
How Fast is the k-means Method?∗

Sariel Har-Peled† Bardia Sadri‡

Abstract

We present polynomial upper and lower bounds on
the number of iterations performed by the k-means
method (a.k.a. Lloyd’s method) for k-means clustering.
Our upper bounds are polynomial in the number of
points, number of clusters, and the spread of the point
set. We also present a lower bound, showing that in
the worst case the k-means heuristic needs to perform
Ω(n) iterations, for n points on the real line and two
centers. Surprisingly, the spread of the point set in this
construction is polynomial. This is the first construction
showing that the k-means heuristic requires more than
a polylogarithmic number of iterations. Furthermore,
we present two alternative algorithms, with guaranteed
performance, which are simple variants of the k-means
method.

1 Introduction

In a (geometric) clustering problem, we are given a
finite set X ⊂ IRd of n points and an integer k ≥ 2,
and we seek a partition (clustering) S = (S1, . . . , Sk)
of X into k disjoint nonempty subsets along with a
set C = {c1, . . . , ck} of k corresponding centers, that
minimizes a suitable cost function among all such k-
clusterings of X. The cost function typically represents
how tightly each cluster is packed and how separated
different clusters are. A center ci serves the points in
its cluster Si.

We consider the k-means clustering cost func-
tion φ(S, C) =

∑k
i=1 ψ(Si, ci), in which ψ(S, c) =∑

x∈S ‖x− c‖2, where ‖·‖ denotes the Euclidean norm.
It can be easily observed that for any cluster Si,
the point c that minimizes the sum

∑
x∈Si

‖x− c‖2,
is the centroid of Si, denoted by c(Si), and there-

∗The full-version as well as the most up-to-date ver-
sion of this paper is available from the author’s web page:
http://www.uiuc.edu/~sariel/papers/03/lloyd kmeans.

†Department of Computer Science; University of Illi-
nois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;

sariel@cs.uiuc.edu; http://www.uiuc.edu/~sariel/. Work on

this paper was partially supported by a NSF CAREER award
CCR-0132901.

‡Department of Computer Science; University of Illinois; 201

N. Goodwin Avenue; Urbana, IL 61801; USA; http://www.uiuc.
edu/~sadri/; sadri@cs.uiuc.edu.

fore in an optimal clustering, ci = c(Si). Thus
the above cost function can be written as φ(S) =∑k

i=1

∑
x∈Si

‖x− c(Si)‖2.
It can also be observed that in an optimal k-

clustering, each point of Si is closer to ci, the center
corresponding to Si, than to any other center. Thus, an
optimal k-clustering is imposed by a Voronoi diagram
whose sites are the centroids of the clusters. Such
partitions are related to centroidal Voronoi tessellations
(see [4]).

A k-means clustering algorithm that is used widely
because of its simplicity is the k-means heuristic, also
called Lloyd’s method [11]. This algorithm starts with
an arbitrary k-clustering S0 of X with the initial k
centers chosen to be the centroids of the clusters of
S0. Then it repeatedly performs local improvements
by applying the following “hill-climbing” step.

Definition 1.1 Given a clustering S = (S1, . . . , Sk)
of X, a k-Means step returns a clustering S ′ =
(S′1, . . . , S

′
k) by letting S′i equal to the intersection of X

with the cell of c(Si) in the Voronoi partitioning imposed
by centers c(S1), . . . , c(Sk). If a point of X has more
than a single closest center, it is assigned to one of its
incident Voronoi cells arbitrarily. The (new) center of
S′i will be c(S′i).

In a clustering S = (S1, . . . , Sk) of X, a point
x ∈ X is misclassified if there exists 1 ≤ i 6= j ≤ k,
such that x ∈ Si but ‖x− c(Sj)‖ < ‖x− c(Si)‖. Thus a
k-Means step can be broken into two stages: (i) every
misclassified point is assigned to its closest center (with
ties broken arbitrarily), and (ii) all centers are moved
to the centroids of their newly formed clusters.

The k-means algorithm, to which we shall refer as
“k-MeansMtd” throughout this paper, performs the
k-Means step repeatedly and stops when the assign-
ment of the points to the centers does not change from
that of the previous step. This happens when there re-
mains no misclassified points and consequently in the
last k-Means step S ′ = S. Clearly the clustering cost
is reduced when each point is mapped to the closest cen-
ter and also when each center moves to the centroid of
the points it serves. Thus, the clustering cost is strictly
reduced in each of the two stages of a k-Means step.

http://www.uiuc.edu/~sariel/papers/03/lloyd_kmeans
http://www.uiuc.edu/~sadri/
http://www.uiuc.edu/~sadri/

This in particular implies that no clustering can be seen
twice during the course of execution of k-MeansMtd.
Since there are only finitely many k-clusterings, the al-
gorithm terminates in finite time.

vThe algorithm k-MeansMtd and its variants
are widely used in practice [5]. Convergence and
consistency of k-MeansMtd in probabilistic settings
is studied in [12] and [15]. It is known that the output
of k-MeansMtd is not necessarily a global minimum,
and it can be arbitrarily bad compared to the optimal
clustering. Furthermore, the answer returned by the
algorithm and the number of steps depend on the initial
choice of the centers, i.e. the initial clustering [9]. These
shortcomings of k-MeansMtd has led to development
of efficient polynomial approximation schemes for the
k-means clustering problem both in low [13, 6, 7,
10] and high dimensions [3]. Unfortunately, those
algorithms have had little impact in practice, as they are
complicated and probably impractical because of large
constants. A more practical local search algorithm,
which guarantees a constant factor approximation, is
described by Kanungo et al. [9].

Up to this point, no meaningful theoretical bound
was known for the number of steps k-MeansMtd can
take to terminate in the worst case. Inaba et al. [8]
observe that the number of distinct Voronoi partitions
of a given n-point set X ⊂ IRd induced by k sites is at
most O(nkd) which gives a trivial similar upper bound
on the number of steps of k-MeansMtd (by observing
that the clustering cost monotonically decreases and
thus no k-clustering can be seen twice). However,
the fact that k in typical application can be in the
hundreds together with the relatively fast convergence
of k-MeansMtd observed in practice, make this bound
somewhat meaningless. The difficulty of proving any
super-linear lower bound further suggests the looseness
of this bound.

Our contribution. It thus appears that the
combinatorial behavior of k-MeansMtd is far from
being well understood. Motivated by this, in this paper
we provide a lower bound and several upper bounds on
the number of iterations performed by k-MeansMtd
and some of its close variants. To our knowledge, our
lower bound is the first that is super-polylogarithmic.
Our upper bounds are polynomial in the spread ∆ of
the input point set, k, and n (the spread of a point
set is the ratio between its diameter and the distance
between its closest pair). The bounds are meaningful
(i.e., polynomial) for most inputs.

In Section 2, we present an Ω(n) lower bound on
the number of iterations performed by k-MeansMtd.
More precisely, we show that for an adversarially chosen
initial two centers and a set of n points on the line, k-

MeansMtd takes Ω(n) steps. Note, that this matches
the straightforward upper bound on the number of
Voronoi partitions in one dimension with two centers,
which is O(n).

In Section 3, we provide a polynomial upper bound
for the one-dimensional case. In Section 4, we provide
an upper bound for the case where the points lie on a
grid. In Section 5, we investigate two alternative algo-
rithms, and provide polynomial upper bounds on the
number of iterations they perform. Those algorithms
are minor modifications of k-MeansMtd algorithm,
and we believe that their analysis provides an insight
about the behavior of k-MeansMtd. In Section 6, we
conclude by mentioning a few open problems and a dis-
cussion of our results.

2 Lower Bound Construction for Two Clusters
in One Dimension

In this section, we describe a set of 2n points, along
with an initial pair of centers, on which k-MeansMtd
takes Ω(n) steps.

Fix n ≥ 2. Our set X will consist of 2n numbers
y1 < · · · < yn < xn < · · · < x1 with yi = −xi, for
i = 1, . . . , n.

At the ith iteration, we denote by li and ri the
current left and right centers, respectively, and by Li

and Ri the new sets of points assigned to li and ri,
respectively. Furthermore, for each i ≥ 0, we denote
by αi the Voronoi boundary 1

2 (li + ri) between the
centers li and ri. Thus Li = {x ∈ X | x < αi} and
Ri = {x ∈ X | x ≥ αi}.

Let x1 be an arbitrary positive real number and let
x2 < x1 be a positive real number to be specified shortly.
Initially, we let l1 = x2 and r1 = x1 and consequently
α1 = 1

2 (x1 + x2). Thus in the first iteration, L1 =
{y1, . . . , yn, xn, . . . , x2} and R1 = {x1}. We will choose
x2, . . . , xn such that at the end of the ith step we have
Li = {y1, . . . , yn, xn, . . . , xi+1} and Ri = {xi, . . . , x1}.
Suppose for the inductive hypothesis that at the (i−1)th
step we have Li−1 = {y1, . . . , yn, xn, . . . , xi+1, xi} and
Ri−1 = {xi−1, . . . , x1}.

Thus we can compute li and ri as

li =
y1 + · · ·+ yn + xn + · · ·+ xi

2n− i+ 1

and

ri =
xi−1 + · · ·+ x1

i− 1
.

Since y1 + · · ·+ yn + xn + · · ·+ xi = −(xi−1 + · · ·+ x1),

we get for αi:

αi =
1
2
(li + ri)

=
1
2

(
xi−1 + · · ·+ x1

i− 1
− xi−1 + · · ·+ x1

2n− i+ 1

)
=

n− i+ 1
(i− 1)(2n− i+ 1)

(xi−1 + · · ·+ x1)

=
n− i+ 1

(i− 1)(2n− i+ 1)
· si−1,

where si−1 =
∑i−1

j=1 xj .
To guarantee that only xi deserts Li−1 to Ri, in the

ith iteration, we need that xi+1 < αi < xi. Thus, it is
natural to set xi = τiαi, where τi > 1, for i = 1, . . . , n.
Picking the coefficients τ1, . . . , τn is essentially the only
part of this construction that is under our control. We
set

τi = 1 +
1

n− i+ 1
=
n− i+ 2
n− i+ 1

,

for i = 1, . . . , n. Since τi > 1, xi = τiαi > αi, for
i = 1, . . . , n. Next, we verify that xi+1 < αi. By
definition,

xi+1 = τi+1αi+1 = τi+1 ·
n − i

i(2n − i)
· si

= τi+1 ·
n − i

i(2n − i)
· (xi + si−1)

= τi+1 ·
n − i

i(2n − i)

„
τi +

(i − 1)(2n − i + 1)

n − i + 1

«
αi

=
n − i + 1

i(2n − i)

„
n − i + 2

n − i + 1
+

(i − 1)(2n − i + 1)

n − i + 1

«
αi.

It can be verified through elementary simplifications
that the coefficient of αi above is always less than 1
implying that xi+1 < αi < xi, for i = 1, . . . , n− 1.

We can compute a recursive formula for xi+1 in
terms of xi, as follows

xi+1 = τi+1αi+1 =
n − i + 1

n − i
· n − i

i(2n − i)
· si

=
n − i + 1

i(2n − i)
· (xi + si−1)

=
n − i + 1

i(2n − i)

„
xi +

(i − 1)(2n − i + 1)

n − i + 1
· αi

«
=

n − i + 1

i(2n − i)

„
xi +

(i − 1)(2n − i + 1)

n − i + 1

·
„

1 +
1

n − i + 1

«−1

xi

«
=

n − i + 1

i(2n − i)

„
1 +

(i − 1)(2n − i + 1)

n − i + 2

«
· xi,

for i = 1, . . . , n− 1. Thus letting

βi =
n− i+ 1
i(2n− i)

(
1 +

(i− 1)(2n− i+ 1)
n− i+ 2

)

we get that

(2.1) xi+1 = βixi,

for i = 1, . . . , n− 1.

Theorem 2.1 For each n ≥ 2, there exists a set of
2n points on a line with two initial center positions for
which k-MeansMtd takes exactly n steps to terminate.

2.1 The Spread of the Point Set. It is interesting
to examine the spread of the above construction. As we
show below, somewhat surprisingly, the spread of this
construction is polynomial, hinting (at least intuitively)
that “bad” inputs for k-MeansMtd are, arguably, not
that contrived.

By Eq. (2.1), we have xi+1 = βixi. Notice that by
the given construction βi < 1 for all i = 1, . . . , n − 1
since xi+1 < xi. In the sequel we will show that xn

is only polynomially smaller than x1, namely xn =
Ω(x1/n

4). We then derive a bound on the distance
between any consecutive pair xi and xi+1. These two
assertions combined, imply that the point set has a
spread bounded by O(n5). The following lemma follows
from elementary algebraic simplifications.

Lemma 2.1 For each 1 ≤ i ≤ n/2, βi ≥ (1− 1/i)2,
and for each n/2 < i < n−1, βi ≥(1− 1/(n− i+ 1))2.
Furthermore, for i ≥ 2, we have βi ≤ 1− 1/2i.

Corollary 2.1 For any n > 0 we have xn = Ω(x1/n
4).

Proof. xn = β1 ·
n−1Y
i=2

βi · x1

≥ β1x1 ·
bn/2cY
i=2

„
1 − 1

i

«2

·
n−1Y

i=bn/2c+1

„
1 − 1

n − i + 1

«2

= β1x1 ·
„

1 − 1

2

«2

. . .

„
1 − 1

bn/2c

«2

·
„

1 − 1

bn/2c

«2

. . .

„
1 − 1

2

«2

= β1x1 ·

0@bn/2cY
i=2

(i − 1)2

i2

1A2

= β1x1 ·
„

1

bn/2c

«4

The claim follows as β1 = n/(2n− 1) = Θ(1).

Lemma 2.2 For each i = 1, . . . , n − 1, xi − xi+1 ≥
xi/3i.

Proof. Since xi+1 = βixi, we have xi−xi+1 = xi(1−βi).
For i = 1, we have β1 = n/(2n− 1) ≤ 2/3, when n ≥ 2.

Thus, we have x1 − x2 ≥ x1/3. For i = 2, . . . , n − 1,
using Lemma 2.1 we get 1−βi ≥ 1/2i. Thus, xi−xi+1 =
xi(1− βi) ≥ xi · 1/(2i) > xi/3i, as claimed.

Theorem 2.2 The spread of the point set constructed
in Theorem 2.1 is O(n5).

Proof. By Lemma 2.2, for each i = 1, . . . , n − 1, xi −
xi+1 ≥ xi/3i. Since xi > xn and by Corollary 2.1,
xn = Ω(x1/n

4), it follows that xi − xi+1 = Ω(x1/n
5).

This lower bound for the distance between two consecu-
tive points is also true for yi’s due to the symmetric con-
struction of the point set around 0. On the other hand,
since xn = Ω(x1/n

4), xn − yn = 2xn = Ω(x1/n
4). Thus

every pair of points are at distance at least Ω(x1/n
5).

Since the diameter of the point set is 2x1, we get a
bound of O(n5) for the spread of the point set.

3 An Upper Bound for One Dimension

In this section, we prove an upper bound on the number
of steps of k-MeansMtd in one dimensional Euclidean
space. As we shall see, the bound does not involve k
but is instead related to the spread ∆ of the point set
X. Without loss of generality we can assume that the
closest pair of points in X are at distance 1 and thus the
diameter of the set X is ∆. Before proving the upper
bound, we mention a straightforward technical lemma
from [9].

Lemma 3.1 ([9]) Let S be a set of points in IRd with
centroid c = c(S) and let z be an arbitrary point in IRd.
Then ψ(S, z)− ψ(S, c) = |S| · ‖c− z‖2.

The above lemma quantifies the contribution of a
center ci to the cost improvement in a k-Means step
as a function of the distance it moves. More formally,
if in a k-Means step a k-clustering S = (S1, . . . , Sk)
is changed to the other k-clustering S ′ = (S′1, . . . , S

′
k),

then

φ(S)− φ(S ′) ≥
k∑

i=1

|S′i| · ‖c(S′i)− c(Si)‖
2
.

Note that in the above analysis we only consider the
improvement resulting from the second stage of the k-
Means step in which the centers are moved to the
centroids of their clusters. There is an additional gain
from reassigning the points in the first stage of a k-
Means step that we currently ignore.

In all our upper bound arguments we use the fact
that since the initial set of centers is chosen from inside
the convex hull of the input point set X (the initial
centers are the centroid of the initial arbitrary clustering
and even if this was not the case, all centers would move

inside the convex hull of X after one step), the initial
clustering cost is no more than n∆2. This simply follows
from the fact that each of the n points inX is at distance
no more than ∆ from its assigned center.

Theorem 3.1 The number of steps of k-MeansMtd
on a set X ⊂ IR of n points with spread ∆ is at most
O(n∆2).

Proof. Consider a k-Means step that changes a k-
clustering S into another k-clustering S ′. The crucial
observation is that in this step, there exists a cluster
that is only extended or shrunk from its right end. To
see this consider the leftmost cluster S1. Either S1 is
modified in this step, in which case this modification
can only happen in form of extension or shrinking at its
right end, or it remains the same. In the latter case, the
same argument can be made about S2, and so on.

Thus assume that S1 is extended from right by
receiving a set T or points from the cluster directly to
its right, namely S2 (S2 cannot lose all its points to
S1 as it has at least one point to the right of c2 and
this point is closer to c2 than to c1 and cannot go to
S1). Notice that c(T) is to the right of the leftmost
point in T and at distance at least (|T | − 1)/2 from
this leftmost point (because every pair of points are
at distance one or more in T and c(T) gets closest
to its leftmost point when every pair of consecutive
points in T are placed at the minimum distance of 1
from each other). Similarly, the centroid of S1 is to
the left of the rightmost point of S1 and at distance
at least (|S1| − 1)/2 from it. Thus, ‖c(S1)− c(T)‖ ≥
(|T | − 1)/2 + (|S1| − 1)/2 + 1 = (|T | + |S1|)/2, where
the extra 1 is added because the distance between the
leftmost point in T and the rightmost point in S1 is at
least 1. The centroid of S′1 will therefore be at distance

|T |
|S1|+ |T |

‖c(S1)− c(T)‖

≥ |T |
|S1|+ |T |

· |T |+ |S1|
2

=
|T |
2

≥ 1
2

from c(S1) and to its right. Consequently, by
Lemma 3.1, the improvement in clustering cost is at
least 1/4.

Similar analysis implies a similar improvement in
the clustering cost for the case where we remove points
from S1. Since the initial clustering cost is at most n∆2,
the number of steps is no more than n∆2/(1/4) = 4n∆2.

Remark 1. The choice of n∆2 as an upper-bound
for the initial clustering cost in proving Theorem 3.1 as
well as all other upper bounds proved later in this paper

can be slightly improved, tightening these upper bounds
accordingly.

Since the initial centers are centroids of their clus-
ters in the initial clustering, at the beginning of the first
step, we have a clustering S = (S1, . . . , Sk) of the input
point set X with centers c1, . . . , ck, respectively, where
for each i = 1, . . . , k, ci = c(Si). Let ĉ = c(X) be the
centroid of the entire input point set. By Lemma 3.1,
we can write

ψ(Si, ci) = ψ(Si, ĉ)− |Si| · ‖ĉ− ci‖2
,

for 1 ≤ i ≤ k. Summing this equation, for i = 1, . . . , k,
we get

φ(S) =
∑
x∈X

‖x− ĉ‖2 −
k∑

i=1

|Si| . ‖ĉ− ci‖2

<
∑
x∈X

‖ĉ− x‖2 =
1
n

∑
x,y∈X

‖x− y‖2
.

Thus, we get the more accurate upper bound of
1/n

∑
x,y∈X ‖x− y‖2 that can replace the trivial bound

of n∆2. Note that depending on the input, this im-
proved upper bound can be smaller than n∆2 by a fac-
tor of O(n). Nevertheless, in all our upper bound results
we employ the weaker bound for the purpose of read-
ability, while all those bounds can be made more precise
by applying the above-mentioned improvement.

Remark 2. A slight technical detail in the
implementation of k-MeansMtd algorithm, involves
the event of a center losing all the points it serves.
Candidate strategies used in practice to handle this
problem include: placing the lonely center somewhere
else arbitrarily or randomly, leaving it where it is
to perhaps acquire some points in future steps, or
completely removing it. For the sake of convenience
in our analysis and in agreement with [11], we adopt
the last strategy, namely, whenever a center is left
serving no points, we remove that center permanently
and continue with the remaining centers.

4 Upper Bound for Points on a d-Dimensional
Grid

In this section, we prove an upper bound on the number
of steps of k-MeansMtd when the input points belong
to the integer grid {1, . . . ,M}d. This is the case in many
practical applications where every data point has a large
number of fields with each field having values in a small
discrete range. For example, this includes clustering
of pictures, where every pixel forms a single coordinate
(or three coordinates, corresponding to the RGB values)
and the value of every coordinate is restricted to be an
integer in the range 0–255.

The main observation is that the centroids of any
two subsets of {1, . . . ,M}d are either equal or are
suitably far away. Since each step of k-MeansMtd
moves at least one center or else stops, this observation
guarantees a certain amount of improvement to the
clustering cost in each step.

Lemma 4.1 Let S1 and S2 be two nonempty subsets
of {1, . . . ,M}d with |S1| + |S2| ≤ n. Then, either
c(S1) = c(S2) or ‖c(S1)− c(S2)‖ ≥ 1/n2.

Proof. If c(S1) 6= c(S2) then they differ in at least
one coordinate. Let u1 and u2 be the values of c(S1)
and c(S2) in one such coordinate, respectively. By
definition, u1 = s1/|S1| and u2 = s2/|S2| where s1
and s2 are integers in the range {1, . . . , nM}. In other
words |u1−u2| is the difference of two distinct fractions,
both with denominators less than n. It follows that
|u1 − u2| ≥ 1/n2 and consequently ‖c(S1)− c(S2)‖ ≥
|u1 − u2| ≥ 1/n2.

Theorem 4.1 The number of steps of k-MeansMtd
when executed on a point set X taken from the grid
{1, . . . ,M}d is at most dn5M2.

Proof. Note, that U = n · (
√
dM)2 = ndM2 is an upper

bound of for the clustering cost of any k-clustering of
a point set in {1, . . . ,M}d and that at each step at
least one center moves by at least 1/n2. Therefore, by
Lemma 3.1, at every step the cost function decreases by
at least 1/n4 and the overall number of steps can be no
more than U/(1/n4) = dn5M2.

5 Arbitrary Point Sets and Alternative
Algorithms

Unfortunately proving any meaningful bounds for the
general case of k-MeansMtd, namely with points in
IRd with d > 1 and no further restrictions, remains
elusive. However, in this section, we present two close
relatives of k-MeansMtd for each of which we can
bound the number of steps by a polynomial in the
number of points, number of centers, and the spread
of the point set. The first algorithm differs from k-
MeansMtd in that it moves a misclassified point to
its correct cluster, as soon as the misclassified point
is discovered (rather than first finding all misclassified
points and then reassigning them to their closest centers
as is the case in k-MeansMtd). The second algorithm
is basically the same as k-MeansMtd using a natural
generalization of misclassified points. Our experimental
results, reported in the full-version of this paper, further
support the kinship of these two algorithms with k-
MeansMtd.

As was the case with our previous upper bounds,
our main approach in bounding the number of steps in
both these algorithms is through showing substantial
improvements in the clustering cost at each step.

5.1 The SinglePnt Algorithm. We introduce an
alternative to the k-Means step which we shall call a
SinglePnt step.

Definition 5.1 In a SinglePnt step on a k-clustering
S = (S1, . . . , Sk), a misclassified point x is chosen, such
that x ∈ Si and ‖x− c(Sj)‖ < ‖x− c(Si)‖, for some
1 ≤ i 6= j ≤ k, and a new clustering S ′ = (S′1, . . . , S

′
k)

is formed by removing x from Si and adding it to Sj.
Formally, for each 1 ≤ l ≤ k,

S′l =

 Sl l 6= i, j,
Sl \ {x} l = i,
Sl ∪ {x} l = j.

The centers are updated to the centroids of the clusters,
and therefore only the centers of Si and Sj change. Note
that updating the centers takes constant time.

In a SinglePnt step, if the misclassified point is
far away from at least one of c(Si) and c(Sj), then the
improvement in clustering cost made in the SinglePnt
step cannot be too small.

Lemma 5.1 Let S and T be two point sets of sizes n
and m, respectively, and let s = c(S) and t = c(T).
Suppose that x is a point in T with distances dS and dT

from s and t, respectively, and such that dS < dT . Let
S′ = S ∪ {x} and T ′ = T \ {x} and let s′ = c(S′) and
t′ = c(T ′). Then ψ(S, s)+ψ(T, t)−ψ(S′, s′)−ψ(T ′, t′) ≥
(dS + dT)2/(2(n+m)).

Proof. Indeed, c(S′) = n
n+1c(S) + 1

n+1x. Thus

‖s− s′‖ = ‖c(S)− c(S′)‖ =
∥∥∥∥ 1
n+ 1

c(S)− 1
n+ 1

x

∥∥∥∥
=

1
n+ 1

‖c(S)− x‖ =
dS

n+ 1
.

Similarly, ‖t− t′‖ = dT /(m − 1). By Lemma 3.1 we
obtain

ψ(S′, s)− ψ(S′, s′) = (n+ 1)
(

dS

n+ 1

)2

=
d2

S

n+ 1
,

and similarly ψ(T ′, t)− ψ(T ′, t′) = d2
T /(m− 1).

Since dS < dT , we have that ψ(S, s) + ψ(T, t) ≥

ψ(S′, s) + ψ(T ′, t), and

ψ(S, s) + ψ(T, t)− ψ(S′, s′)− ψ(T ′, t′)
≥ ψ(S′, s) + ψ(T ′, t)− ψ(S′, s′)− ψ(T ′, t′)

≥ d2
S

n+ 1
+

d2
T

m− 1
≥ d2

S

n+m
+

d2
T

n+m

=
d2

S + d2
T

n+m
≥ (dS + dT)2

2(n+m)
.

Our modified version of k-MeansMtd, to which we
shall refer as “SinglePnt”, replaces k-Means steps
with SinglePnt steps. Starting from an arbitrary
clustering of the input point set, SinglePnt repeatedly
performs SinglePnt steps until no misclassified points
remain. Notice that unlike the k-Means step, the
SinglePnt step does not maintain the property that
the clustering achieved at the end of the step is imposed
by some Voronoi diagram. However, this property
must hold when the algorithm stops, or otherwise some
misclassified points would exist and further steps would
be possible.

Theorem 5.1 On any input X ⊂ IRd, SinglePnt
makes at most O(kn2∆2) steps before termination.

Proof. Once again, we assume that no two points in X
are less than unit distance apart. Call a SinglePnt
step weak, if the misclassified point it considers is at
distance less than 1/8 from both involved centers, i.e.,
its current center and the center closest to it. We
call a SinglePnt step strong if it is not weak. Since
in a strong SinglePnt step, the sum of distances of
the misclassified point to the involved centers is at
least 1/8, and the two involved clusters have at most
n points combined, it follows by Lemma 5.1 that in
such a step the clustering cost improves by at least
(1/8)2/(2n) = 1/(128n). In the sequel we shall show
that the algorithm cannot take more than k consecutive
weak steps, and thus at least one out of every k + 1
consecutive steps must be strong and thus result an
improvement of 1/(128n) to the clustering cost; hence
the upper bound of O(kn2∆2).

Consider the beginning of a of SinglePnt step. Let
c1, . . . , ck denote the current centers, and let S1, . . . , Sk

denote the corresponding clusters; namely, Si is the set
of points served by ci, for i = 1, . . . , k. Consider the
balls B1, . . . , Bk of radius 1/8 centered at c1, . . . , ck,
respectively. Observe that since every pair of points
in X are at distance at least 1 from each other, each
ball Bi can contain at most one point of X. Moreover,
the intersection of any subset of the balls B1, . . . , Bk

can contain at most one point of X. For a point x ∈ X,
let B(x) denote the set of balls among B1, . . . , Bk that
contain the point x. We refer to B(x) as the batch of x.

By the above observation, the balls (and the corre-
sponding centers) are classified according to the point
of X they contain (if they contain such a point at
all). Let BX be the set of batches of balls that are in-
duced by X and contain more than one ball. Formally,
BX = {B(x) : x ∈ X, |B(x)| > 1}. The set of balls

⋃
BX

is the set of active balls.
A misclassified point x can participate in a weak

SinglePnt step only if it belongs to more than one
ball; i.e., when |B(x)| > 1. Observe that, if we perform
a weak step, and one of the centers moves such that the
corresponding ball Bi no longer contains any point of
X in its interior, then for Bi to contain a point again,
the algorithm must perform a strong step. To see this,
observe that (weakly) losing a point x may cause a
center move a distance of at most 1/8. Therefore, once
a center ci loses a point x, and thus moves away from x,
it does not move far enough for the ball Bi to contain a
different point of X.

Hence, in every weak iteration a point x changes
the cluster it belongs to in B(x). This might result in a
shrinking of the active set of balls. On the other hand,
while only weak SinglePnt steps are being taken, any
cluster Sj can change only by winning or losing the
point xi that stabs the corresponding ball Bj . It follows
that once a set Sj loses the point x, then it can never
get it back since that would correspond to an increase
in the clustering cost. Therefore the total number of
possible consecutive weak SinglePnt steps is bounded
by

∑
x∈X,|B(x)|>1 |B(x)| ≤ k.

5.2 The Lazy-k-Means algorithm. Our second
variant to k-MeansMtd, which we name “Lazy-k-
Means”, results from a natural generalization of mis-
classified points (Definition 1.1). Intuitively, the differ-
ence between the Lazy-k-Means and k-MeansMtd is
that Lazy-k-Means at each step only reassigns those
misclassified points to their closest centers that are sub-
stantially misclassified, namely the points that benefit
from reclassification by at least a constant factor.

Definition 5.2 Given a clustering S = (S1, . . . , Sk)
of a point set X, if for a point x ∈ Si there exists
a j 6= i, such that ‖x− c(Si)‖ > (1 + ε) ‖x− c(Sj)‖,
then x is said to be (1 + ε)-misclassified for center pair
(c(Si), c(Sj)). The centers c(Si) and c(Sj) are referred
to as switch centers for x. We also say that c(Si) is the
losing center and c(Sj) is the winning center for x.

Thus Lazy-k-Means with parameter ε starts with
an arbitrary k-clustering. In each step, it (i) reassigns
every (1+ε)-misclassified point to its closest center and
(ii) moves every center to the centroid of its new cluster.
Indeed, k-MeansMtd is simply Lazy-k-Means with

parameter ε = 0. Naturally, the algorithm stops when
no (1 + ε)-misclassified points are left.

In the sequel we bound the maximum number of
steps taken by Lazy-k-Means. We shall use the
following fact from elementary Euclidean geometry.

Fact 5.1 Given two points c and c′ with ‖c− c′‖ = `,
the locus of the points x with ‖x− c′‖ > (1 + ε) ‖x− c‖
is an open ball of radius R = `(1 + ε)/(ε(2 + ε)) called
the ε-Apollonius ball for c with respect to c′. This ball
is centered on the line containing the segment cc′ at
distance R+ `ε/(2(2 + ε)) from the bisector of cc′, and
on the same side of the bisector as c.

Lemma 5.2 For any three points x, c, and c′ in IRd

with ‖x− c‖ ≤ ‖x− c′‖ we have ‖x− c′‖2 −‖x− c‖2 =
2h ‖c− c′‖, where h is the distance from x to the bisector
of c and c′.

Proof. Let y be the intersection point of the segment cc′
with the (d− 1)-dimensional hyperplane parallel to the
bisector of c and c′ and containing x. By Pythagorean
equality we have ‖x− c‖2 = ‖x− y‖2 + ‖y − c‖2 and
‖x− c′‖2 = ‖x− y‖2 + ‖y − c′‖2. Subtracting the first
equality from the second, we obtain‚‚x − c′

‚‚2 − ‖x − c‖2

=
‚‚y − c′

‚‚2 − ‖y − c‖2

= (
‚‚y − c′

‚‚ + ‖y − c‖)(
‚‚y − c′

‚‚ − ‖y − c‖)
= 2h

‚‚c − c′
‚‚ ,

since ‖y − c′‖ − ‖y − c‖ = 2h.

Theorem 5.2 For ε > 0, the number of steps of Lazy-
k-Means is O(n∆2ε−3).

Proof. We will show that every two consecutive steps of
Lazy-k-Means make an improvement of at least

λ∗ =
ε3(2 + ε)

256(1 + ε)2
≥ ε3

512
= Ω(ε3).

Let `0 = ε(2 + ε)/(16(1 + ε)). Notice that `0 < 1/8
for 0 < ε ≤ 1. We call a misclassified point x strongly
misclassified, if its switch centers c and c′ are at distance
at least `0 from each other, and weakly misclassified
otherwise.

If at the beginning of a Lazy-k-Means step there
exists a strongly misclassified point x for a center
pair (c, c′), then since every point in the ε-Apollonius
ball for c′ with respect to c is at distance at least
`0ε/(2(2+ε)) from the bisector of cc′, by Lemma 5.2 the
reclassification improvement in clustering cost resulting
from assigning x to c′ is

‖x− c‖2 − ‖x− c′‖2 =
`20ε

2 + ε
≥ ε3(2 + ε)

256(1 + ε)2
= λ∗.

Thus we assume that all misclassified points are
weakly misclassified. Let x be one such point for center
pair (c, c′). By our assumption ‖c− c′‖ < `0. Observe
that in such a case, the radius of the ε-Apollonius ball
for c′ with respect to c is `(1 + ε)/(ε(2 + ε)) < 1/16.
In particular, since there exists a ball of radius 1/16
containing both x and c′, the ball of radius 1/8 centered
at c′, which we denote by B(c′, 1/8), includes x. Also
since ‖c− c′‖ < 1/8 as verified above, we get c ∈
B(c′, 1/8) as well. In other words, both switch centers c
and c′ are at distance less than 1/4 from x. Now, since
every pair of points in X are at distance 1 or more, any
center can be a switch center for at most one weakly
misclassified point. This in particular implies that in the
considered Lazy-k-Means step, no cluster is modified
by more than a single point.

When the misclassified points are assigned to their
closest centers, the centers that do not lose or win any
points stay at their previous locations. A center c′ that
wins a point x moves closer to x since x is the only
point it wins while losing no other points. Similarly,
a center c that loses a point x moves away from x
since x is the only point it loses without winning any
other points. A losing center c moves away from its
lost point x by a distance of at most ‖c− x‖ < 1/4
since its previous number of served points was at least
2 (otherwise, we would have c = x and thus x could
not be misclassified). Therefore, when c moves to the
centroid of its cluster (now missing x), ‖x− c‖ < 1/2
and consequently ‖c− y‖ > 1/2 for any x 6= y ∈ X. As
a result, c can not be a switch center for any weakly
misclassified point in the subsequent Lazy-k-Means
step.

On the other hand, the winning center c′ to whose
cluster x is added, moves closer to x and since no center
other than c and c′ in B(x, 1/4) moves (as there is no
point other than x they can win or lose), x will not be
misclassified in the next Lazy-k-Means step.

It follows from the above discussion that the next
Lazy-k-Means step cannot have any weakly misclassi-
fied points and thus either the algorithm stops or some
strongly misclassified point will exist, resulting an im-
provement of at least λ∗. Thus the total number of steps
taken by Lazy-k-Means with parameter ε is at most
2n∆2/λ∗ = O(n∆2ε−3).

6 Conclusions

We presented several results on the number of itera-
tions performed by the k-MeansMtd clustering algo-
rithm. To our knowledge, our results are the first to
provide combinatorial bounds on the performance of k-
MeansMtd. We also suggested related variants of k-
MeansMtd algorithm, and proved upper bounds for

their performance. We implemented those algorithms
and compared their performance in practice [16]. We
conjecture that the upper bounds we proved for Sin-
glePnt hold also for k-MeansMtd. Maybe the most
surprising part in those bounds for the number of iter-
ations performed is the lack of dependence on the di-
mension of the data.

We consider this paper to be a first step in under-
standing the k-means method. It is our belief that both
our lower and upper bounds are loose, and one might
need to use other techniques to improve them. In par-
ticular, we mention some open problems:

1. There is still a large gap between our lower
and upper bounds. In particular, a super-linear
lower bound would be interesting even in high-
dimensional space.

2. Our current upper bounds include the spread as
a parameter. It would be interesting to prove (or
disprove) that this is indeed necessary.

3. We have introduced alternative, easy to analyze al-
gorithms, that are rather close to k-MeansMtd in
their description. We have performed a series of ex-
periments to compare these alternative algorithms
with k-MeansMtd [16] and the results of these ex-
periments on several artificial and real-world point-
sets are reported in the full-version of this paper.
These results suggest that these alternative algo-
rithms perform quite closely to k-MeansMtd both
in the number of steps they take and the quality of
the clustering they produce. It would be interesting
to show provable connections between these algo-
rithms and compare the bounds on the number of
steps they require to terminate.

6.1 Dependency on the spread. A shortcoming
of our results, is the dependency on the spread of the
point set in the bounds presented. However:

1. This can be resolved by doing a preprocessing
stage, snapping together points close to each other,
and breaking the input into several parts to be
further clustered separately. This is essentially
what fast provable approximation algorithms for
TSP, k-means, and k-median do [1, 7]. This results
in point sets with polynomial spread, which can
be used instead of the original input to compute a
good clustering. This is outside the scope of our
analysis, but it can be used in practice to speedup
k-MeansMtd algorithm.

2. In high dimensions, it seems that in many natural
cases the spread tends to shrink and be quite small.

As such, we expect our bounds to be meaningful in
such cases.
To see an indication of this shrinkage in the spread,
imagine picking n points randomly from a unit hy-
percube in IRd with volume one. It is easy to see
that the minimum distance between any pair of
points is going to be at least L = 1/n3/d, with
high probability, since if we center around each such
point a hypercube of side length L, it would have
volume 1/n3 of the unit hypercube. As such, the
probability of a second point falling inside this re-
gion is polynomially small.
However, L tends to 1 as d increases. Thus, for
d = Θ(log n) the spread of such random point set
is Θ(

√
d/(L/2)) = Θ(

√
log n). (An alternative way

to demonstrate this is by picking points randomly
from the unit hypersphere. By using a concentra-
tion of mass argument [14] on a hypersphere, we get
a point-set with spread O(1) with high probability.)

6.2 Dependency on the initial solution. The
initial starting solution fed into k-MeansMtd is critical
in the time it takes to converge, and in the quality of
the final clustering generated. Of course, one can use
a (rough) approximation algorithm [7] to come up with
a better starting solution. While this approach might
be useful in practice, it again falls outside the scope of
our analysis.

In particular, it would be nice to improve our lower
bound, so that it holds, with reasonable probability, for
randomly chosen initial solution.

6.3 Similar results. Recently, independently of
our results, Sanjoy Dasgupta [2] announced results
which are similar to a subset of our results. In particu-
lar, he mentions the one-dimensional lower bound, and
a better upper bound for k < 5 but only in one dimen-
sion. This work of Sanjoy Dasgupta and Howard Karloff
seems to be using similar arguments to ours (personal
communication) although to our knowledge it has not
been written or published yet.

Acknowledgments

The authors would like to thank Pankaj K. Agarwal,
Boris Aronov and David Mount for useful discussions
of problems studied in this paper and related problems.
In particular, David Mount provided us with the test
point sets used in [9]. The authors would also like to
thank the referees for their comments.

References

[1] S. Arora. Polynomial time approximation schemes for
euclidean tsp and other geometric problems. J. Assoc.
Comput. Mach., 45(5):753–782, Sep 1998.

[2] S. Dasgupta. How fast is k-means? In Proc. 16th
Annu. Comp. Learn. Theo., number 2777 in Lect.
Notes in Comp. Sci., page 735, 2003.

[3] W. F. de la Vega, M. Karpinski, C. Kenyon, and
Y. Rabani. Approximation schemes for clustering
problems. In Proc. 35th Annu. ACM Sympos. Theory
Comput., pages 50–58, 2003.

[4] Q. Du, V. Faber, and M. Gunzburger. Centroidal
voronoi tessellations: Applications and algorithms.
SIAM Review, 41(4):637–676, 1999.

[5] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley-Interscience, New York, 2nd
edition, 2001.

[6] M. Effros and L. J. Schulman. Deterministic clustering
with data nets. Manuscript, 2003.

[7] S. Har-Peled and S. Mazumdar. Coresets for k-
means and k-median clustering and their applications.
In Proc. 36th Annu. ACM Sympos. Theory Comput.,
pages 291–300, 2004.

[8] M. Inaba, N. Katoh, and H. Imai. Applications
of weighted voronoi diagrams and randomization to
variance-based k-clustering. In Proc. 10th Annu. ACM
Sympos. Comput. Geom., pages 332–339, 1994.

[9] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.
Piatko, R. Silverman, and A. Y. Wu. A local search
approximation algorithm for k-means clustering. In
Proc. 18th Annu. ACM Sympos. Comput. Geom., pages
10–18, 2002.

[10] A. Kumar, Y. Sabharwal, and S. Sen. A simple
linear time (1+ε)-approximation algorithm for k-means
clustering in any dimensions. In Proc. 45th Annu.
IEEE Sympos. Found. Comput. Sci., page to appear,
2004.

[11] S. Lloyd. Least squares quantization in pcm.
IEEE Transactions on Information Theory, 28:129–
137, 1982.

[12] J. MacQueen. Some methods for classifications and
analysis of multivariate observations. In Proc. fifth
Berkeley symp. math. stat. and prob., pages 281–297.
Unversity of California Press, Berkeley, 1967.

[13] J. Matoušek. On approximate geometric k-clustering.
Discrete Comput. Geom., 24:61–84, 2000.

[14] J. Matoušek. Lectures on Discrete Geometry. Springer,
2002.

[15] D. Pollard. Strong consistency of k-means clustering.
Annals of Statistics, 9:135–140, 1981.

[16] B. Sadri. Lloyd’s method and variants: implementa-
tion together with inputs, 2004. http://www.uiuc.

edu/~sariel/papers/03/lloyd kmeans.

	Introduction
	Lower Bound Construction for Two Clusters in One Dimension
	The Spread of the Point Set.

	An Upper Bound for One Dimension
	Upper Bound for Points on a d-Dimensional Grid
	Arbitrary Point Sets and Alternative Algorithms
	The SinglePnt Algorithm.
	The Lazy-k-Means algorithm.

	Conclusions
	Dependency on the spread.
	Dependency on the initial solution.
	Similar results.

