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ABSTRACT
The medial axis of a shape is known to carry a lot of in-
formation about it. In particular a recent result of Lieutier
establishes that every bounded open subset of Rn has the
same homotopy type as its medial axis. In this paper we
provide an algorithm that, given a sufficiently dense but not
necessarily uniform sample from the surface of a shape with
smooth boundary, computes a core for its medial axis ap-
proximation, in form of a piecewise linear cell complex, that
captures the topology of the medial axis of the shape. We
also provide a natural method to freely augment this core in
order to enhance it geometrically all the while maintaining
its topological guarantees. The definition of the core and
its extension method are based on the steepest ascent flow
induced by the distance function to the sample. We also
provide a geometric guarantee on the closeness of the core
and the actual medial axis.
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F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations; I.3.5 [Computational
Geometry and Object Modeling]: Curve, surface, solid,
and object representations
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1. INTRODUCTION
The medial axis of a bounded open set S in Rn is the set

of points in S with at least two closest points in the bound-
ary of S. In the following we sometimes refer to bounded
open subsets of Rn as shapes. A recent result of Lieutier [13]
establishes that any shape and its medial axis have the same
topological type, or more precisely, are homotopy equivalent.
Consequently, the medial axis can be used to answer topo-
logical queries about the shape. Therefore, it can be crucial
for a medial axis approximation algorithm to capture the
topology of the medial axis when its output is used in ap-
plications that make such queries including but not limited
to shape analysis, motion planning, and mesh partitioning.

As a geometric object, the medial axis is unstable since
small changes in the shape can cause comparatively large
changes in its medial axis. This instability of the medial
axis bears two consequences. First, it makes the medial
axis hard to compute exactly because of numerical insta-
bilities; consequently, exact computation of medial axis has
only been attempted for a few limited classes of shapes (see
for example [7]). Second, the complete medial axis may be
less interesting in practice than an approximation of it which
carries the same topological type but is more stable under
small perturbations of the shape. Approximations of the
medial axis of a shape are often sought with a sample of the
boundary of the shape provided as input. Chazal and Lieu-
tier [6] defined the λ-medial axis, a subset of the medial axis,
which has the desired stability, and is guaranteed to have the
same homotopy type as the medial axis for suitably small
values of the parameter λ. The largest topologically safe λ
depends on the shape and can be very small and hard to
determine [4]. Finally, the existing algorithm for computing
the λ-medial axis requires a very dense uniform sample of
the boundary of the shape [6].

The ε-sampling theory of Amenta and Bern [1] provides
a framework for analysis of algorithms that either recon-
struct the boundary of a shape or approximate its medial
axis using a sample whose density varies and is propor-
tional to the local size of the features of the boundary of
the shape. Several results were obtained in this framework,
some of the earliest of which pertaining the medial axis are
due to Amenta, Bern, and Eppstein [2], and Boissonnat and
Cazals [5], each establishing that a subset of the Voronoi ver-
tices in the Voronoi diagram of the sample points lie close
to the medial axis. Later, Amenta, Choi, and Kolluri [3]
designed an algorithm that computes an approximation of
the medial axis, in shape of a cell complex, that is provably
homotopy equivalent to the medial axis of the shape, pro-



vided that that shape boundary is sampled densely enough.
The output of this algorithm tends to be noisy and needs
to be cleaned up using heuristics for practical use. The cell
complex produced by this algorithm is not contained in the
Voronoi 2-skeleton of the input sample, a property sought
and considered plausible by many medial axis approxima-
tion algorithms due to the fact that the Voronoi 2-skeleton
is indeed the medial axis of the sample and that effective
filtering of it can often produces good results in practice.
Dey and Zhao [9] addressed these shortcomings by design-
ing an algorithm that outputs a sub-complex of the Voronoi
diagram as a medial axis approximation. This often geo-
metrically pleasing output is guaranteed to converge to the
true medial axis when the sample grows infinitely dense, i.e.,
when ε→∞, but suffers lacking of any topological guaran-
tees. In fact, despite its celebrated geometric quality, with a
poor choice of filtering parameters, the provided output can
be highly flawed topologically. The results of the present
paper can be used to mend this deficiency.

Our Contribution. Our assumptions and the approach we
pursue in this paper also fall into the Amenta-Bern frame-
work. We compute a piece-wise linear cell complex, which
we call the core (of the medial axis approximation). This
core is extracted from a refinement of the Voronoi complex of
the input sample called the unstable flow complex. The idea
and the algorithm to compute this complex and the core are
derived from the critical point theory of the distance func-
tion to the sample points and their induced steepest ascent
flow, which we refer to as the discrete flow.

Dey et al. [8] show that the critical points of the distance
function to an ε-sampling of the boundary of a shape are
naturally separated; each such critical point is either very
close to the surface, or oppositely, is very close to the medial
axis of the shape. The two classes can be separated algo-
rithmically provided that the sample is sufficiently dense.

In short, the core we compute is the union of the unstable
manifolds of the critical points close to the medial axis. The
unstable manifold of a critical point consists of all points
that can be reached from an infinitesimally small neighbor-
hood of that critical point following the discrete flow. In
the full-version of this paper, we characterize the structure
of the unstable manifolds and show how to compute them
from the Voronoi complex of the sample points in R3. Our
main result states that the core and the medial axis are
homotopy equivalent at every dimension for dense enough
samples.

Capturing the homotopy type of the medial axis is not
the only advantage of the core. Once the core is computed,
it can be extended “freely” to better capture the geometry
of the medial axis while maintaining its homotopy type. To
extend the core one picks, using any algorithm at hand,
a set of points that approximates a subset of the medial
axis of the target shape (see for example [9] for one such
algorithm) and adds this set to the computed core along
with its flow closure under the discrete flow. We show that
as long as the chosen approximating set of points does not
get too close to the surface of the shape, adding the closure
“recaptures” the topological guarantee of the core. Because
of this property, computing the core can be used to augment
virtually any medial axis approximation algorithm into a
topologically accurate one.

Finally we provide an upper-bound on the rate at which

the distance of a point to the medial axis can grow as the
point moves along its flow line in the discrete flow. This
shows that discrete flow closure of points near the medial
axis does not escape the medial axis rapidly. A consequence
of such a geometric guarantee is that the core gets closer
and closer to the medial axis and is contained in it at the
limit as ε → 0. Moreover, if the core is extended using a
set that converges to the real medial axis when ε→ 0, such
as the Voronoi facets filtered by the algorithm of [9], then
the extended core also converges to the real medial axis in
Hausdorff distance all the while staying homotopy equivalent
to it.

The structure of the paper is as follows. In Section 2 we
introduce basic definitions and state some known results.
Section 3 establishes several homotopy equivalences , most
importantly the homotopy equivalence of the medial axis,
the core, and the extended core. Section 4 describes how to
provide geometric guarantees for the core and flow closures.
Concluding remarks and experimental results are provided
in Section 5. As mentioned earlier, the full-version of this
paper covers in detail algorithms for computing the unstable
flow complex, the core, and flow closures of Voronoi faces.

2. PRELIMINARIES
In this section we review some basic definitions as well

as some required background material. It is important to
notice that although we present all the definitions for R3,
all the statements and results of the present section as well
as those in sections 3 and 4 generalize to higher dimensional
Euclidean spaces.

Basic Notions. For a point x ∈ R3 and r > 0, we denote by
B(x, r) the open ball of radius r centered at x, i.e., B(x, r) =
{y ∈ R3 : ‖x − y‖ < r}, and by B(x, r) the closure of
B(x, r), i.e., B(x, r) = {y ∈ R3 : ‖x − y‖ ≤ r}. We refer
to B(x, r) as the r-neighborhood of x. For x ∈ R3 and any
subset S ⊂ R3, we define the distance between x and S as
d(x, S) = infy∈S ‖x− y‖. By Sc we denote the complement
of S in R3.

Shape, Surface, and Medial Axis. We consider single-
component smooth 2-manifolds without boundary embed-
ded in R3. We call such manifolds surfaces. A surface Σ is
associated to the two open components of its complement
R3 \ Σ which we refer to as the bounded or inner compo-
nent S, and the unbounded or outer component S∗. We
will refer to the bounded component as the shape enclosed
by Σ and denote it throughout by S. Likewise, in the rest
of this paper, S∗ refers to the unbounded component asso-
ciated to the considered surface Σ. The medial axis M(S)
of and open set S is the set of all points in S that have
at least two closest points in ∂S, the boundary of S, i.e.
M(S) = {x ∈ S : |AS(x)| > 1}, where AS(x) is the set of
closest points to x in ∂S = Σ. Note that since Σ is compact,
AS(x) is well-defined and non-empty for every x ∈ S. By
medial axis M of a surface Σ, we mean the union of the
medial axes of the inner and outer components S and S∗

associated to Σ, i.e. M = M(S) ∪M(S∗). We call M(S)
and M(S∗) the inner and the outer medial axis medial axis
of Σ respectively. Thus, M consists of all points in R3 that
have at least two closest points in Σ.



Feature Size and Surface Samples. By definition, every
point of R3 not in M has a unique closest point in Σ. For
any point x ∈ R3 \ (Σ ∪ M) we denote by x̂ the unique
closest surface point to x, i.e., x̂ = argminy∈Σ‖x − y‖, and
by x̌ ∈ M we denote the center of the medial ball tangent
to Σ at x̂ and at the same side of Σ as x. The medial feature
size is the function µ : R3 \ (Σ ∪M) → R ∪ {∞} defined as
µ(x) = ‖x̂−x̌‖. The function f : Σ → R, x 7→ infy∈M ‖x−y‖
which assigns to each point in Σ its distance to the medial
axis M , is called the local feature size. Notice that for x ∈
R3 \ (Σ ∪M) it always holds that f(x̂) ≤ µ(x). It can also
be easily seen that f is 1-Lipschitz. Throughout this paper,
we assume that every point x ∈ Σ has non-zero local feature
size and that the infimum of the local feature size function
over Σ, f0 = infx∈Σ f(x), sometimes called the reach of Σ in
the literature, is bounded away from zero.

For a constant ε > 0, a finite sample P ⊂ Σ is called a
(relative) ε-sample if for all x ∈ Σ, there exists a sample
point p ∈ P withing distance εf(x) from x.

Distance Functions and Derived Concepts. Given a an
open set, S we define the distance function hS induced by S
as

hS(x) : S → R, x 7→ d(x, Sc).

When S is a shape enclosed by a surface Σ, hS(x) = d(x,Σ)
in which we can expand the domain of the function to the
entire R3 and denote it by hΣ. Such distance functions have
been broadly studied in the literature (see for example [11])
and are known to carry a great deal of information about the
set inducing them and its embedding. For example, Σ itself
is simply given by h−1

Σ (0) and the medial axis M of Σ turns
out to consist of all points at which hΣ is not differentiable.
The prevalence of information encoded in hΣ motivates the
use of distance functions induced by discrete samples of Σ,
as computationally manageable “approximations” to it, for
extraction of the same kind of information.

The function hS (also hΣ and more generally any distance
function) is 1-Lipschitz and therefore continuous. However,
it is not differentiable everywhere in S, i.e., the gradient
can be undefined at certain points. As mentioned above,
these point constitute M(S). Some of these points are called
critical points, namely, the points x ∈ S that are contained
in the convex hull of AS(x). Every other point of S is a
regular point. Although the gradient is undefined at many
of the regular points in S, a unique vector of steepest ascent
of hS exists at every such point (see [13]). Let dS(x) be the
center of the smallest closed ball containing AS(x) and let
rS(x) be the radius of this ball (See Figure 1). We define
the flow vector at x (with respect to S) as

vS(x) =
x− dS(x)

hS(x)
.

The vector vS(x) agrees with ∇hS(x) at every point x ∈ S
for which this gradient is defined and extends the gradient of
hS everywhere else by determining the direction of steepest
ascent for hS [13]. The points x for which vS(x) = 0 are
exactly the critical points of hS . It can be easily verified
using Pythagoras’s theorem that

‖vS(x)‖2 = 1−
„
rS(x)

hS(x)

«2

. (1)

By showing the convergence of Euler schemes, Lieutier [13]

x

vS
(x)

r
S (x)

dS(x)

θS(x)

hS(x)

S

Figure 1: Characterization of the steepest ascent
direction for a point x ∈ S. Solid points on the
boundary of S represent AS(x).

proved that for any bounded open set S, the flow vector
field vS as described above can be integrated, to give a map
φS : R+×S → S that is continuous in both variables and sat-
isfies for all x ∈ S, (1) φS(0, x) = x and (2) φS(s, φS(t, x)) =
φS(s+t, x) for all s, t ∈ R+. Starting at any point x ∈ S, the
flow map t 7→ φS(t, x) defines a continuous path in S, called
the orbit of x and denoted φS(x), when t goes from 0 to
+∞. More formally, φS(x) =

˘
y | ∃t ∈ R+ : φS(t, x) = y

¯
.

At any point y ∈ φS(x) the flow vector vS(y) determines the
direction of the flow at y. Lieutier further proved that when
S is a bounded open set then for any point x ∈ S both of
the maps t 7→ hS(φS(t, x)) and t 7→ rS(φS(t, x)) are increas-
ing and that the former map is continuous and satisfies the
following integral equation:

hS(φS(t, x)) = hS(x) +

Z t

0

‖vS(φS(τ, x))‖2dτ. (2)

It turns out that the critical points of hS are the fixed
points of the flow map, i.e., if c is a critical point of hS , then
φS(t, c) = c for all t ∈ R+.

If the shape S is bounded, then the flow orbit φS(x) stays
inside S and converges to a critical point c of hS as t→ +∞.
Notice that we consider c to be also in the flow orbit of x.
For a critical point c of the flow φS , the set of all points x
whose flow orbits converges to c is called the stable manifold
of c and is denoted by S(c). In other words,

S(c) = {x | φS(+∞, x) = c} .

Although there is no flow out of a critical point c of hS , it
is interesting to know where the points very close to c flow.
Some of these points flow into c while other flow away from
it. We define the unstable manifold U(c) of a critical point
c, as the set of all points into which points arbitrarily close
to c flow. Formally,

U(c) =
\
ε>0

[
y∈B(c,ε)

φS(y).

With an abuse of terminology, we say that c “flows” into the
points of U(c).

As motivated above, given a sample P of Σ = ∂S, it is
natural to try to approximate the distance function hS by



Figure 2: An example of the core in 2D. The sam-
ple consists of the gray points. There are three inner
medial axis critical points: 2 maxima (in solid black)
whose unstable manifolds are singletons made of
themselves alone, and a saddle point (hollow) whose
unstable manifold is shown in red.

the function hP : R3 → R, x 7→ minp∈P ‖x− p‖, that assigns
to each point its distance to the sample P of ∂S. The finite
set P is the boundary of the open set P c = R3\P and we can
define the distance function and the flow vector for P c as
we did for S. Since hP c = hP , in a slight abuse of notation
we will denote both of these distance function with hP and
let AP (x) = {y ∈ P | ‖x − y‖ = hP (x)}. We shall also
denote the center of the smallest ball containing AP (x) as
dP (x) and the associated flow vector field as vP . Note that
dP (x) is the closest point on the Delaunay face dual to the
lowest dimensional Voronoi face that contains x. Sometimes
dP (x) is referred to as the driver of x. Technically speaking,
since P c is unbounded, hP has a critical point at infinity.
The other critical points of hP can be characterized as the
intersection points of Delaunay faces with their dual Voronoi
faces [10].

Separation of Critical Points. Dey, et al. [8] observed that
if P is an ε-sample of the smooth boundary Σ of a shape
S, then the critical points of the discrete distance function
hP cannot reside everywhere in S. Rather they have to be
either very close to Σ or very close to M .

Theorem 1. [8] Let P be an ε-sample of a smooth surface
Σ. Then for every critical point c of hP , either (i) ‖c− ĉ‖ ≤
ε2f(ĉ), or (ii) ‖c− č‖ ≤ 2εµ(c).

Thus the critical points of hP can be classified based on
whether they are close to Σ or close to M . We refer to the
first class of critical points as surface critical points and to
the second class as medial axis critical points. We further
subdivide the medial axis critical points hP into two sub-
groups: inner medial axis critical points are those that are
close to M(S) and outer medial axis critical points are those
close to M(S∗).

Core. The union of the unstable manifolds of the inner me-
dial axis critical points of hP will play an important role in
the present paper we refer to this union as the core of the
medial axis approximation (See Figure 2). We will show that
for a sufficiently dense sample P of Σ this core is homotopy
equivalent to the medial axis M(S) of S.

Unstable Flow Complex. In general, unstable manifolds
of many critical points may intersect. However, in dis-
crete settings, since there are only a finite number of critical

points, we can achieve a cell complex decomposition of space
by grouping together, as cells, the points of the space that
are flowed into from the exactly same “set” of critical points.
We define a relation “∼” on the pairs of points in R3 under
which x ∼ y if and only if the set of critical points that
flow into x coincides with the set of those that flow into
y, or equivalently, if x is in the unstable manifolds of the
same set of critical points as y. It is clear that “∼” is an
equivalence relation. The unstable flow complex induced by
a point set P , denoted U(P ) (or just U when P is under-
stood) is the cell complex whose cells are connected com-
ponents of the subdivision of space into equivalence classes
of the “∼” relation. In the full-version of the paper, we
study the structure of this complex more closely in three
dimensions. It turns out that the full-dimensional cells of
this complex coincide with full-dimensional cells of Vor(P ).
The lower dimensional cells of U introduce a subdivision
of the 2-skeleton of Vor(P ). We will see that the core is
a sub-complex of U. The importance of these observations
is primarily in practice where we desire the output of our
algorithms to have a geometric cell-complex structure with
no redundancies. Nevertheless, the unstable flow complex
of a given set of points can be of independent interest theo-
retically.

3. HOMOTOPY EQUIVALENCES
As in the previous section, we always assume that Σ is

a smooth manifold with associated inner and outer com-
ponents S and S∗. Furthermore, we assume that P is ε-
sampling of Σ. Let C be the core of the approximation as
defined in Section 2, i.e. C is the union of unstable mani-
folds of the inner medial axis critical points of the distance
function hP contained in S. Here we want to show that C

and the medial axis M(S) of S are homotopy equivalent.
Following Lieutier [13] the following criterion is used through-

out this paper to prove homotopy equivalence between topo-
logical spaces. For the classical definition of homotopy equiv-
alence refer, for example, to [12].

Proposition 1. Let X and Y ⊆ X be arbitrary sets and
let H : [0, 1] × X → X be a continuous function on both
variables satisfying the following three conditions. (1) ∀x ∈
X, H(0, x) = x, (2) ∀x ∈ X, H(1, x) ∈ Y , and (3) ∀y ∈
Y,∀t ∈ [0, 1], H(t, y) ∈ Y . Then X and Y have the same
homotopy type.

Intuitively, we may interpret the first argument of the map
H as time. Using a simple re-parametrization in the first ar-
gument, we can replace the interval [0, 1] with any interval
[0, T ] where T > 0 is a real number. It is important that
the time interval considered has finite length. The above
criterion for homotopy equivalence between X and Y con-
tinuously maps points in X to those in Y during the time
interval [0, T ]. At time 0, all points in X are mapped to
themselves and at time T , they have all arrived in Y . No-
tice, the important property that the points in Y stay in Y
all the time.

In the following we want to plug in φS and φP (the flow re-
sulted from integrating vP after circumventing the technical
difficulty of unboundedness of P c) for the map H mentioned
above. When distance flow maps are used for H, the first
condition of Proposition 1 is automatically satisfied since
φS(0, x) = x for all x (the same holds for φP ). Satisfying



Σδ

Sδ

Figure 3: The δ-tubular neighborhood Σδ (grayed)
and the reduced shape Sδ.

the second condition when using flows corresponds to prov-
ing that every point in X flows into Y in finite time. Finally,
the third condition of Proposition 1 to requiring the set Y
to be closed for the used flow, meaning that no point of Y
flows out of it.

Crucial to the provided homotopy equivalence proofs is
the concept of reduced shapes, that we introduce at first.

3.1 Reduced Shapes

Reduced Shapes. Let S be a shape whose boundary is a
smooth 2-manifold Σ and let 0 < δ < 1. The δ-tubular
neighborhood Σδ of Σ (See Figure 3) is the set

Σδ = Σ ∪ {x ∈ R3 \ (Σ ∪M) : ‖x− x̂‖ < δf(x̂)}.

and the δ-reduced shape Sδ is defined as Sδ = S \Σδ. Notice
that the definition of Σδ, puts the medial axisM(S) of S into
Sδ. The following lemma shows that every point of M(S)
is in fact an interior point of Sδ. Refer to the full-version of
the paper for the proof.

Lemma 1. For every 0 < δ < 1, every point of M(S) is
an interior point of Sδ.

Note, that the previous lemma also implies that every
boundary point of Sδ has a unique closest point in Σ. The
following lemma gives a complete characterization of the
boundary points of Sδ. The proof of this lemma is also
provided in the full-version of the paper.

Lemma 2. The boundary of Sδ consists of exactly those
points x ∈ S \M(S) satisfying ‖x− x̂‖ = δf(x̂).

3.2 Homotopy Proofs
Our proof that the core C and the medial axis M(S) of S

are homotopy equivalent consists of the following two steps.

(1) S and Sδ are homotopy equivalent for 0 < δ < 1.

(2) S2ε2 and C are homotopy equivalent for ε < 0.14.

The equivalences (1) and (2) together with the homotopy
equivalence of S and M(S) [13] establish the homotopy
equivalence of M(S) and C.

As we mentioned earlier an essential part of each of the
homotopy equivalence proofs consists of showing, in corre-
spondence to the second condition of Proposition 1, that
a considered object is closed under some flow. Trivially,
every open set S is closed with respect to the flow φS it

induces. The medial axis M(S) of an open set S is also
closed under φS . This is because M(S) precisely consists of
the points x ∈ S for which |AS(x)| > 1 and consequently
rS(x) > 0. This observation, along with a result of Lieu-
tier [13] that states the map t 7→ rS(φS(t, x)) is increasing
for every x ∈ S, implies that the flow out of every point
x ∈M(S) stays inside M(S).

Proposition 2. The medial axis M(S) of any open set
S is closed under the flow φS.

The following lemma, due to Lieutier [13], shows that ev-
ery point x ∈ S arrives in M(S) under φS in finite time.

Lemma 3. [13] Let ∆ be an upper bound for the diameter
of an open set S. Then for every x ∈ S, we have φS(∆, x) ∈
M(S).

The above lemma together with Proposition 2 and the fact
that φS(0, x) = x for all x ∈ S fulfill the three requirements
of Proposition 1 and therefore imply the following result of
Lieutier [13].

Corollary 1. [13] Every bounded open subset S of R3

is homotopy equivalent to its medial axis M(S).

Next we show that the reduced shapes Sδ for 0 < δ < 1 are
also closed under the flow φS . By Proposition 1 this implies
that S and Sδ are homotopy equivalent for 0 < δ < 1. The
proof is left for the full-version of the paper.

Lemma 4. For any 0 < δ < 1, the reduced shape Sδ is
closed under the flow φS.

Corollary 2. For any 0 < δ < 1, any open set S is
homotopy equivalent to its δ-reduced shape Sδ.

In order to complete our proof, we need to integrate the
vector field vP induced by the same P . However, we face a
technical difficulty: the result of Lieutier [13] only applies to
bounded open sets. Although P c is open, it is not bounded.
This problem can be bypassed using a somewhat standard
technique. Let B0 = B(c,∆/2) to be an open ball of center
c and diameter ∆ such that S ⊂ B0 and thus ∆ is an upper
bound for diameter of S and let B1 = 3B0 = B(c, 3∆/2) be
the result of scaling B0 three times around its center. Fi-
nally let Q be the open set obtained by removing the sam-
ple points in P from B1, i.e., Q = B1 \ P . Notice that
∂Q = P ∪ ∂B1. For any point x in S, the closest bound-
ary point of Q to x is a point of P . This is because every
boundary point of B1 is at distance strictly greater than ∆
or more from x while there is always a point of P within dis-
tance strictly less than ∆ from x. This in particular means
that the flow induced by Q in S, entirely depends on the
arrangement of the points in P only and is completely ir-
relevant to the boundary of B1. In other words, the flow
lines of the flow φQ agree with those of the discrete flow φP

inside S as described by [10]. As such, in the sequel we shall
use the notation φP to denote the continuous flow induced
by the open set Q inside B0. In order to prove an analogue
of Lemma 4 for the flow φP , we first prove following two
auxiliary lemmas. The proofs of these lemmas are primarily
based on the Lipschitzness of the local feature size function.

Lemma 5. Let x be a point on the boundary of Sδ. Any
vector v at x that makes an angle α less than arctan

`
1−δ
2δ

´
with the vector x̌− x points into Sδ.
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Figure 4: Proof of Lemma 5.

Proof. Let c be the point on the line segment x̂x̌ at
distance f(x̂) from x̂. Without loss of generality we assume
that v = y − x, where y ∈ S is that close to x such that the
inner angle θ of the triangle xcy at c is less than π/2 − α.
Note that by definition α is the inner angle of the triangle
xcy at x, see Figure 4. Let B = B(c, f(x̂)) and let B′ =
B(y, ‖x̂ − y‖). B does not contain any point from Σ and
ŷ ∈ B′. Therefore ŷ ∈ B′ \ B and ‖x̂ − ŷ‖ ≤ 2f(x̂) sin θ,
which in turn together with the fact that f is 1-Lipschitz
implies that

f(ŷ) ≤ f(x̂)(1 + 2 sin θ).

Let w be the intersection point of the boundary of B with
the ray through y−c and let x′ be the projection of x on this
ray. By construction x′ ∈ B. Our assumption on θ implies
that that on the ray through c− y the point y comes before
the point x′ as seen from c. Putting these together we get

‖y − ŷ‖ ≥ ‖y − w‖
= ‖y − x′‖+ ‖x′ − w‖
> ‖y − x′‖+ ‖x− x̂‖
= ‖y − x′‖+ δf(x̂)

= ‖x− x′‖ cot(α+ θ) + δf(x̂)

= (1− δ)f(x̂) sin θ cot(α+ θ) + δf(x̂).

Thus,

‖y − ŷ‖
f(ŷ)

>
(1− δ)f(x̂) sin θ cot(α+ θ) + δf(x̂)

f(x̂)(1 + 2 sin θ)

=
(1− δ) sin θ cot(α+ θ) + δ

1 + 2 sin θ
.

In order for y to be in Sδ we want this fraction to be larger
than δ. This amounts to cot(α + θ) > 2δ/(1 − δ) or equiv-
alently tan(α+ θ) < (1− δ)/2δ. Since we assumed tanα <
(1−δ)/2δ we can find by the continuity of the tangent func-
tion θ0 > 0 such that tan(α + θ) < (1 − δ)/(2δ) for all
0 < θ < θ0. This implies the existence of λ0 > 0 such that

(1− λ)x+ λy = x+ λ(y − x) = x+ λv ∈ Sδ

for all 0 ≤ λ < λ0, i.e., the vector v points into Sδ at x.

Lemma 6. Let x be a point on the boundary of Sδ. The
angle α that vP (x) makes with x̌− x is bounded by

arccos

„
2δ(1− ε− δ)− ε2

2(1− δ)(δ + ε)

«
,

x̂

α

x

u

θ

c

w

Figure 5: Proof of Lemma 6.

provided that the argument of the arccos is between 0 and 1.

Proof. Let c be the point on the line segment x̂x̌ at
distance f(x̂) from x̂. Let B = B(c, f(x̂)) and let B′ =
B(x, (δ+ε)f(x̂)). The driver dP (x) of x has to be contained
in the convex hull of B′ \B. Let y be a point in the intersec-
tion of ∂B and ∂B′. Consider the triangle cxy, see Figure 5.
The inner angle of this triangle at x is at least π− α. From
the cosine theorem we get

cos(π − α) ≤ (1− δ)2f(x̂)2 + (δ + ε)2f(x̂)2 − f(x̂)2

2(1− δ)(δ + ε)f(x̂)2

=
2δ(δ + ε− 1) + ε2

2(1− δ)(δ + ε)
.

It follows

cosα ≥ 2δ(1− δ − ε)− ε2

2(1− δ)(δ + ε)
,

which implies the statement of the lemma.

Now we are ready to prove the analogue of Lemma 4 for
the flow φP .

Lemma 7. The δ-reduced shape Sδ is closed under the
flow φP , respectively, for any ε2 ≤ δ ≤ 10ε2 if ε ≤ 0.14.

Proof. Lemmas 5 and 6 imply that for any point x on
the boundary of Sδ the vector vP (x) points into Sδ if δ ≥ ε2

and ε ≤ 0.14 as can be checked by plugging in the values
into the bounds provided by these two lemmas.

Lemma 7 now allows us to prove that the core C and Sδ

are homotopy equivalent. To do so we need the following
corollary and lemma.

Corollary 3. For any ε2 ≤ δ < 1 and ε ≤ 0.14, every
point of the reduced shape Sδ flows under φP into an inner
medial axis critical point of hP .

Proof. By Lemma 7 every point of Sε2 stays inside Sε2

under φP while all surface critical points of hP are in Σε2 by
Theorem 1. Therefore, the flow orbit φP (x) of every point
x ∈ Sδ ⊆ Sε2 has to end at a medial axis critical point.

Lemma 8. For ε ≤ 0.14, if P is an ε-sample of Σ, then
there is a constant T such that φP (T, x) ∈ C for all x ∈ S2ε2 .



Proof. Let ζ > 0 be the minimum distance between a
Delaunay face D induced by P and its dual Voronoi face
V that do not intersect. Consider the reduced set Sδ for
δ = 2ε2. By Corollary 3, Sδ is closed under the flow φP .
Therefore, every flow line of φP in Sδ ends in some inner
medial axis critical point of hP in the limit. Consider now
any point x ∈ Sδ \C and let V (x) be the cell in the Voronoi
complex Vor(P ) that contains x and let D(x) be its dual
Delaunay cell in the Delaunay complex Del(P ). There are
two cases two consider depending on whether V (x) andD(x)
intersect.
Case 1. V (x) ∩ D(x) = ∅. In this case, the distance x −
dP (x) ≥ ζ and since hP (x) ≤ ∆, we get ‖vP (x)‖ = ‖x −
dP (x)‖/hP (x) ≥ ζ/∆.
Case 2. V (x)∩D(x) = {c}, where c is a critical point of dP .
It can be easily observed that if c is a medial axis critical
point, then V is entirely contained in the unstable manifold
U(c) of c and this implies that x ∈ C, contradicting our
choice of x. Therefore, c must be a surface critical point and
as such c ∈ Σε2 while x ∈ S2ε2 . With a similar argument
as the one used in Lemma 2 the open ball of center c and
radius 1−δ

1+δ
(2ε2 − ε2)f(ĉ) is entirely contained in Σ2ε2 and

therefore ‖x − c‖ ≥ ξ = 1−δ
1+δ

ε2f0. Thus we get ‖vP (x)‖ =

‖x− c‖/hP (x) ≥ ξ/∆.
Thus for every point x ∈ Sδ \ C, ‖vP (x)‖ ≥ ϑ where

ϑ = min{ξ/∆, ζ/∆}. If φP (t, x) 6∈ C for all t ∈ [0,∆/ϑ2] we
get from Eq. (2)

hP (φP (∆/ϑ2, x))

= hP (x) +

Z ∆
ϑ2

0

‖vP (φP (τ, x))‖2dτ

≥ hP (x) +

Z ∆
ϑ2

0

ϑ2dτ = hP (x) + ∆.

This contradicts the fact that ∆ is an upper bound for the
diameter of S. Thus if we set T = ∆/ϑ2, then φP (T, x) ∈ C

for all x ∈ Sδ \ C.

Corollary 4. For ε ≤ 0.14, if P is an ε-sample of Σ,
then C is homotopy equivalent to S2ε2 .

Proof. By definition, C is closed under the flow φP . This
along with the result of Lemma 8 satisfy the requirements
of Proposition 1, implying that C and S2ε2 are homotopy
equivalent.

Combining the result of the above corollary with that of
Corollary 2 gives us the theorem we set out to prove.

Theorem 2. The shape S, its medial axis M(S), and the
core C consisting of the the union of unstable manifolds of
inner medial axis critical points of hP , are homotopy equiv-
alent.

3.3 Extending the Core
As mentioned in the Introduction section, one of the most

pleasing properties of the core is its flexibility in being used
with other medial axis approximation algorithms. The fol-
lowing Theorem clarifies this statement.

Theorem 3. Let W ⊂ S2ε2 be any set of points and letcW = {x | ∃w ∈ W : x ∈ φP (w)}. Then C ∪ cW is homotopy
equivalent to S.

Proof. By Lemma 8 all points in S2ε2 including those incW flow into C in finite time. On the other hand, by definition

C∪cW is closed for φP . These are all the requirements needed
to invoke Proposition 2 to establish the desired homotopy

equivalence between C ∪ cW and S2ε2 . By Corollary 2, the
latter is itself homotopy equivalent to S.

Computing the flow closure of all the points in W can
be computationally difficult, depending on the nature of W .
However, If W is a sub-complex of the Voronoi complex
Vor(P ) (this is for example the case in the algorithm of Dey
and Zhao [9]), computing the flow closure of all the points
in W can be done in bulk by computing the flow closures of
a whole face at a time. The detailed algorithm for comput-
ing the flow closure of a Voronoi face can be found in the
full-version of this paper. This algorithm immediately can
be used for computing the core since the unstable manifold
of a critical point is the flow closure of Voronoi faces that
contains it.

4. GEOMETRIC APPROXIMATION
Geometric fidelity of the core to the real medial axis M(S)

of S can be a concern. Although Theorem 1 ensures that the
medial axis critical points lie very close to the medial axis,
it provides no guarantee for the paths connecting them on
their unstable manifolds to enjoy the same closeness. The
same concern is valid when we extend the core with a set of
points close the medial axis: to guarantee the topology one
must include the flow closures of added points but it is not
clear that this closure stays close to the medial axis as well.

For a point x in the core C or any other approximation of
the medial axis, the relative approximation error at x can
be considered to be the ratio between the distance from x to
M(S) and hP (x). One would like to have that the distance
to M(S) along a flow line would grow at most linearly with
hP (x) as this would correspond to maintaining a constant
relative error all along the path. However, proving this, if it
is true at all, appears elusive. Nevertheless, in this section
we show that if we start from a point x close to the medial
axis and follow the flow line φP (x), the distance to M(S)
along this path grows as a function of hP at a rate slightly
super-linear at worst. More precisely we will show that if
we scale the space so that hP (x) has unit length, then if x
has a medial axis point within distance O(

√
ε), then every

point y in the flow line starting at x will have a medial

axis point within distance O(
√
ε)hP (y)1+O(

√
ε). The proof

of some technical lemmas are ommited and are availabe in
the full-version of the paper.

Lemma 9. For every point x ∈ S and for every p ∈
AP (x), ‖x− p‖2 ≤ hS(x)2 + ε2f(x̂)2 + ε2hS(x)f(x̂).

The driving angle of a point x with respect to the sample
P is defined as θP (x) := ∠(−vP (x), x−y) for any y ∈ AP (x).
A critical point has driving angle equal to π/2 while points
not on the 2-skeleton of Vor(P ) have driving angles equal to
0. It is not hard to verify that cos θP (x) = ‖vP (x)‖.

The following lemma generalizes Theorem 1 although for
simplicity it provides a weaker bound for points near the
surface. The proof is rather similar to the one given in [8]
and is provided in the full-version of the paper.



Lemma 10. Let x be a point with driving angle 0 < θ ≤
π/2. Then, x is within distance 2ε

1−cos θ
µ(x) from one of x̂

or x̌.

Recall that the driver dP (x) is the same for all points x
on the same face of the the Voronoi complex Vor(P ). In
fact the flow path φP (x) turns exactly when the flow moves
from one Voronoi face to another. Consider a point x ∈ S
that lies on the 2-skeleton of Vor(P ), i.e. |AP (x)| ≥ 2, and
consider a line segment L in the flow orbit φP (x). The
distance hP (x) monotonically increases along a flow path.
We can therefore parametrize this line segment using the
distance to the sample set P . Let g : R+ → R+ be a non-
decreasing real valued differentiable function and consider
for each point x ∈ L, the ball Bg(x) = B(x, g(hP (x))). We
define the set D(x) as those points on the boundary of Bg(x)
that are left outside Bg(x) when x moves infinitesimally in
the direction of φP (x). In other words if we take η > 0 such
that φP (η, x) has the same driver as dP (x) (meaning that
φP (η, x) is on the same line segment of φP (x) as x), then

D(x) =
\

0<ε<η

`
∂Bg(x) \Bg(φP (ε, x))

´
.

Lemma 11. D(x) consists of those points y ∈ ∂Bg(x) that
satisfy ∠(y − x, dP (x)− x) ≤ ψ0 where cosψ0 = dg/dhP at
x.

Proof. Let x′ = φP (t, x) be a point on L, satisfying
‖x− x′‖ = τ where τ is infinitesimally small. By definition,
AP (x′) = AP (x). Let y be any point at distance g(hP (x))
from x making an angle of ψ with dP (x) − x. We have for
the distance of y to x′:

‖y − x′‖2 = ‖y − x‖2 + τ2 + 2τ‖x− y‖ cosψ

= g(hP (x))2 + τ2 + 2τg(hP (x)) cosψ.

For y not to be contained in Bg(x′) it must hold that ‖y −
x′‖ > g(hP (x′)), or equivalently:

g(hP (x))2 + τ2 + 2τg(hP (x)) cosψ > g(hP (x′))2.

By rearranging we get

τ + 2g(hP (x)) cosψ >
g(hP (x) + τ)2 − g(hP (x))2

τ
.

Taking the limit when τ → 0 we get

lim
τ→0

τ+2g(hP (x)) cosψ >

lim
τ→0

g(hP (x) + τ)2 − g(hP (x))2

τ
,

which gives

2g(hP (x)) cosψ >
d

dhP
(g(hP (x)))2

= 2g(hP (x))
d

dhP
g(hP (x)).

Thus cosψ > cosψ0 or ψ < ψ0.

Lemma 12. Let B = B(x,R) be a ball empty of sam-
ple points with at least one sample point on its boundary
and containing at least one medial axis point. Then the ball
B(x, (1− 4ε2)R) does not intersect Σ.

Proof. Let y ∈ B∩Σ. Since B intersects the medial axis,
f(y) ≤ 2R. Thus there is a sample point within distance
εf(y) ≤ 2εR from y. Since B contains no sample points, y
must be within distance 2εR from ∂B. We grow a ball B′

centered at x until its boundary touches Σ. Let R′ be the
radius of B′. By the above argument R′ ≥ (1 − 2ε)R. Let
y be a point in which B′ touches Σ. As indicated above,
f(y) ≤ 2R. Let Bo be the tangent ball of radius f(y) at
the opposite side of Σ with respect to x. With an argument
similar to that of Lemma 9 we get for hS(x) = ‖x− y‖:

R2 ≤ hS(x)2 + ε2f(y)2 + ε2hS(x)f(y).

Using f(y) ≤ 2R we get

R2 ≤ hS(x)2 + 4ε2R2 + 2ε2RhS(x),

which by rearranging gives the following quadratic inequal-
ity for hS(x):

hS(x)2 + 2ε2RhS(x)− (1− 4ε2)R2 ≥ 0.

Since hS(x) ≥ (1 − 2ε)R, the only valid range for hS(x) in
the above inequality is

hS(x) ≥ ε2R2 +
p
ε4R2 + (1− 4ε2)R2 ≥ (1− 4ε2)R.

Theorem 4. Let x0 ∈ S be a point with |AP (x)| ≥ 2 and
hP (x0) = h0, and let x1 = φP (t1, x0) be such that for all
0 ≤ t ≤ t1, cos(θP (φP (t, x0))) ≥ c. If there is a medial
axis point within distance g0 from x0, then there is a medial
axis point within distance g(x) = g0(hP (x1)/x0)

ξ from x1,
provided that ξ ≥ 1

c
(1 + 4ε2h2

0/g
2
0).

Proof. We prove the theorem by showing that as xmoves
along the flow line, there always remains a medial axis point
within distance g0(hP (x)/hP (x0))

ξ from x. We do this by
showing that this proposition is maintained when x moves
infinitesimally along the flow line. To this end, we first re-
call that that the ball Bg(x) is an open ball by definition. If
Bg(x) contains a medial axis point z, then for any direction
vector v, there is a small enough real number τ > 0, such
that the translated ball Bg(x) + τv = {y + τv | y ∈ Bg(x)}
contains z as well. Since g is increasing, this implies that
z ∈ Bg(x + τv). In particular this implies by choosing
v = vP (x) that if Bg(x) contains a medial axis point, so
does Bg(x+ τvP (x)) for τ sufficiently small.

We thus only need to consider the case where Bg(x) con-
tains no medial axis point while its boundary does. Thus,
let z ∈ ∂Bg(x) be a medial axis point. By Lemma 11, if
cos(∠(z − x,−vP (x))) ≤ d

dhP
g(hP (x)), then z is contained

in Bg(x+τvP (x)) for a sufficiently small τ > 0 and therefore
we have nothing to prove. Thus we only need to consider
the case when

cos(∠(z − x,−vP (x))) >
d

dhP
(g(hP (x))

=
ξg0

hP (x0)

„
hP (x)

hP (x0)

«ξ−1

.

We denote this maximum angle by ψ. We show that in this
case, the flow vector v(z) points to the interior of the ball
Bg(x). This implies that the flow φ(z) enters Bg(x) and
therefore by what we showed above, Bg(x) must contain a
medial axis, contradicting our choice of z.

The ball B(x, hP (x)) contains no sample points but in-
cludes z, a medial axis point, and therefore by Lemma 12,
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Figure 6: Proof of Theorem 4. The gray cap repre-
sents D(x).

the ball B0 = B(x, (1 − 4ε2)hP (x)) does not intersect Σ.
Consider the plane Π tangent to ∂Bg(x) at z. This plane,
intersects the ball B0 in a disk of radius

R0 ≥
p

((1− 4ε2)hP (x))2 − g(hP (x))2.

We will show that there are surface points at distance less
than R0 from z, i.e. hS(z) < R0. It can be easily ob-
served that any such surface point must lie on the side
of Π opposite to the one containing Bg(x) and therefore
conv(AP (x)) resides on the side of Π opposite to Bg(x).
Since dP (x) ∈ conv(AP (x)), this implies that v(x) points to
the interior of Bg(x), as desired. So, all left to show is that
hS(z) < R0. To prove this, we show that for at least one
of the points y ∈ AP (x), ‖z − y‖ < R0. Since |AP (x)| ≥ 2,
every plane containing the points x and dP (x) that does not
intersect AP (x) must contain at least one point of AP (x) on
each side. The maximum distance between z and AP (x) can
therefore occur when |AP (x)| = 2 and z is on the bisector
plane of the segment connecting the two points in AP (x). To
find this maximum distance we use a change of coordinates.
Denoting the three coordinate directions by u1, u2, and u3,
we put the origin at x, the driver dP (x) on the u1-axis, the
two points p1, p2 in AP (x) on the u1u2-plane, and z on the
u1u3-plane (See Figure 6). We can calculate the coordinates
of p1, p2, and z as follows:

p1 = (h cos θ, h sin θ, 0),

p2 = (h cos θ,−h sin θ, 0),

z = (g(h) cosψ, 0, g(h) sinψ),

where by θ we denote the the driving angle θP (x) and by h
we denote hP (x). Thus we get for the distance between z
and p1 (same distance between z and p2):

‖z − p1‖2

= (h cos θ − g(h) cosψ)2 + (h sin θ)2 + (g(h) sinψ)2

= h2 + g(h)2 − 2hg(h) cos θ cosψ

Denoting hP (x0) by h0 and hP (x) by h and using the lower

bounds for cosψ and cos θ we get:

‖z − p1‖2

< h2 + g2
0

„
h

h0

«2ξ

− 2chg0

„
h

h0

«ξ
ξg0
h0

„
h

h0

«ξ−1

= h2 + (1− 2cξ)g2
0

„
h

h0

«2ξ

Thus in order for ‖z − p1‖ < R0, it suffices to have

h2 + (1− 2cξ)g2
0

„
h

h0

«2ξ

≤ (1− 4ε2)2h2 − g2
0

„
h

h0

«2ξ

.

Since (1− 4ε2)2 > 1− 8ε2, the above inequality is satisfied
when the following one is:

4ε2h2 ≤ (cξ − 1)g2
0

„
h

h0

«2ξ

.

Since h/h0 ≥ 1, the above inequality holds if g0 ≥
“

2ε√
cξ−1

”
h0.

This is guaranteed by the bound on ξ prescribed in the state-
ment of the Theorem.

Remark. It may appear at first that when g0 goes to zero
the above theorem must guarantee a tighter bound. How-
ever, the reader must notice that g0 also appears in the de-
nominator of the exponent of the given bound. As a result
when the flow line starting at a given x0 is followed the best
bound is not necessarily obtained by using the medial axis
point nearest to x0. In other words, a larger g0 may lead to
a better bound on g.

Corollary 5. Let x be a point in the 2-skeleton of Vor(P )

such that ‖x− x̌‖ ≤ 2
√

ε
1−2

√
ε
hP (x), then for every point y on

the flow path φP (x), there is a medial axis point within dis-
tance

2
√
ε

1− 2
√
ε
hP (x)

„
hP (y)

hP (x)

«ξ

from y, where ξ = 1 +O(
√
ε).

Proof. We first consider the case where y has a driving
angle θ = θP (y) with cos θ ≤ 1 −

√
ε. By Lemma 10, ‖y −

y̌‖ ≤ 2
√
εµ(y), or equivalently, hS(y) ≥ (1−2

√
ε)µ(y). Since

hP (y) ≥ hS(y), we get

‖y − y̌‖ ≤ 2
√
εµ(y) ≤ 2

√
ε

1− 2
√
ε
hS(y) ≤ 2

√
ε

1− 2
√
ε
hP (y).

When the cosine of the medial angle grows above 1 −
√
ε

in a point y along the flow line φP (x), by Theorem 4 there
always is a point within distance

2
√
ε

1− 2
√
ε
hP (x)

„
hP (y)

hP (x)

«ξ

,

from y, where

ξ =
1

1−
√
ε

„
1 + 4ε2

(1− 2
√
ε)2

(2
√
ε)2

«
≤ 1 +O(

√
ε).

An immediate consequence of this corollary is that the
core and the flow closures converge to being contained in the



Figure 7: Left: Core computed for the 3-holes model. The red lines are either unstable manifolds of index-2
saddle points or the one dimensional parts (hairs) of index-1 saddle points. Middle: Filtered Voronoi facets
based on a condition similar to the angle condition of Dey and Zhao. Right: Extended core. the core, plus
the flow closures of the facets in the middle picture.

medial axis as ε→ 0. As a result, when the core is used and
extended using the filtering conditions of [9], the computed
approximate medial axis converges to the true medial axis
in the limit.

5. EXPERIMENTS AND CONCLUSION
We introduced the notion of the “core” as the union of un-

stable manifolds of medial axis critical points of the distance
to and ε-sampling of a surface and established its homo-
topy equivalence to the sampled shape. We further showed
how this core can be safely augmented to provide topologi-
cal guarantee for any algorithm that geometrically approx-
imates (a subset of) the medial axis. Finally we showed
that the computed core and related flow closures do con-
verge to subsets of the medial axis when the input sample
grows infinitely dense. A result of the implementation of
the unstable flow complex data structure, the core, and the
extension of the core using conditions similar to those in [9]
is shown in Figure 7. As can be observed, the extension of
the core has filled the holes in the junctions of the geometric
approximation of the medial axis of the 3-holes model com-
puted by filtering Voronoi facets by a condition similar to
the angle condition in [9].
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