |AP (x)| ≥ 2, and
consider a line segment L in the flow orbit φP (t, x). The distance hP (x) monotonically increases
along a flow orbit. We can therefore parametrize this line segment using the distance to the sample
set P . Let g : R+ → R+ be a non-decreasing real valued differentiable function and consider for
each point y ∈ L, the ball Bg(y) = B(y, g(hP (y))). We define the set D(y) as those points on
the boundary of Bg(y) that are left outside Bg(y) when y moves infinitesimally in the direction of
φP (t, y). In other words if we take η > 0 such that φP (η, y) has the same driver as dP (y) (meaning
that φP (η, y) is on the same line segment of φP (t, x) as y), then

D(y) =
⋂

0<λ<η

(
∂Bg(y) \Bg(φP (λ, y))

)
.

Lemma 4.3 D(x) consists of those points y ∈ ∂Bg(x) that satisfy ∠(y−x, dP (x)−x) ≤ ψ0 where
cosψ0 = dg/dhP at x.

Proof. Let x′ = φP (t, x) be a point on L, satisfying ‖x − x′‖ = τ where τ is infinitesimally small.
By definition, AP (x′) = AP (x). Let y be any point at distance g(hP (x)) from x making an angle
of ψ with dP (x)− x. We have for the distance of y to x′:

‖y − x′‖2 = ‖y − x‖2 + τ2 + 2τ‖x− y‖ cosψ

= g(hP (x))2 + τ2 + 2τg(hP (x)) cosψ.

For y not to be contained in Bg(x
′) it must hold that ‖y − x′‖ > g(hP (x′)), or equivalently:

g(hP (x))2 + τ2 + 2τg(hP (x)) cosψ > g(hP (x′))2.
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By rearranging we get

τ + 2g(hP (x)) cosψ >
g(hP (x) + τ)2 − g(hP (x))2

τ
.

In the limit τ → 0 we get

lim
τ→0

τ + 2g(hP (x)) cosψ ≥ lim
τ→0

g(hP (x) + τ)2 − g(hP (x))2

τ
,

which gives

2g(hP (x)) cosψ ≥ d

dhP
(g(hP (x)))2

= 2g(hP (x))
d

dhP
g(hP (x)).

Thus cosψ ≥ cosψ0 or ψ ≤ ψ0. �

Lemma 4.4 Let B = B(x,R) be a ball empty of sample points with at least one sample point on
its boundary and containing at least one medial axis point. Then the ball B(x, (1 − 4ε2)R) does
not intersect Σ.

Proof. Let z be a point in B ∩ Σ. Since B intersects the medial axis, f(z) ≤ 2R. Thus there is
a sample point within distance εf(z) ≤ 2εR from z. Since B contains no sample points, z must
be within distance 2εR from ∂B. We grow a ball B′ centered at x until its boundary touches Σ.
Let R′ be the radius of B′. By the above argument R′ ≥ (1− 2ε)R. Let y be a point in which B′

touches Σ. Similar to the case of z above, f(y) ≤ 2R. Let Bo be the tangent ball of radius f(y) at
the opposite side of Σ with respect to x. With an argument similar to that of Lemma 4.1 we get
for hS(x) = ‖x− y‖,

R2 ≤ hS(x)2 + ε2f(y)2 + ε2hS(x)f(y).

Using f(y) ≤ 2R we get
R2 ≤ hS(x)2 + 4ε2R2 + 2ε2RhS(x),

which by rearranging gives the following quadratic inequality for hS(x):

hS(x)2 + 2ε2RhS(x)− (1− 4ε2)R2 ≥ 0.

Since hS(x) ≥ (1− 2ε)R, the only valid range for hS(x) in the above inequality is

hS(x) ≥ ε2R2 +
√
ε4R2 + (1− 4ε2)R2 ≥ (1− 4ε2)R.

�

Theorem 4.5 Let x0 ∈ S be a point with |AP (x0)| ≥ 2 and hP (x0) = h0, and let x1 = φP (t1, x0)
be such that for all 0 ≤ t ≤ t1, cos(θP (φP (t, x0))) ≥ c. If there is a medial axis point within distance
g0 from x0, then there is a medial axis point within distance g(x1) = g0(hP (x1)/hP (x0))ξ from x1,
provided that ξ ≥ 1

c (1 + 4ε2h2
0/g

2
0) and

hP (x1) ≤ h0 ·
(

(1− 4ε2) · h0

g0

) 1
ξ−1

.
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Proof. We prove the theorem by showing that as x moves along the flow line, there always remains
a medial axis point within distance g0(hP (x)/hP (x0))ξ from x. We do this by showing that this
proposition is maintained when x moves infinitesimally along the flow line. To this end, we first
recall that the ball Bg(x) is an open ball by definition. If Bg(x) contains a medial axis point z,
then for any direction vector v, there is a small enough real number τ > 0, such that the translated
ball Bg(x) + τv = {y + τv | y ∈ Bg(x)} contains z as well. Since g is increasing, this implies that
z ∈ Bg(x + τv). In particular this implies by choosing v = vP (x) that if Bg(x) contains a medial
axis point, so does Bg(x+ τvP (x)) for τ sufficiently small.

We thus only need to consider the case where Bg(x) contains no medial axis point while its
boundary does. Thus, let z ∈ ∂Bg(x) be a medial axis point. By Lemma 4.3, if cos(∠(z −
x,−vP (x))) ≤ d

dhP
g(hP (x)), then z is contained in Bg(x + τvP (x)) for a sufficiently small τ > 0

and therefore we have nothing to prove. Thus we only need to consider the case when

cos(∠(z − x,−vP (x))) >
d

dhP
(g(hP (x))

=
ξg0

hP (x0)

(
hP (x)

hP (x0)

)ξ−1

.

We denote this maximum angle by ψ. We show that in this case, the flow vector vS(z) points to the
interior of the ball Bg(x). This implies that the flow φS(z) enters Bg(x) and therefore, as argued
before, Bg(x) must contain a medial axis point, contradicting our choice of z.

The ball B(x, hP (x)) contains no sample points but includes z, a medial axis point, and therefore
by Lemma 4.4, the ball B0 = B(x, (1 − 4ε2)hP (x)) does not intersect Σ. Consider the plane Π
tangent to ∂Bg(x) at z. This plane, intersects the ball B0 in a disk of radius

R0 ≥
√

((1− 4ε2)hP (x))2 − g(hP (x))2.

The upper bound assumed for hP (x1) in the statement of the Theorem implies that (1−4ε2)hP (x)2 ≥
h(hP (x))2 and therefore R0 is a real number. We will show that there are surface points at distance
less than R0 from z, i.e. hS(z) < R0. It can be easily observed that any such surface point must lie
on the side of Π opposite to the one containing Bg(x) and therefore conv(AS(x)) resides on the side
of Π opposite to Bg(x). Since dS(x) ∈ conv(AS(x)), this implies that vS(x) points to the interior
of Bg(x), as desired. So, all left to show is that hS(z) < R0. To prove this, we show that for at
least one of the points y ∈ AP (x), ‖z − y‖ < R0. Since |AP (x)| ≥ 2, every plane containing the
points x and dP (x) that does not intersect AP (x) must contain at least one point of AP (x) on each
side. The maximum distance between z and AP (x) can therefore occur when |AP (x)| = 2 and z is
on the bisector plane of the segment connecting the two points in AP (x). To find this maximum
distance we use a change of coordinates. Denoting the three coordinate directions by u1, u2, and
u3, we put the origin at x, the driver dP (x) on the u1-axis, the two points p1, p2 in AP (x) on the
u1u2-plane, and z on the u1u3-plane, see Figure 8. We can calculate the coordinates of p1, p2, and
z as follows:

p1 = (h cos θ, h sin θ, 0),

p2 = (h cos θ,−h sin θ, 0),

z = (g(h) cosψ, 0, g(h) sinψ),

where by θ we denote the the driving angle θP (x) and by h we denote hP (x). Thus we get for the
distance between z and p1 (same distance between z and p2):

‖z − p1‖2 = (h cos θ − g(h) cosψ)2 + (h sin θ)2 + (g(h) sinψ)2

= h2 + g(h)2 − 2hg(h) cos θ cosψ
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Figure 8: Proof of Theorem 4.5. The gray cap represents D(x).

Denoting hP (x0) by h0 and hP (x) by h and using the lower bounds for cosψ and cos θ we get:

‖z − p1‖2 < h2 + g2
0

(
h

h0

)2ξ

− 2chg0

(
h

h0

)ξ ξg0

h0

(
h

h0

)ξ−1

= h2 + (1− 2cξ)g2
0

(
h

h0

)2ξ

Thus in order for ‖z − p1‖ < R0, it suffices to have

h2 + (1− 2cξ)g2
0

(
h

h0

)2ξ

≤ (1− 4ε2)2h2 − g2
0

(
h

h0

)2ξ

.

Since (1− 4ε2)2 > 1− 8ε2, the above inequality is satisfied when the following one is:

4ε2h2 ≤ (cξ − 1)g2
0

(
h

h0

)2ξ

,

or identically,

4ε2

cξ − 1
≤ g2

0

h2
0

(
h

h0

)2ξ−2

.

Since h/h0 ≥ 1, the above inequality holds if g0 ≥
(

2ε√
cξ−1

)
h0. This is guaranteed by the bound on

ξ prescribed in the statement of the Theorem. �
Remark. It may appear at first that when g0 goes to zero the above theorem must guarantee

a tighter bound. However, the reader must notice that g0 also appears in the denominator of the
exponent of the given bound. As a result when the flow line starting at a given x0 is followed the
best bound is not necessarily obtained by using the medial axis point nearest to x0. In other words,
a larger g0 may lead to a better bound on g.

Corollary 4.6 For any bounded shape S, there is a small enough ε such that if P is an ε-sample
of the boundary of S the following holds: let x be a point in the 2-skeleton of Vor(P ) such that

‖x− x̌‖ ≤ 2
√
ε

1−2
√
ε
hP (x), then for every point y on the flow path φP (x), there is a medial axis point

within distance
2
√
ε

1− 2
√
ε
hP (x)

(
hP (y)

hP (x)

)ξ
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from y, where ξ = 1 +
√
ε+O(ε).

Proof. We first consider the case where y has a driving angle θ = θP (y) with cos θ ≤ 1 −
√
ε. By

Lemma 4.2, ‖y − y̌‖ ≤ 2
√
εµ(y), or equivalently, hS(y) ≥ (1− 2

√
ε)µ(y). Since hP (y) ≥ hS(y), we

get

‖y − y̌‖ ≤ 2
√
εµ(y) ≤ 2

√
ε

1− 2
√
ε
hS(y) ≤ 2

√
ε

1− 2
√
ε
hP (y).

Thus we can assume that cosine of the medial angle equals 1−
√
ε at x and stays larger than this

quantity between x and y. Now, by Theorem 4.5 there always is a point within distance

2
√
ε

1− 2
√
ε
hP (x)

(
hP (y)

hP (x)

)ξ
,

from y, where

ξ =
1

1−
√
ε

(
1 + 4ε2 (1− 2

√
ε)2

(2
√
ε)2

)
≤ 1 +

√
ε+O(ε),

so long as

hP (y) ≤ hP (x)

(
(1− 4ε2) · hP (x)

‖x− x̌‖

) 1
ξ−1

,

as required by Theorem 4.5. Since hP (x)/‖x− x̌‖ ≥ (1− 2
√
ε) /2

√
ε, it is enough to require that

hP (y)

hP (x)
≤
(

(1− 4ε2) · 1− 2
√
ε

2
√
ε

) 1
ξ−1

.

As a function of ε, the right hand side of the above inequality increases when ε decreases. Since S
is bounded so is hP (y)/hP (x) and therefore for sufficiently small ε the statement of this Corollary
holds. �

An immediate consequence of this corollary is that the core and the flow closures converge to
being contained in the medial axis as ε→ 0. As a result, when the core is used and extended using
the filtering conditions of [10], the computed approximate medial axis converges to the true medial
axis in the limit.

5 Algorithms

For our application—medial axis approximation—we need to compute the core, a subset of the
of the unstable flow complex, from a finite sampling P of a smooth surface Σ. Our algorithm to
compute the unstable flow complex and the unstable manifolds of critical points of hP that we
present in this section are based on an algorithm to compute flow orbits of points under the flow
φP for a finite point set P ⊂ R3. We also present a data structure for the unstable flow complex—a
directed acyclic graph, that essentially describes a subdivision of Voronoi facets.

To devise an algorithm that computes the flow orbits we use the oracle Driver(x) that gives us
for any query point x ∈ R3 its driver. The oracle basically has to solve the point location problem
in the Voronoi diagram of the sample points P to find the lowest dimensional Voronoi face that
contains x and then compute the closest point on the Delaunay face dual to this Voronoi face. The
oracle returns a tuple (d, V ), where d is the driver of x and V is the Voronoi face dual to the lowest
dimensional Delaunay face that contains d. Note that d is the driver of all points in the relative
interior of V and it is also the driver of x, which can be in the boundary of V . The algorithm in
Figure 9 computes the orbit of a point x ∈ R3.
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Orbit(x ∈ R3)
1 O := {x}
2 (d, V ) := Driver(x)
3 while d 6= x and x 6=∞ do
4 R := ray from d in direction x
5 y := last point behind x along R in V
6 O := O ∪ xy
7 x := y
8 (d, V ) := Driver(x)
9 return O

Figure 9: The algorithm to compute the flow orbit of a given point x in R3.

The algorithm Orbit successively adds line segments xy to the orbit O, which gets initialized
with the point x itself. This ensures that the algorithm works correctly also in the case that x is a
critical point. If x is a critical point then it is its own driver and the condition in line 3 is violated.
If x is not critical and is not a point at infinity, the next line segment xy, which starts at x and
ends in y, is computed in the body of the while loop. Note that it is indeed possible that the point
y computed within this loop is a point at infinity.

Remark. The process of computing the flow orbit of a point is numerically unstable and the
calculation errors can accumulated along the flow path. This can be regarded as a substantial weak-
point of flow related approaches to shape ore medial axis reconstruction and analysis. Cazals [6]
presents methods for carrying out these calculations robustly in 3D.

Unstable Manifolds Recall that the critical points of hP are exactly the intersection points of
Delaunay faces and their dual Voronoi faces, which we consider to be closed. It turns out that the
dimension of the Delaunay face characterizes the type of the critical point: it is a local minimum if
the Delaunay face is zero-dimensional, a saddle point if the Delaunay face is one- or two-dimensional
and a local maximum if the the Delaunay face is three-dimensional; see [12] for more details. For
a critical point we call the dimension of its corresponding Delaunay face the index of the critical
point.

In order to compute the set C we have to compute the unstable manifolds of all medial axis
critical points. Clearly, local minima, i.e., the points in P , cannot be close to the medial axis. But
all other types of critical points can, and we have to consider all of them. The unstable manifold
of a local maximum of hP is just the local maximum itself, i.e., a single point. Let us now consider
the unstable manifold of an index-2-saddle point.

Lemma 5.1 Let c be an index-2-saddle point of hP . The unstable manifold Um(c) of c is a
piecewise linear curve. Indeed, Um(c) consists of the Voronoi edge V (c) along with the flow orbits
of its two end point.

Proof. Note that c is the intersection point of a two-dimensional Delaunay face with its dual Voronoi
edge E. We show that in a sufficiently small neighborhood U of c, Um(c) ∩ U = E ∩ U . Since c
is the driver of all points in the relative interior of E we have E ∩ U ⊂ Um(c) ∩ U . It remains to
show Um(c) ∩ U ⊂ E ∩ U . Every x ∈ U \ E has to be contained in interior of one of the higher
dimensional Voronoi faces that contain E in their boundary. Let V be such a Voronoi face and
let d be the driver of all points in the relative interior of V . By the definition of the flow φP the
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Index-2-UnstableManifold (c)
1 E := Voronoi edge that contains c
2 U := E
3 u, v := endpoints of E
4 if u 6=∞ do
5 U := U ∪Orbit(u)
6 if v 6=∞ do
7 U := U ∪Orbit(v)
8 return U

Figure 10: The algorithm for computing the unstable manifold of an index 2 saddle point.

Figure 11: Left: A Voronoi face intersected by its dual Delaunay edge. The intersection point is a
critical point of hP , which drives all points in the relative interior of the Voronoi face (the arrows
indicate the induced vector field). Middle: The flow continues into another Voronoi face. Note
that not the whole Voronoi face has to be part of the unstable manifold. Right: The unstable of
an index-2-saddle point can have one-dimensional parts, which are orbits of Voronoi vertices.

only points y ∈ V for which φP (t, y) = x for some t ≥ 0 have to reside within the intersection of V
with the line segment that connects d and x. No point of the latter line segment is contained in a
sufficiently small neighborhood of c, since d is a point on the boundary of the Delaunay face dual
to E, whereas c is contained in the relative interior of this face. That is, x /∈ Um(c) ∩ U and thus
Um(c) ∩ U ⊂ E ∩ U . This implies that Um(c) is the union of E and the orbits of the endpoints of
E, i.e., Um(c) is a piecewise linear curve. �

Using the algorithm Orbit, it is straightforward to construct an algorithm to compute the
closure of the unstable manifold of an index-2-saddle point c. This algorithm is given in Figure 10.
We will also use the algorithm Orbit to compute the unstable manifold of an index-1-saddle point.
The latter unstable manifolds are “hairy” piecewise linear surfaces. By a hairy surface we refer to a
piece-wise linear surface to the boundary of which a finite number disjoint piece-wise linear curves
(heirs) are attached from one end.

Lemma 5.2 Let c be an index-1-saddle point of hP . The unstable manifold Um(c) of c is the
union of a piecewise linear surface and the orbits of some Voronoi vertices in the boundary of the
surface.

Proof. Ideas of this proof are visualized in Figure 11. Note that c is the intersection point of
a Delaunay edge with its dual two-dimensional Voronoi face V . With a similar argument to the
one given in proof of Lemma 5.1, one can show that in a sufficiently small neighborhood U of c,
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Um(c) ∩ U = V ∩ U . Since c is the driver of all points in the relative interior of V we have
V ⊆ Um(c). The orbits of all points in the Voronoi edges incident to V also belong to Um(c).
Each such Voronoi edge E falls into one of two cases: either the affine hull of E intersects its dual
Delaunay face or it does not.

In the first case we distinguish two sub-cases: either E itself (not only its affine hull) intersects
its dual Delaunay face or it does not. In the first sub-case, the union of the orbits of the points in E
is exactly the unstable manifold of the intersection point, which is by definition a critical point. If
this unstable manifold is different from E, i.e., if the endpoints of E are not critical (local maxima),
then the orbits of the endpoints might be hairs of Um(c). In the second sub-case, it is not difficult
to see that the union of the orbits of the points in E is the union of E and the orbit of one of its
endpoints. The latter orbit also might be a hair of Um(c).

In the second case, where the affine hull of E does not intersect its dual Delaunay face, the
driver d of the points in the relative interior of E is on the boundary of the Delaunay face dual to
E, i.e., on a Delaunay edge and therefore is also the driver of all the points in the relative interior
of the Voronoi face V ′ dual to the Delaunay edge. Let u and v be the endpoints of E. Since d is by
definition contained in the affine hull of V ′ we can determine the part of V ′ that belongs to Um(c)
by shooting rays from d in the direction of u and v, respectively. These rays enclose a wedge W
in the affine hull of V ′ that contains E. We have W ∩ V ′ ⊂ Um(c). Note that W ∩ V ′ is linear
surface patch. The boundary of this patch consists of Voronoi edges or line segments contained
in Voronoi edges. The orbits of all points in these edges/segments also belong to Um(c). We can
compute the collection of these orbits recursively as a collection of surface patches and orbits of
Voronoi vertices. Note that the “hairs”, i.e., orbits of Voronoi vertices that are not contained in
one of the surface patches, can only originate from the boundary of the surface patch and therefore,
the relative interior of the unstable manifold is a two-dimensional manifold. �

We should point out here that the hairs are topologically important. Neglecting the hairs
destroys the guarantee of homotopy equivalence of M(S) and the core C. The characterization of
the unstable manifolds of index-1-saddle points immediately suggests the algorithm of Figure 12 to
compute them.

Unstable Flow Complex As shown above, the unstable manifold of a critical point can be
seen as a piece-wise linear cell complex. Each cell of such a complex is the intersection of the
unstable manifold in question and some Voronoi cell. However, since unstable manifolds of two (or
more) critical points can have non-empty intersections, the union of the cell-complexes that form
individual unstable manifolds does not necessarily result in a properly embedded cell-complex. This
is because many cells in this union may overlap. The unstable flow complex as defined in Section 2
is a natural way to cleanly resolve this issue.

Every regular point x on the 2-skeleton of Vor(P ) is in the unstable manifolds of at least two
critical points since it is obviously contained in the unstable manifolds of all the minima in AP (x).
On the other hand, the points in the interior of any Voronoi cell Vp of a point p ∈ P are only
contained in the unstable manifold of the minimum p (note that every sample point is a minimum
of the distance function). This implies that the interior points of Vp, i.e., points that are strictly
closer to p than to any other point in P form the cell of U associated to the singleton set {p} of
critical points and that these are the only cells of U that are associated to singletons. In other
words, the 3-cells of U coincide with those of Vor(P ) and therefore the rest of the cells of U, are
contained in the 2-skeleton of Vor(P ). Indeed these cells subdivide the 2-skeleton of Vor(P ) and the
problem of computing the unstable flow complex of P boils down to computing this subdivision.
This subdivision can be trivially achieved through computing individual unstable manifolds, as
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Index-1-UnstableManifold (c)
1 F := Voronoi face that contains c
2 U := F
3 Q := ∅
4 for each Voronoi edge E = vw incident to
F do
5 Q.push(E, v, w)
6 while Q 6= ∅
7 (E, v, w) := Q.pop()
8 (d, V ) := Driver((v + w)/2)
9 if E ⊂ V do

10 compute wedge W from v, w and d
11 U := U ∪ (W ∩ V )
12 push all triples (E′, v, w′) 6= (E, v, w)
for

maximal line segments v′w′ in the
boundary of W ∩ V onto Q

13 else
14 U := U ∪ E ∪Orbit(v) ∪Orbit(w)
15 return U

Figure 12: The algorithm for computing the unstable manifold of an index 1 saddle point.

follows: start with the 2-skeleton of Vor(P ) as U and iterate over the critical points of index 1 or
higher, in an arbitrary order. For each such critical point c, compute the unstable manifold Um(c)
and subdivide along the boundary of Um(c), the cells of the current complex U that are partially
contained in Um(c).

Flow Closures and Flow DAG The unstable flow complex U can be used to compute the flow
closure of a collection of its cells. For a face f of U, it is easy to compute the set of all points
that can be reached from f under the flow. An important property of U, directly derived from its
definition, is that if the flow orbit φP (t, x) of a point x of a face f of U flows into a neighboring
face f ′, then every point of f ′ can be reached from some point of f under the flow. In other words,
every face of U flows into a set of whole faces. Thus, in computing the flow closure of a face,
no other face needs to be subdivided—notice that this is not the case for all faces of the Voronoi
2-skeleton (though it is the case for the faces that contain a critical point). Consequently, one
can construct a flow graph F, a directed acyclic graph (DAG), whose vertices are the faces of the
unstable flow complex and two vertices f and f ′ are connected by an oriented edge if the face of U
corresponding to f is incident to and flows into the one corresponding to f ′. Given this graph, the
unstable manifold of a critical point c can be easily computed by locating the corresponding face
of U, and finding all the faces of U whose corresponding vertices in F are reachable from that of c.
The core C of the medial axis can thus be computed as the set of all faces of U whose corresponding
vertices in F are reachable from some vertex of F corresponding to a face of U containing a medial
axis critical point.

The complex U also allows us to compute the flow closure of any collection of its faces. Since U
is a refinement of Vor(P ) it enables us to compute the flow closure of any face of Vor(P ) by simply

26



Figure 13: Left: Core computed for the 3-holes model. The red lines are either unstable manifolds
of index-2 saddle points or the one dimensional parts (hairs) of the unstable manifold of index-1
saddle points. Middle: Filtered Voronoi facets based on a condition similar to the angle condition
of Dey and Zhao. Right: Extended core, i.e., the core, plus the flow closures of the facets from the
middle picture.

taking the union of flow closures of the faces of U that are contained in the given face of Vor(P ).
Computing the flow closure of Voronoi facets is useful to transfer the topological guarantees that we
provide in this paper to algorithms that approximate the medial axis geometrically well by picking
certain Voronoi facets, e.g., the facets picked by the medial axis approximation algorithm of Dey
and Zhao [10]. In their paper Dey and Zhao show that the facets they pick are close to the medial
axis provided the sampling P is sufficiently dense.

6 Experiments and Conclusion

We introduced the notion of the core of a medial axis approximation as the union of unstable
manifolds of medial axis critical points of the distance to a sampling of a surface. If the sampling
is dense enough the core is homotopy equivalent to the shape enclosed by the sample surface. We
further showed how the core can be augmented to turn many medial approximation algorithms into
topologically accurate ones. Finally we showed that the core and related flow closures converge to
subsets of the medial axis when the input sample grows infinitely dense.

Figure 13 shows one result obtained with an implementation of the unstable flow complex data
structure, the core, and the extension of the core using Voronoi facets filtered using conditions
similar to those in [10]. As can be observed, the flow closure has filled the holes in the junctions of
the geometric approximation of the medial axis with filtered Voronoi facets.
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