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ABSTRACT

The distance function to surfaces in three dimensions plays
a key role in many geometric modeling applications such as
medial axis approximations, surface reconstructions, offset
computations, feature extractions and others. In most cases,
the distance function induced by the surface is approximated
by a discrete distance function induced by a discrete sam-
ple of the surface. The critical points of the distance func-
tion determine the topology of the set inducing the function.
However, no earlier theoretical result has linked the critical
points of the distance to a sampling of geometric structures
to their topological properties. We provide this link by show-
ing that the critical points of the distance function induced
by a discrete sample of a surface either lie very close to the
surface or near its medial axis and this closeness is quantified
with the sampling density. Based on this result, we provide
a new flow-complex-based surface reconstruction algorithm
that, given a tight e-sampling of a surface, approximates the
surface geometrically, both in Hausdorff distance and nor-
mals, and captures its topology.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems|: Geometrical problems and
computations; 1.3.5 [Computational Geometry and Object
Modeling]: Curve, surface, solid, and object representations

General Terms: Theory, Algorithms
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1. INTRODUCTION

Given a compact surface ¥ smoothly embedded in three
dimensional Euclidean space R?, a distance function

hs :R® - R,z — inf ||z — p).
pEX

can be defined over R? that assigns to each point its dis-
tance to X. This distance function carries a lot of informa-
tion about ¥ and its embedding. The surface itself can be
determined as hy'(0) and the embedding of ¥ into R? is
essentially encoded in the medial axis M of ¥ which con-
sists of all points in R? at which hs is not differentiable.
For example, the homotopy type of the medial axis of an
embedded torus is useful to decide if the embedding of the
torus is knotted or not.

In applications X is often only known via a finite sample
P of ¥ from which one desires to learn about X and its
embedding. The famous e-sampling theory of Amenta and
Bern [1] provides a framework to analyze algorithms that
either reconstruct ¥ from P or approximate the medial axis
of 3. Given an e-sample of X for a certain value of &, the
algorithms of Amenta and Bern [1], Amenta, Choi, Dey and
Leekha [3] and Boissonnat and Cazals [5] allow to recon-
struct the correct topology of ¥ and to approximate its ge-
ometry in terms of €. On the other hand the algorithms of
Amenta, Choi and Kolluri [4] allows to reconstruct the ho-
motopy type of the medial axis M correctly whereas the
algorithm of Dey and Zhao [10] approximates the geometry
of M in terms of €.

It is quite natural to try to approximate the distance func-
tion hs by the function

hp:R® = R,z — min |z — p||.
peP

over R? that assigns to each point its distance to the sample
P of 3. This approximation has been used by Edelsbrun-
ner [11], Chaine [6], and Giesen and John [12] to recon-
struct X from P. Though all three of these algorithms work
well in practice no guarantees for the geometric quality of
their output in the e-sampling framework existed until now.
The critical points of hp were also used by Dey, Giesen and
Goswami [7] to segment the solid bounded by X into its
features.



All surface reconstruction algorithms based on hp make use
of its critical points, i.e., its local extrema and saddle points.
These points are easily computable from the Delaunay tri-
angulation of P. A first contribution of our paper is to relate
these critical points for an e-sampling of ¥ to both X itself
and its medial axis M .The distance functions hx, and hp
are not smooth everywhere. Nevertheless, there is a well de-
veloped theory of critical points of such functions [13]. The
critical points of hsx are all points in ¥ and a subset of the
medial axis M. For example, all local maxima and all saddle
points of hx, are on M. We can show that for an e-sampling
for a certain value of ¢ all critical points of hp either re-
side very close to X or close to M. That is, we can label
the critical points of hp as either surface critical points if
they are close to ¥ or medial axis critical points if they are
close to M. Interestingly, all types of critical points, includ-
ing local maxima, can be close to 3. The separation of the
critical points is also remarkable in the following sense: The
medial axis of P is the 2-skeleton of the Voronoi diagram of
P. But not every facet in the 2-skeleton can be assigned un-
ambiguously to either ¥ or M even if € becomes arbitrarily
small. It is well know that Voronoi vertices can reside almost
anywhere in R\ .

The separation of the critical points of hp can be turned
into an algorithm to reconstruct 3 from P. This is the sec-
ond main contribution of our paper. We can show that the
reconstructed surface is homeomorphic to ¥ and geometri-
cally close to it both in Hausdorff distance and deviations of
normals provided the input is a tight e-sample of . Similar
results hold for curves and curve reconstruction.

The structure of the paper is as follows. Section 2 intro-
duces the basic concepts including flow complex and critical
points of the distance function of a point set. In section 3,
we show that the critical points of the distance function of
an e-sampling of a surface are either close to the surface or
close to its medial axis. Section 4 describes how it can be
algorithmically determined for a critical point whether it is
close to the surface or to the medial axis and uses this to
build a surface reconstruction algorithm. Section 5 analyzes
the quality of the produced reconstruction and establishes
its geometric closeness and topological correctness. Finally,
Section 6 studies the critical points of a smooth curve in R®
and gives algorithms for classification of critical points and
reconstruction of the curve analogous to those of the surface.
Concluding remarks are given in Section 7.

2. BASIC CONCEPTS

Throughout the paper, by X, we refer to a smooth 2-manifold
without boundary embedded in R3. Since it does not have
a boundary, ¥ separates R® into a bounded region and an
unbounded region. With a slight abuse of terminology we
refer to the bounded region as the interior of 3 and to the
unbounded region as its exterior. Since ¥ is smooth, the nor-
mal to ¥ at any point « € ¥ is well defined. For = € ¥, we
denote by nS and n, the normal vectors at z pointing to
the exterior and interior of ¥ respectively. By ng (with no
+ or — superscript) we denote either of n} or ny, i.e. the
unoriented direction of the line normal to ¥ at z. We also

denote throughout by P C ¥ a discrete sample satisfying
certain conditions to be specified shortly. To simplify our
exposition we assume that P is in general position.

Any point set S C R® induces a distance function
hs:R® = R,z — inf ||z — pl|,
peS

where || - || denotes the Euclidean norm. It is easy to check
that every distance function in the above sense is Lipschitz,
i.e. for all z,y € R®, |hs(z) —hs(y)| < ||z —y]. In this paper,
we work with two major distance functions, one induced by
Y. and the other by P. To simplify our notation, in the sequel,
we use s(-) instead of hx(-) and h(-) instead hp(-).

2.1 Surface samples

The medial axis M = M(X) of X is the set of all points in
R? that have at least 2 distinct closest points in ¥, i.e.

M={zecR: |{yeX:|z—y|=hs(x)} >2}

For a point ¢ € R® and real number 7, the ball with center
c and radius r, denoted Be,, is the set of all points € R?
at distance no more than r from c. We call a ball empty,
if its interior does not contain any point from X. A medial
ball is a maximal empty ball, i.e. an empty ball that is not
contained in any other empty ball.

Medial feature size. For any point z € R? \ (X U M) we
denote by & the unique closest surface point to z, i.e.,

T = argminyEEHx - y||7

and by & € M we denote the center of the medial ball tan-
gent to ¥ at & and at the same side of ¥ as x. The medial
feature size is the function

p: R\ (BUM) - RU{oo},z — ||& — Z||.
Besides the medial feature size we will also use the function
m:R*\ (ZUM) — RU {oo},z — ||z — &,

which we refer to as the medial projection length. Notice
that for every € R®\ (S U M) we have the identity u(z) =
m(z) + s(z).

Feature size. The function
Y — R inf |lz —
fiE =R inf flz -y,
which assigns to each point in X its distance to the medial
axis M, is called the local feature size. Notice that for = €

R?\ (X U M) it always holds that f(2) < u(zx). Notice also
that f(-) is also a distance function and therefore Lipschitz.

Sampling conditions. For a constant € > 0, a finite sample
P C X is called an e-sample if

Vz € ¥ Jp € P such that ||z — p|| < ef(z).



An e-sample P is called an (e, §)-sample or a tight e-sample
if it satisfies the additional condition

Vp,q € P it holds that ||p — ¢|| > §f(p)
for some §, with 0 < § < €.

Poles. For a sample point p € P we denote by V), the closed
Voronoi cell of p. If V,, is bounded, the positive pole of p,
denoted p*, is the Voronoi vertex of V, farthest away from
p. The positive pole vector I/;r is the vector p™ — p if V}, is
bounded or is taken as the unit vector in the direction which
is the average of all unbounded Voronoi edges in V). In the
latter case we informally refer to a point at infinity in the
direction 1/; as the positive pole. The negative pole p~ of p is
the farthest Voronoi vertex of V), from p for which the acute
angle between the vectors v, and v, = p~ — p is greater
than than 7/2. We call v, the negative pole vector of p.

Notation. The angle between two vectors v and v, denoted
Z(u,v) is always smaller than m. For three points z, y, and
z, we denote by Zxyz the angle between vectors x — y and
z—y, ie., Z(x —y,z —1y). The acute angle between vectors
u and v is the smaller of the two angles made by the lines
through w and v. The latter angle is at most /2.

We use the following two lemmas due to Amenta and Bern [1]
and the corollary below them several times in this paper.

LEMMA 1. Let  and y be points on ¥ with ||z — y|| <
Ef(x) for € <1/3. Then é(n;ﬂn;L) =Z(ng,ny) < =5

LEMMA 2. Let p be a sample point in an e-sample P. Let
x be any point in V, with ||z — p|| > &f(p) for &€ > 0. Then
Z(x —p,np) < arcsin 7= + arcsin g7 -

COROLLARY 1. For any point p of an e-sampling P of a
surface X, the acute angle between ny,, normal to surface at
p, and either of v;f and v, is at most 2 arcsin(e/(1 — €)).

2.2 Induced flows

Critical points. We are interested in the critical points
of h, i.e., its local extrema and saddle points. In general, a
point ¢ € R? is a critical point of a distance function hs
induced by a set S, if ¢ is contained in the convex hull of its
closest points in S. Thus if we let for every z € R®

Ax) ={p € P: |z —pl = h(z)}

be the set of closest sample points to x, a critical point of A is
any point c satisfying ¢ € conv A(c). It turns out that these
points are exactly the intersection points of Voronoi faces
and their dual Delaunay simplices. The local maxima are
Voronoi vertices contained in their dual Delaunay tetrahe-
dron. All sample points are minima. The remaining critical
points are saddle points. In the case that P is finite one can
even assign a meaningful indezr to a critical point, namely,
the dimension of the Delaunay simplex it is contained in.

Flow. As in the case of smooth functions there is a unique
direction of steepest ascent of h at every non-critical point

of h. The direction of steepest ascent at z € R? is given by
the vector from = — d(z) where

d(.’E) = argIninyEconv A(z) ||ZL’ - y”

We call the point d(x) the driver of the flow at x. Assigning
to the critical points of h the zero vector and to every other
point in R® the unique unit vector of steepest ascent defines
a vector field

v:R* = S*U{0}

on R3. This vector field is not continuous but nevertheless
gives rise to a flow on R3, i.e., a mapping

¢ : 0,00) x R® — R?,

such that at every point (¢,z) € [0, 00) x R? the right deriva-
tive

lim ¢(t7 l’) — ¢(t 7:17)

te—t/ t—t
exists and equals . The flow tells how a point would move
if it always followed the steepest ascent of the distance func-
tion h. The curve that a point z follows is given by ¢, : R —
R®,t — ¢(t,z) and called the orbit of x. We denote by ¢(z),
the set {¢z(t) : t € [0, +00)}.

Stable manifolds. Given a critical point ¢ of h the set of
all points whose orbit ends in ¢, i.e. the set of all points that
flow into ¢, is called the stable manifold of c. The collection
of all stable manifolds forms a cell complex which is called
flow complex. The dimension of each cell in the flow complex
is the index of its associated critical point. The cells have
a recursive structure, namely, the boundary of the stable
manifold of a critical point is made up of stable manifolds of
critical points of lower index. Here we summarize the basic
facts of the stable manifolds for the different indices of the
critical points.

INDEX-0. The stable manifold of an index-0 critical point,
i.e., a local minimum, is just the minimum itself.

INDEX-1. The stable manifold of an index-1 critical point,
also called a 1-saddle, i.e., the intersection point of a Delau-
nay edge with its dual Voronoi facet, is the Delaunay edge
which in this case is a Gabriel edge.

INDEX-2. The stable manifolds of an index-2 critical point,
also called a 2-saddle, is a piecewise linear surface patch.
See [12] for details on structure and computation of these
patches.

INDEX-3. The stable manifolds of index-3 critical points, i.e.
a local maximum, are the bounded regions in the complex
built by the stable manifolds of critical points of index 0, 1
and 2.

3. SEPARATION OF CRITICAL POINTS

In the following P is always an e-sample (with € to be spec-
ified) of a smooth closed surface ¥ embedded in R3. Also, h
is the distance function associated with P and ¢ is the flow
induced by P following the vector field v.



LEMMA 3. Let z be a point in R*\(SUM) with u(x) = co.
Then, x is not a critical point of h and the angle between the
vectors & — x and v(x) is strictly less than /2.

PROOF. If m(z) = oo then & is at infinity and the hyper-
plane H tangent to 3 at & does not have any point from X
on the same side as . Therefore, H separates x from ¥ and
in particular from conv A(x). Consequently, x cannot be a
critical point of h and for every point y except &, on the ray
from & through z, the angle between the vectors v(y) and
g — y is strictly less than /2.

The next lemma states that for z € R®\ (X U M) with
p(x), m(xz) < oo there cannot be a critical point of h on the
line segment from & to Z that is either too close to & or too
close to Z.

LEMMA 4. Lete < 1/3 and let z be a point in R*\ (ZUM)
with p(z) < co. Then x is not a critical point of h and the
angle between the vectors & —x and v(z) is strictly less than
Z, provided that 2ep(z) < m(z) and > f(&) < s(z).

PROOF. For the feature size f at £ it holds that f(£) <
wu(x) by the definition of feature size. Thus the closest sam-
ple point in P to & lies inside a ball centered at z with
radius at most ¢ f(£). Hence the distance from x to its clos-
est sample point is at most s(z) + ef(£). Consequently,
the set A(z) C P, of sample points at minimum distance
from x, is contained in the ball B centered at x with radius
s(x) + ef(2). Let B’ be the open ball centered at & with
radius p(z). Since B’ is empty of any sample points, every
point of A(z) is contained in B\ B’. The driver d(x) of the
flow induced by P at x is by definition in the convex hull of
A(zx) and is therefore contained in the convex hull of B\ B’.

Consider the disk D = H N B’ where H is the hyperplane
containing x perpendicular to the line through & and %. Let
r be the radius of this disk. If s(x) +ef(2) < 7, then = ¢
conv(B \ B’). Consequently, = is not a critical point of h
and the angle between the vectors & — x and v(z) is strictly
less than /2, see Figure 1. Thus for the statement of the
lemma to hold, it suffices to show that s(z) +ef(2) < r. By
the Pythagorean theorem

and

s(x) +ef (@) = p(x) —m(x) +ef(2).
Therefore s(x) + e f(Z) < r is equivalent to

(u(x) —m(z) +ef (@) < pla)* —m(z)?,

which in turn is equivalent to,

m(@)? = (p(@) + = (2))m(@) + (@) f(3) + S5 1) < 0.

This inequality holds between the two roots of the quadratic
function of m(z) on the left hand side of the inequality, i.e.,

8¢

Figure 1. Flow can escape the center of the medial ball only close
to surface or close to center.

for
mz) > 2 (ul@) +ef(@) -
Vil@)? = 2@ — 2eu(2) [ (7) )
m(z) < o (@) +ef@) +

V@) = 2@ = 2en(0) (@) ) -

Using f(Z) < p(z) the lower bound on m(z) can be weak-
ened as follows

m@) > () +epte) -
Vile)? = (@) = 2ep(2)? )
= My T ).

2
Notice that our assumption that ¢ < 1/3 implies

0<1—-2—¢e2<1,

i.e., we have a real lower bound on m(z) and can further
weaken this bound by applying the rule \/z > z for x € (0, 1)
to get

l4e—V1-2e—e2 < 14e—(1-2—¢°)
= 36+€2<4€,

which implies the weaker lower bound m(z) > 2ep(x). Next
we want to show that s(z) > % f(2) implies the upper bound
on m(z), i.e., s(z) < *f(2) is a weaker form of this upper
bound. Assuming s(z) > ¢° f(2) we get

m(z) = p(x) = s(z) < plx) - £(2).

Thus it is enough to show that

p@) =210 < g (n@) +ef@)+
Vi) = @7 —2eu(@) (7))

The latter inequality is equivalent to

L+ (3o - ) wlorri@) +



Plugging in f(2) < p(z) we get the stronger inequality

3.3 1o, 3, 4
4+26+46 +e" 4+ <0,

which in turn gives by summarizing
1 4 3 4 . 9 -
—-£ 5 e Into -¢
4 tet 4

the even stronger inequality
~1+2+3°<0

which is satisfied through our assumption that ¢ < 1/3.
Thus s(z) > £ f(2) implies the upper bound on m(z). O

d-tubular neighborhoods. For a constant 6 < 1, define
M5 as the union of medial balls, i.e., maximal empty balls,
all scaled down by a factor of §. More formally,

Ms ={z e R*\ (ZUM) : m(z) < du(z)} UM.
Similarly let
Ys={rx e R*\ (ZUM) : s(z) <df(2)} U

COROLLARY 2. FEvery critical point of the distance func-
tion h either belongs to X2 or Mae provided € < 1/3.

Surface and medial axis critical points. Let ¢ < 1/3.
We call a critical point of h a surface critical point if it is
contained in ¥_2 and we call it a medial azis critical point if
it is contained in M.

4. ALGORITHMS

4.1 Separation of critical points

Here our goal is to devise an algorithm that can separate the
surface critical points from the medial axis critical points.
To prove the correctness of our algorithm we will frequently
make use of the following definition.

Associating critical point to samples. A critical point ¢
is said to be associated with a sample point p € P if [|[p—c¢| =
h(c), i.e., if ¢ is contained in the closed Voronoi cell of p.

At first we want to deal with surface critical points. The
following two lemmas turn out to be useful to this end.

LEMMA 5. For any sample point p € P the ball B with
diameter ||p — pt|| with p,pT € OB does not contain any
critical point associated with p in its interior. The analogous
statement holds for the negative pole p~.

PROOF. If pT lies at infinity then the ball B becomes a
halfspace with normal y;f . The boundary of this halfspace
is a hyperplane that supports the convex hull of P. Since
any critical point of h must be contained in the convex hull
of P it follows that the the interior of B, i.e., the open half

Figure 2. Ball of diameter ||p — p*|| cannot contain any critical
associated to p.

space, cannot contain any critical point of h. Thus we can
assume that p is finite. Let ¢ be a critical point associated
with p. If ¢ is a minimum, then ¢ = p and there is nothing
to prove. Otherwise, |A(c)| > 1. All points in A(c) lie on
the boundary of the ball B’ of radius ||c — p|| centered at c.
Let B” be the open ball of radius ||p — p*|| centered at p*.
By construction there can be no points of P in B”. Thus
all points of A(c) must belong to B’ \ B”. On the other
hand, for ¢ to be a critical point, it must be in the convex
hull of A(c). This happens only if the angle Zpcp™ is smaller
than 7/2. The latter condition is in turn identical to ¢ being
outside the ball B, see Figure 2. The proof of the analogous
statement for p~ follows the same lines. O

LEMMA 6. Let ¢ be a surface critical point associated with
sample point p € P. If ¢ < 0.1 then

1.1e _ 1.1e +
—pll € —=lp—p || € —=—|lp—p"|
le=pll < T3l =PIl < g7 5 P =27

PrOOF. Let ¢ € P be the closest sample point to ¢. By
the sampling condition it holds that ||é — g|| < ef(é). Using
the triangle inequality we obtain

le=pll < lle—qll < s(c)+ e —qll
< Sf@Fef(=c(l+e)f(d. (1)

Since the local feature size f is 1-Lipschitz we can write

f@ < flp)+lle—pl
< f(p)+s(e) +[le —pll
< fp)+%f(@) +e(1+e)f()
= flp) +e(l+2e)f(¢)
< f(p) + 1.2ef(é).

Rearranging, we obtain
1

1) < =52 ) )
Combining (1) and (2) we finally get
. e(l+¢)
— < ST
le—pl < c+)@ < Sy
1.1e 1.1e _
-t < = p=
< o) = Tl el
1.1e +
< — _|p-pT.
S 1ogale—27l 0

From Lemmas 5 and 6 we derive the following corollary.



COROLLARY 3. Let ¢ be a surface critical point associated
with sample point p € P. Let € < 0.1. Then the acute angles
between the vector ¢ — p and each of the vectors 1/;{ and v,
is at least 75.5 degrees.

PROOF. By Lemma 5 the ball of diameter ||[p~ — p|| with
p~ and p on its boundary and the ball of diameter ||[p™ — p||
with p* and p on its boundary both contain no critical
points. Thus we get from using Lemma 6 and Thales theo-
rem an upper bound of

1.1¢
1—1.2¢

for the cosine of the angle between the vector ¢ —p and each
of the vectors 1/;r and v, . Thus for ¢ < 0.1, the resulting
angles are at least 82.5 degrees. But note that so far we can
not conclude that these angles are acute. The angle between
the vectors v and v, is at least

7 — 4 arcsin

by Corollary 1. Since € < 0.1 this angle is at least 173 de-
grees. Thus the angles between ¢ — p and each of V; and v,
are at most

82.5 + (360 — 165 — 173) = 104.5 degrees.

From this, the acute angles between ¢ — p and each of V;
and v, is at least 180 — 104.5 = 75.5 degrees. ([l

Next we deal with medial axis critical points.

LEMMA 7. Let ¢ be a medial axis critical point associated
withp € P. If e < 1/3 then ||p — ¢|| > (1 — 2¢) f(p).

PROOF. We have s(c) < ||c — p|| since s(c) is the distance
from ¢ to ¥ and we have m(c), u(c) < oo by Lemma 3. The
definition of a medial axis critical point states

m(c) < 2eu(c) = 2e(m(c) + s(c)).

Combining these inequalities we obtain

2e () <

< —
m(e) < s e — ol

2e
1-—2¢

which gives

flp) < lle—pll <m(e) +lc—pll
2¢e 1
< — = —
< ({2 1) le=rl= 2gle sl
and thus [[p —¢|| > (1 — 2¢) f(p). |

COROLLARY 4. Let ¢ be a medial axis critical point asso-
ciated with p € P. If ¢ < 0.1 then the acute angle between
the vector c—p and each of the vectors v, and l/;r is at most
28 degrees.

PROOF. Using Lemma 7 we can plug in 1 — 2¢ for ¢ in
Lemma 2 to obtain that the angle between x — p and each
of v or v, is at most

c + arcsin _
1—¢ (1-2e)(1-¢)°

The statement of the Lemma now follows from ¢ < 0.1.

O

3 arcsin

Corollary 3 and Corollary 4 show that for a critical point ¢
associated to a sample p, the angle between ¢ —p and a pole
of p falls into one of two disjoint ranges 0 to 45 degrees or
75.5 to 90 degrees, depending on whether c is a surface or a
medial axis critical point. Thus by looking at this angle, we
can distinguish between these two types as follows: for any
sample point p and any critical point ¢ associated with p,
we measure the angle a. = Z(vp,c — p), where v, is either
of the two pole vectors at p. If a. < 7/4 or ac > 37/4, then
c is a medial axis critical point and otherwise a surface one.

4.2 Reconstruction

The algorithmic classification of the critical points of h as ei-
ther surface or medial axis critical points suggests the follow-
ing algorithm to reconstruct ¥ from P. By SEPARATE(P, C)
we refer the to the algorithm described above that partitions
the critical points into surface and medial axis ones.

RECONSTRUCT(P)
1 C := set of the critical points of h.
2 SEPARATE(P, ().
3 Cwum = set of medial axis critical points in

C plus the maximum at infinity.
for each ¢ € Cy; do

4
5 U.make(c).
6 for each c € Cy do
7 for all ¢ € 85(c) N Cur
8 U .union(c, c’).
9 O := union of all stable manifolds in one
component in U.
10 T:=0.
11 for all ¢ € 00 do
12 T:=TUS(e)
13 return T

The algorithm RECONSTRUCT builds on a Union-Find data
structure U on the set of medial axis critical points. In line
5, U.make(c) adds a singleton set {c} to U and in line 9,
U .union(c, ¢') combines the sets containing ¢ and ¢’ into a
single set. The Union-Find data structure is used to find
all connected components of stable manifolds S(c) of medial
axis critical points ¢ € Cj. In the end the boundary of one
arbitrary component is output. Notice that this boundary is
made of stable manifolds of surface critical points.

5. RECONSTRUCTION PROPERTIES

In this section, we give geometric and topological guaran-
tees for the output of the algorithm RECONSTRUCT under
e-sampling. We summarize the results in the following The-
orem.

THEOREM 1. For any 0 < p < 1 there exists €o such
that given an (g,9)-sample P from a smooth closed surface
3, where € < €9 and /e = p, the algorithm RECONSTRUCT
outputs a subcomplex T of the flow complex with the following
properties:

(i) T is contained in the tubular neighborhood X192 .
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Figure 3. Sink cones

(i) The normal of a triangle pgr in T, where p € P, forms
an angle of O(e) with the normal of ¥ at p.

(i4i) T is homeomorphic (in fact, isotopic) to 3.

In particular these claims hold for p > 3/4, €0 < 0.01.

5.1 Closeness

To analyze local geometry of the flow near the surface, we
place at sample points p € P cones that open along inner and
outer normal directions at p. We show that, under certain
conditions, such cones are sinks, i.e., on their surfaces the
flow is either tangential or points to the inside of the cones.
Of course this is not shown to hold everywhere on the surface
of such cones — certainly, we could not make such a claim for
far away points —, but only points close enough to surface.
However, by overlapping together these close-reaching cones
(see Figure 3), we obtain inner and outer envelopes that
enclose the surface and are in a sense “one-way” for the flow.
This means that flow cannot escape from these envelopes
leading to properties of the flow complex important to the
analysis of the output of our algorithm.

Sink Cones. For a point p, and a direction vector n, let
C = cone(p, n,0,7) be the cone-patch consisting of points
for which ||z —p|| < r and Z(n,z — p) = 6. We call 0, and
r, the angle and the reach of C, respectively. A cone-patch
is essentially part of the surface of an infinite cone. With a
slight abuse of notation we refer to a cone-patch also as a
cone. The boundary of C consists of points z € C' for which
|z — p|| = r. We say that C is a sink if at every point of the
relative interior of C' (thus excluding the boundary of C)
the flow is either tangential or directed toward the interior
of the convex hull of C.

LEMMA 8. For any point p € P, C = cone(p,n},0,r)
and C, = cone(p,n,, ,0,7) are sinks for any 0 < 6 < 5 and
r = f(p) cos 0. Furthermore, the interior of the convezr hulls
of C’; and C, do not contain any critical points.

PrOOF. We only prove that C;r is a sink. The proof for
C, is similar. Let c be the point on the ray in direction n;r at
distance f(p) from p. Let B’ be the ball with radius ||p — c||
centered at c. Note that B’ cannot contain any points from
3 in its interior since it is contained in a medial ball. Let B
be the ball centered at ¢ with radius (1 —&?)f(p). Then C;
is the cone tangent to B with apex p (see Figure 4). The
set A(z) of closest sample points to = are inside the ball B”
of radius ||z — p|| centered at = but outside B’. Let H be
the hyperplane tangent to C; at x. Since r = f(p)sin 6 we
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Figure 4. Sink cone for a sample point p

have that conv(B’ \ B’) is entirely on the opposite side of
H with respect to B and therefore, v(x) points toward the
interior of C’; . Thus C’; is a sink and no point in the relative
interior of C;r is a critical point. Every point in the interior
of the convex hull of C; is on a cone cone(p,n;,¢’,r) for
some 6’ < 0 or in the relative interior of the line segment pc.
As we have seen the points on the cones cannot be critical.
But neither can be any point y in the relative interior of the
line segment pe since for it A(y) = {p} and y # p. O

Fixing cone angles. Notice that the above lemma puts
at every sample point two sink cones with the same apex,
angle, reach, and axis but in opposite direction. For the
rest of the paper, we shall consider only such cones with
a fixed cone angle that depends only on the density of sam-
pling. Indeed, we fix § = §(¢) = § — 5¢ and we respectively
denote the outer and inner cones at a vertex p by C), =
cone(p,n; , 0, f(p) cos§) and C; = cone(p, n}, 0, f(p) cos 0).
We also denote by Cj the union of the two cones C; and
C,.

LEMMA 9. For any point x € V, N X, the ray shot in
direction n} (ny ) hits C (C, ) provided that e < 0.01.

PROOF. Let 3 be the angle between n} and n;,r. Since
z € Vp N, we have ||z — p|| < ef(x) and therefore 3 <
=3z < 0. Therefore, the ray shot from z in direction of
nt hits cone(p,n,0,00), the infinite extension of C;f, at
some point z’. Let n = ||z’ — p||/f(p). If n < cosf, then
z' € C;f and there is nothing to prove. Otherwise ||z’ —p|| >
f(p) cosO. It can be easily observed that the closest point to
p on the line through 2’ and z is at distance no less than

[l2" — pl| sin(0 — B) > cos Osin(0 — ) f(p)

from p. On the other hand, since x € V, N Y, ||z — p|| <
= f(p). This implies

1—e¢
“ ) > el
1—c¢ p) = P
> cosOsin(0 — B)f(p)
= sin(5e) cos(5e + B3) f(p)
> sin(5¢) cos (55 + 1 _536) f(p)
which is a contradiction for € < 0.01. o

LEMMA 10. Let = be a point on Cp for which & € V.
Then ||z — 2| < 255228 . f(2) < 12 f(&) when & < 0.01.

—2cos 0



PRrROOF. Let n = ||z —pl|/f(Z). Without loss of generality
assume that x € C; (the proof for the case where z € C,
is similar). Shoot a ray from x, parallel to n, until it hits
C, at a point z’. Since each of C;r and C, is completely
contained in its corresponding medial ball tangent to X at
p, the line segment zz’ intersects 3. Therefore

e — &)l < Il — '] = 2|}z — pll cos 0 = 2nf (&) cos6. (3)
On the other hand, by triangle inequality,
lp —xll = llz — 2|
nf(&) = 2nf(&) cos 0
n(1 —2cos ) f(Z).

However, since & € V,, by sampling condition ||Z — p| <
ef(&). Thus we must have nn < /(1 — 2 cos ). Plugging this
bound for 7 into (3) we get

& = pll

(AVANAY

. 2e cos . 2 .n
_ < /" . <
e~ < 220 p(a) < 122 f(2),
for e <0.01 and 6 = w/2 — 5e. O

The following lemma will be used to show that for appro-
priate choice of 0, and under dense enough sampling, the
sample point cones on each side of ¥ patch up to construct
envelopes from which the flow cannot escape.

LEMMA 11. For a sample point p, let x be a point on the
boundary of Cif (Cy ), i.e. ||z — p|| = f(p)cos@. Let q be a
closest sample point to &. Then the segment x& intersects
the relative interior of C (C; ) provided that ¢ < 0.01.

PrOOF. We prove the lemma for the case of x on the
boundary of C; (the proof of C, is analogous). Consider a
ball B of radius f(p) tangent to ¥ at p and in the exterior
of ¥. Let ¢ be the center of B. It can be easily observed
that ||c — z|| = f(p)sinf. Therefore, the distance from x
to boundary of B is (1 —sin6)f(p). Since the interior of B
contains no point of 3, we get

|z — 2|l > (1 —sin6)f(p) (4)
By triangle inequality we have
12 —pll < |2 — =l + [z — pl| < 2]z —pl| = 2f(p) cos .
From Lipschitzness of local feature size we get
fp) = f(&) — |2 = pll = f(2) — 2/ (p) cos .
Therefore f(p) > f(x)/(142cos ). Combining this with (4)

we get

1 —sin6
Al > —— 27 (3.
o= a2 g - £()

On the other hand, by Lemma 9, since ¢ is the closest sample
point to &, the ray shot in outward normal direction at &
hits C;L in some point y. Therefore, by Lemma 10,

2e cos 6
-zl < ———f(2).
R

The proof of the lemma becomes complete by verifying that
for € < 0.01 the following inequality holds:

1—sinf
1+2cosf’ U

2e cos 6
1—2cosf

Cone envelopes. Let CT = Uper C;f and let =1 be the

set of points & € C'" that are closest points in C" to & in the
normal direction n}. We call % the outer cone envelope of
3. The inner cone envelope ¥~ is defined analogously.

LEMMA 12. The surface ¥ is homeomorphic to both ¥~
and 7. Both cone envelopes divide R® into a bounded and
an unbounded component. The bounded component of the
inner cone envelope and the unbounded component of the
outer cone envelope are closed under the flow ¢.

PROOF. We only the discuss the outer cone envelope. The
proof for the inner cone envelope follows the same lines. Let
7mT be the mapping that maps any point & € ¥ to its clos-
est point x’ on one of the cones C;r in the normal direction
n}. By Lemma 9 the map is well-defined at every point
x € ¥ because the ray shot in normal direction n; hits the
outer cone C’;r placed at closest sample point p to z. By
definition 71 (z) € 1 for every € ¥ and by construction
at(¥) = £*. That is, 7+ : ¥ — T is onto. Since the map
x +— ng is continuous on ¥ the mapping w1 is also contin-
uous except at any points x that is mapped to a boundary
points of some cone C;. But by Lemma 11, no point of %
is mapped by n" into the boundary of any cone C’;r since
there is always a closer cone in the way. Therefore, the map-
ping 7 is continuous everywhere. Finally, 7 is one-to-one,
because by construction the vector 7" (x) — z is normal to
¥ at o, which means that x is a closest point to 7+ (z) on X,
which is unique since 71 (z) cannot be a point on the medial
axis by Lemma 10.

Since we assumed that ¥ is a manifold without boundary,
so is ©T. Thus £t divides R® into a bounded and an un-
bounded component. By Lemma 8 the bounded component
has to be closed under the flow ¢. O

Cone neighborhood. We call the closed volume sand-
wiched between ¥~ and YT the cone neighborhood of ¥ and
denote it by X.

THEOREM 2. The output of the algorithm RECONSTRUCT
lies in Xig.2.

PROOF. By Lemmas 8 and 12, the stable manifold S(c)
of any surface critical point ¢ has to be contained in 3.
Thus the output of RECONSTRUCT completely lies in 3. By
Lemma 10, Y1 and ¥~ are contained in 3;5.2. This implies
that ¥ is also contained in X;q.2. O

COROLLARY 5. For every x € %, |lz — p|| < 1.6ef(p) for
every p € A(zx), provided that € < 0.01.

PROOF. Let & = 12¢2. Since ¥ C X¢, we have x € X,
which means ||z — £|| < £f(£). On the other hand by defi-
nition of e-sampling, [|& — g|| < ef(2), where ¢ is a closest
sample point to . By triangle inequality

e —pll < llz —qll < llz— 2| + 12 — qll < (e +£)f(2). (5)
Since local feature size is Lipschitz

lp—2| < [lz—pl+Ilp=2ll < llg—zl|+£f(2) < (e +26) f(2),



and from this

fp) =2 f(2) = |2 —pll = £(2) — (e +26) f(2).  (6)
Combining (5) and (6) we get

o =l < 525 ) < 1670,

for € < 0.01. O

5.2 Normal

The output T produced by the algorithm RECONSTRUCT
consists of stable manifolds of index-2 saddle points that lie
in a small tubular neighborhood of the surface. We refer to
these stable manifolds as surface patches. We want to show
that under (e, 0)-sampling, with a fixed p = /e, the normal
of triangles in these surface patches is within O(g) from the
normal to surface at a nearby point, for sufficiently small e.
We use the following two lemmas from [3].

LEMMA 13. For any two points p,q € X, the angle be-
tween segment pq and either of n; and n, 1is greater than

llp—all

,r .
Z — arcsin .
2f(p)

2

LEMMA 14. For points p,q,r € 3, let p be a vertex of the
triangle pqr with the largest angle and let r be its circumra-
dius. If r = A f(p), then the angle between the normal to pqr
and the normal to surface at p is at most B(\) where

B(A\) = arcsin(\) + arcsin <% sin(2 arcsin )\))> < B,

The stable manifold S(c) of every 2-saddle is a piece-wise
linear surface made of a finite number of triangles, which
we call patch triangles. Each patch triangle ¢ has exactly
one vertex in P. Note that for every point = in a patch
triangle t, the vertex of ¢ that belongs to P is a closest sample
point to x (refer to [12] for details on the structure of stable
manifolds of critical points). If x is on the boundary of ¢, it
can have more than one closest sample point as it belongs to
more than one patch triangle. The following lemma shows
that under tight sampling, each patch triangle must have a
normal close to surface normal at its vertex in P.

LEMMA 15. For any 0 < p < 1, there exists €9 such that
if P is an e-sample of ¥ with € < €o, then for any z €
S(c), the stable manifold of a surface 2-saddle c, the acute
angle between ny,, where p is a closest sample point to x, and
ng, the normal direction of the patch triangle t C S(c) that
contains x and has p as a vertex, is at most

arcsin sin(5e) = 0O(e/p).
<2sin (5 arcsin (p/3.2))> Ot/p)

PRrROOF. We ensure in advance for the proof of this lemma
that ¢ is at most 0.01. Let P be an e-sample of X for £ < &o.
By Corollary 5, ||z — p|| < 1.6ef(p) for every closest sample
point p to x. Every point « on S(c) is on a patch triangle

r o p
¢ _—12
d S
p
e

Figure 5. A generic patch triangle on the stable manifold of a surface
2-saddle

t = pou of S(c) with the following structure (see Figure 5): ¢
has exactly one vertex p in P. The edge uo of ¢t opposite to p
is on the Voronoi facet dual to a Delaunay edge pg and ends
on the dual Voronoi edge e of a Delaunay triangle pgr in
which |7 — p|| > |l¢ — p||. The mid-point d of pq is the driver
of the points on wo. Furthermore, the line containing e does
not intersect the triangle pgr except when o is the critical
point ¢ in which case the patch triangle ¢ is a subset of the
Delaunay triangle t. containing c. We postpone the study of
this special case for later. Let s be the circumcenter of pgr
and let p’ be a point on the circumcircle of pgr opposite to
p with respect to s. Then Zp'gp = 7/2 and that ||d — s|| =
1{lg — p'[|. Furthermore, |lg — p’|| > |lg — r||. Therefore we
get [[d — s|| > $6f(r). On the other hand, since r € A(o),
by Corollary 5, ||s — p|| = [|s — 7| < |Ir — o|| < 1.6ef(r).
Combining these we get for the angle a = Zgps:

ld—sl o & _

i > = —.
S s < 32 32

On the other hand, § > Zgpo > Zqps > . Also, o € S(c)

and S(c) is contained in 3 and therefore, po makes an angle
of at least § = Z — 5e¢ with n,. Moreover, ||p—q|| < 3.2ef(p)
and therefore by Lemma 13 makes an angle of at least 5 —
1.6e > 0 with n,. Putting everything together, the three
points p, ¢, and o, make a triangle ' = pgo with an angle
of a at vertex p satisfying arcsin(p/3.2) < o < %, and with
both of the edges incident to p making an angle of at least
0 with n,. It can be shown through elementary calculations
that under this conditions, n,, the normal to t', and n,,
make an angle of at most

arcsin ﬂ
2sin(a/2) )

In the special case that o coincides with ¢, e intersects its
dual triangle pgr at ¢ and the patch triangle ¢ under question
becomes a subset of the Delaunay triangle t. = pgr. Since
lp — o] < 1.6ef(p) is the circumradius of t., by Lemma 14,
the angle between normal to pgr and normal to ¥ at p is at
most % which for £ < 0.01 is a tighter bound than the
one the statement of lemma claims. O

COROLLARY 6. For ¢ < 0.01 and p > 3/4, we have for
every point x on the stable manifold of a surface 2-saddle c
that the acute angle between normal n: to any patch triangle



t of S(c) that contains x, and the normal nz to X at & is at
most 14 degrees.

PRrROOF. Plugging ¢ < 0.01 and p > 1/2 in Lemma 15,
gives an upper bound of 13 degrees for the angle between
n¢ and n,, where n, is the normal to 3 at a closest sample
point p to x. Since by Theorem 2, S(c) is contained in X5.2,
we have ||z —2|| < 1262 f(Z). Let ¢ be a closest sample point
to &. By sampling condition, ||# — q|| < ef(&) and therefore

12 —pll < 12 — 2| + [l — pl.

On the other hand |z — p|| < [lz — & + [|Z — ¢||. Therefore
we get

12 = pll < 2lle - & + |2 — gl < (24e” + ) f(2) < 1.5ef (%),

for € < 0.01. Therefore by Lemma 1 the angle between n;f
and n} is at most 1.5¢/(1 — 3 - 1.5¢) < 1°. |

The following Proposition is a direct consequence of the
structure of the stable manifolds of surface 2-saddles [12].

PROPOSITION 1. If t1 and t2 are patch triangles of S(c)
for a surface 2-saddle c such that t1 and t2 have one edge
in common, then the dihedral angle between t1 and t2 is no
less than /2.

LEMMA 16. Let ¢ be a surface 2-saddle. Suppose we ori-
ent the patch triangles in S(c) arbitrarily but consistently so
that for any patch triangle t, n and n; are respectively the
outer and inner normal directions on t with respect to the
applied orientation. Then, under the assumptions of Corol-
lary 6 exactly one of the following cases holds.

1. Z(nf,n}) < 14°, for every patch triangle t of S(c)

€T
and for every x € t.

2. Z(nf,n;) < 14°, for every patch triangle t of S(c)
and for every x € t.

PrOOF. First notice that as was shown in the proof of
Corollary 6, for any point = € ¢, where t is a patch triangle
of S(e), Z(nf,n}) < 1°, where p is the vertex of ¢ that is a
sample point. Thus, if for the arbitrary orientation of ¢ and
for a point x € t, Z(nf,n}) = a, the same holds for every
other point y in ¢, modulo changing a by 1 degree.

Let t. be the Delaunay triangle that contains c. All patche
triangles ¢ C t. of S(c), have the same n;" which agrees with
one of the two normal direction to t.. By Corollary 6, the
normal direction of . makes an angle of at most 14° with
either n} or n; . Assume without loss of generality that the
first case holds, i.e. Z(nf,n}) < 14°. We show now that
this will imply that that for every patch triangle ¢ of S(c)
and every z € t, Z(nj,n}) < 14°. We prove this by extend-
ing the result for the triangles we already have this prop-
erty for to their neighboring patch triangles. Thus, assume
t and t’ are two patch triangles with an edge e in common.
Let z be a point on e. Since ¢ and ¢’ are oriented consis-
tently, the dihedral angle between ¢ and ¢’ is 7 — Z(n;", n},).
By Proposition 1 this angle is at least /2 and therefore
Z(nt JLZC) < 7/2. Therefore using triangle inequality for
angles we get Z(nl,n}) < Z(nf,nk) + Z(nf,nf) < 104°.

But by Corollary 6, Z(nZ,n}) is either less than 14° or more
than 180° — 14° and we have just shown that the latter case
does not hold. O

5.3 Orientation of surface patches

We will need the following technical lemma.

LEMMA 17. Let Cy and C2 be two infinite cones with cone
angle 0, with the same apex p and same axis, extended in op-
posite directions. Let x be a point not in the interior of either
of the convex hulls of C1 or Cy. Consider a line ¢ passing
through x, making an angle of a < 0 with the common azis
of Cv and Cs, and hitting C and C' in points x1 and 2.
Then we have

cos 6
_ <9 lg—p|l  —22
ez = a2l <2+ o =l - s

ProOOF. Without loss of generality assume that p is the
origin and that the common axis of C7 and Cs is the z-
axis. By the assumptions of the lemma, 1 and z2 are in
opposite sides of ¢ on £. Consider the vertical hyperplane H
containing x and the z axis. It is easy to observe that ||x—z1]|
would be maximized if £ was in H, in which case by the law
of sines, we would get ||z — z1|| < ||z — y1]| - sin 6/ sin(f — ),
where y;1 is the vertical projection of z to C;. Similarly we
would get ||z — z2|| < ||z — y2 - sinf/sin(f — «), where
y2 is the vertical projection of x to C'>. On the other hand
|ly1 —y2|| is maximized when zp is horizontal (perpendicular
to the z axis) in which case we get ||y2—y1|| = 2:||z—p|| cot 6.
Combining these, we get the desired bound.

Let ¢ be a surface 2-saddle. By definition, ¢ is the intersec-
tion point of a Delaunay triangle t. and its dual Voronoi
edge e.. Let p be the vertex of t. with the largest angle. No-
tice that ||p — ¢|| is the circumradius of ¢, and by Corollary
5, |lp — ¢|l < 1.6ef(p). Therefore by Lemma 14, the normal
of t. makes an angle of at most 3(1.6e) = 8¢ with normal
to surface at p. In other words, t. lies flat to surface and it
is therefore meaningful to distinguish between the side of it
that faces the interior of ¥ and the one that faces its exte-
rior. We refer to these sides of t. as its inner and outer sides
respectively. Since t. intersects e. in a point of its relative
interior (by our non-degeneracy assumption), we can distin-
guish between the two endpoints of e. as its inner and outer
vertices and refer to them as v, and vl respectively. We
denote by e, the the segment cv} excluding ¢ and we de-
fine e; similarly. Notice that the flow direction on e.\ {c} is
toward its endpoints at each side of c¢. Therefore, every point
of e. between ¢ and v} flows to the same maximum that v}
flows into. A similar statement holds for the points between
cand v; . We define Ul = el Up(v) and Us = e Ugp(vy).
In fact, US and U together make the unstable manifold of
c [12]. Thus, if US intersects 1 then the flow originated at
any point of e, arbitrarily close to ¢ must end up in an ex-
terior medial axis maximum m and therefore S(c) is incident
to S(m) through the outer side of ¢.. Similar statements can
be made by replacing U with U; and £* with .

LEMMA 18. For any 0 < p < 1, there exists €0 small
enough such that if P is an e-sampling of ¥ for e < eq, then



for any x € UF N, Z(v(z),nl) < 12e, and for every point
ze U N, Z(v(z),n, ) < 12¢, where p is any point in
A(z). In particular, for p=3/e > 3/4, €0 = 0.01 suffices.

PRrROOF. We only prove the lemma for points in Uurn 3.
The proof for points in U; N X is analogous. For simplicity
we enforce €9 < 0.01 although the statement of the lemma
may hold for larger values of ¢. Let P be a e-sampling of ¥
with € <eg¢ <0.01.

Since € ¥ C ¥yy.2, by Corollary 5, ||z — p|| < 1.6ef(p)
for every p € A(z). Notice that it suffices to prove that
Z(v(z),nf) < 8¢ for only one point p € A(x). This is be-
cause for any other point ¢ € A(z), |lp —¢q|l < |lp — | +
llg — z|| <2-1.6e max{f(p), f(¢)} and therefore by Lemma

1, Z(ny ,nd) < %35 < 4e for e < 0.01.

As above, let t. and e. be the Delaunay triangle and its dual
Voronoi edge for which {c} = t. N e.. Notice that U is a
piece-wise linear curve. Let ug,u1,...,ur be the vertices of
this curve with uo = ¢, u1 = vJ, and up = m, where m,
the maximum at which UJ ends. Notice of course that v
itself does not belong to U as v(uo) = v(c) = 0. We prove
the lemma inductively starting from the segment uoui and
going up to ug_1ug. By the structure of flow complex [12],
it is easy to see that every vertex in {vl7 .. .7vk} is either
a Voronoi vertex or is on a Voronoi edge. Furthermore, the
interior of every segments w;—1u;, i = 1,...,k, falls entirely
inside a Voronoi edge or facet.

For the base case of our induction we observe that the lemma
holds for points z € vov: (excluding vg). To see this, notice
that the direction of v(x) for such points agrees with the
vector v — c. Let p be the vertex of t. with the largest
angle. Using Lemma 14, and taking into account that x is
on the outer side of ¢, implies that the angle between n™ (p)

and v} — c is at most B(1.6¢) < 8e.

Notice that with a similar argument as for the case of the
points on e}, for any point x € U;" that flows on a Voronoi
edge e, the Delaunay triangle ¢ dual to e must lie flat to
surface and thus we can distinguish between its side facing
outward and the one facing inward. Informally, we will say
that in such a case x is above of t if x is on the side of ¢
facing outward and below t otherwise.

For the rest of the proof we consider all cases for the flow to
move from one Voronoi face to another.

1. Edge-vertezx-edge. First we study the case in which the
flow on a Voronoi edge e, reaches a Voronoi vertex v and
enters another Voronoi edge ¢’. We assume that the state-
ment of the lemma holds for points on e and show that it
remains true as flow moves on to e’. To see this, let t = pqr
be the Delaunay triangle dual to e and let ¢’ = grs be the
one dual to e’. The Voronoi vertex v must be dual to the De-
launay tetrahedron A with vertex set {p,q,r,s}. Since the
flow through v continues on ¢, the driver of flow for points
x € € must lie in the interior of the triangle ¢’ or in other
words, the line through e’ must intersect t’. As discussed
above both ¢ and ¢’ are flat and v is above t. It is easy to see
that extending the lemma e’ is identical to showing that v

Figure 6.

is also above €’. The outward direction for both ¢ and t’ are
within 12¢ from n;r It can be easily observed that if v is not
above t’, it must be in A. But in that case v is a maximum
of the distance function and the flow does not leave it to
enter e’.

2. Fuacet-vertex-edge. The second case we study is that of
the flow through a Voronoi facet f dual to Delaunay edge
pq reaches a Voronoi vertex v dual to tetrahedron A = pgrs
and continues on a Voronoi edge e dual to Delaunay triangle
t = qrs. We assume that the lemma holds for the points =
on U N f and show that this extends to the points on e. As
in the previous case t is flat and we only need to show that
v is above t. By induction hypothesis, Z(v — d,n}) < 12¢
where d = %(p + ¢q) is the driver of the points on f. It can
be verified that if v is not above ¢, it must be that v € A
making v a local maximum, a contradiction.

3. Edge-vertex-facet. Consider now the case where the flow
through a Voronoi edge e reaches a Voronoi vertex v and
enters a Voronoi facet f incident to v. Let pgr be Delaunay
triangle dual to e and let rs be the Delaunay edge dual to f.
Note that v is the circumcenter of the Delaunay tetrahedron
A = pgrs. We assume that the lemma holds for points on e
which is identical to assuming that v is above t. Since the
flow through v continues on f, the closest point of A to v
is the midpoint m = %(r + s) of the edge rs (see Figure 6,
left). For this to happen, v must be in the wedge made by
two half-planes 71 and 72 both having the line through rs as
boundary and respectively orthogonal to triangles t1 = prs
and tz = grs. Since v is the circumcenter of A, ||v — r|| <
1.6 f(r) is an upper bound for the circumradii of both ¢; and
t2. Similar to the argument in the previous case normals to
both t; and t2 make an angle of at most 12¢ with n,.. Since v
is above t but not contained in A, it must be above both ¢
and t2. If we base at m, two vectors v and vs, respectively
normal to ¢; and t2 in their outward directions, v1 will lye in
m1 and vz in m2. The segment vm is on the plane bisecting
rs and so are v1 and vz. It follows from triangle inequality
on angles between vectors that v—m = v(z), for x € fNUS,
also makes and angle of at most 12¢ with n,”. Notice that
with exactly the same argument but with using s instead of

r, we get the same bound with respect to nJ .

4. Facet-vertez-facet. The proof of this case is a simple com-
bination of the proofs of cases 2 and 3.



5. Facet-edge-facet. We show now that under tight enough
sampling, i.e. by choosing p large enough, if the flow through
a Voronoi facet f arrives at a Voronoi edge e of f, it will
continue on e and does not enter an other facet f’ incident
to e, given that the statement of lemma holds for the points
of U N f (we give a proof for p > 3/4 but better bounds
can be achieved for smaller € or through slicker analysis).
Suppose to the contrary that this is not the case, i.e. (see
Figure 6, right) the flow crosses e and enters another facet
f’ incident to e. Let 7s be the Delaunay edge dual to f. The
driver of the flow on f is m = %(r + s). Let y be the point
where the flow reaches e. The dual Delaunay triangle ¢ to e
has r and s for vertices plus another vertex s’. For the flow
to cross e and enter f’, f’ must be the Voronoi facet dual to
ss’. Furthermore, the line containing e must not intersect ¢.
Let o be the circumcenter of t. By our assumption, the flow
direction on f, which coincides with m — y makes an angle
of no more than 12¢ with n;". On the other hand, y € ¥ and
thus ¢ is flat and since 7 is the largest angle in ¢, the normal
to t, i.e. direction of e, makes an acute angle of 8¢ with
n,. This in particular implies that y is above t. Therefore,
Zmyo is at most 20e. In order for the line containing e not
to intersect ¢, it must hold that /mss’ < Zmso. The two
triangles mso and myo both share the edge mo and both
have a right angle on one of the end-points of this edge. We
will show below that ||m — w|| < ||m — s|| < |jo — y||. This
will imply that Zmso < Zmyo. We have already seen that
Zmyo < 20e and using exactly the same argument as in
the proof of Lemma 15, we get Zmso > arcsin(p/3.2), and
therefore we must have

20e > arcsin (L) .

3.2

This inequality is violated for € < ¢ for small enough &g (in
particular for e9 = 0.01 and p > 3/4) giving us the desired
contradiction. Now to prove that ||m —y|| < ||m — s||. Notice
that s is a closest sample to y and by our assumption y € 3.
Therefore, y is between the cones C and C; . On the other
hand by Corollary 5, ||r — s|| = 2|lm — s|| < 2|y — s|| <
2 - 1.6ef(s) and therefore using Lemma 13, ms makes an
angle of at least § — 1.6e > 6 with normal to 3 at s. This
implies that m is also between C and CJ . By our inductive
hypothesis, my makes an angle of at most 12¢ with nJ.
Lemma 17 can now be used to get

sin(be)
cos(17¢)
where the middle inequality holds for ¢ < 0.01 and p > 3/4.
In fact for any constant 0 < p < 1 the above inequality holds
(and the desired contradiction is achieved) for any e < eg

for small enough €¢ since the left hand side has a quadratic
dependence on ¢.

Im —yll <2162 - £(s) < 50f(s) < m s,

Thus we have proved that whenever the flow on U moves to
a Voronoi facet f, it leaves f by either hitting a Voronoi edge
e and continuing on e, or by hitting a vertex v. Thus we have
covered all cases in the inductive step and this completes the
proof of the lemma. [l

In the following Lemma we show that if S(c) is incident to
the stable manifold S(m) of an interior (exterior) medial
axis maximum m, then the part of S(c) that is contained in
tc is incident to S(m) at the inner (outer) side of ¢..

LEMMA 19. For any surface 2-saddle ¢, US can only in-
tersect with ¥ and US can only intersect with ¥ .

PROOF. We prove the claim for US. The other claim is
proved analogously. Suppose to the contrary that UJ inter-
sects ¥~ at . Let v be the last turning point of U before
reaching x. Let ¢ be a sample point for which z € C; and let
p be a closest sample point to x. Then ||z —p| < ||z —¢]| <
f(q) cos@ = f(q)sin(5e). Therefore, ||p — q|| < 2f(q) sin(5¢)
and as such by Lemma 1,

- 2sin(5e)
4y na) S T3 5ameey — O
On the other hand, by Lemma 18, the vector x — v makes
an angle of O(e) with nf. It is easy to observe that this
contradicts the assumption that the flow hits C . O

The following lemma is a direct consequence of Lemma 18
and Lemma 16.

LEMMA 20. Let ¢1 and c2 be two surface critical points
with S(c1) and S(c2) put by RECONSTRUCT into T, such
that boundaries of S(c1) and S(c2) have a Gabriel edge e
in common. Let t1 and ta be the patch triangles incident to
e in S(c1) and S(c2), respectively. Then, the dihedral angle
between t1 and to is greater than m/2.

PROOF. Orient patch triangles of S(c1) by taking for ev-
ery patch triangle ¢ of S(c1), the normal to ¢ pointing to the
side of ¢ incident to the interior of the reconstruction as n; .
Lemma 18 implies that in this case for every point = € ¢
where t is a patch triangle of S(c1), Z(n},nf) < 14°. In
particular, by letting ¢ = t; and choosing x to be a point on
e, we get é(n;ﬂnfl) < 14°

If we do a similar orientation on S(cz), we get Z(n},nf)) <

14°. As such, the dihedral angle between 1 and t2 is at least
180° — 28° = 152°. O

5.4 Homeomorphism

THEOREM 3. The output T produced by the algorithm RE-
CONSTRUCT s a 2-manifold without boundary homeomor-
phic to 3.

PrOOF. First we observe that the complex T produced by
RECONSTRUCT is the boundary of the union of stable mani-
folds of either the inner or outer medial axis critical points.
Let m1 and m2 be medial axis maxima such that S(m1) and
S(mz2) are neighboring 3-cells in the flow complex, i.e. they
both have S(c) contained in their boundaries, where ¢ is a
2-saddle. If m1 is an inner medial axis maximum and m2 an
outer one, then ¢ must be a surface critical point as the com-
mon boundary of S(m1) and S(m2) must lie in ¥ C X,,2.
On the other hand, if m: and mg are both inner (outer) me-
dial axis maxima then S(c) cannot be a surface critical point
since otherwise both U} and U arrive at inner (outer) me-
dial axis maxima and therefore both must have crossed ¥~
(%) and this violates Lemma 19. This in part implies that
the algorithm RECONSTRUCT in fact partitions the medial
axis critical points into two subsets.



We consider in this proof the case where T is the boundary
of the union of stable manifolds of the inner medial axis
critical points (the outer case being analogous). We argue
that 7 and X are homeomorphic. Consider the restriction
¢: T — X of the closest point map x — . We prove that ¢
is a homeomorphism. Since both T and X are compact, it is
sufficient to show that ( is continuous, one-to-one and onto.

First, we argue that { is one-to-one. Orient the normal to
™

each patch triangle ¢ so that it makes an angle less than 3
with the oriented normal n;f at the vertex p of ¢t which is
a sample point. Because of Lemma 16 and Lemma 20, the
triangles of 7 can be oriented consistently satisfying this con-
dition. We denote this oriented normal for a patch triangle
t by n¢. By Corollary 6, for every point x in a patch triangle
t the oriented triangle normal n; makes an angle of at most
14° with n;r Suppose ( is not one-to-one. Then, there are
two points x and z’ in T that are both mapped to the same
point & by (. Consider the line ¢ normal to ¥ at Z. This
line passes through both x and z’. Assume without loss of
generality that = and z’ are consecutive intersection points
of £ and T. Then, at one of x and z’ the line £ enters and at
the other exits the interior bounded by 7. In other words, if
we orient £ along n%ﬂ it makes an angle at least 7 with one
of the oriented normals of T at = or z’, an impossibility.

Next, we argue that T is a manifold. Since T bounds the
union of the closed stable manifolds of medial axis maxima,
it is a 2-complex with each edge being incident to at least
two triangles. We claim that the triangles incident to each
vertex v of this complex form a topological disk and hence T
is a 2-manifold. If not, there are two triangles incident to v so
that a normal line stabs both of them at points arbitrarily
close to v since they lie almost parallel to . This is in
contradiction with ¢ being one-to-one.

We are left to show that ¢ is continuous and onto. The con-
tinuity of ¢ follows from the fact that the original closest
point function z +— & is continuous everywhere except at
the medial axis. To show that ¢ is onto, consider {(7T) C X.
Certainly, ¢ is onto from T to {(7T). We claim that ¢(T) = 2.
Since T is a 2-manifold without boundary and ¢ maps it
homeomorphically to ¢(T), we have ((T) as a compact 2-
manifold without boundary and ¢(7) C X. This is only
possible if ¢(T) = ¥ as both ((7) and ¥ are compact 2-
manifolds without boundary. O

6. CURVES IN R?

6.1 Separation of critical points

et P be an e-sample of a smooth closed curve I' C R%. We
analyze the critical points of the distance function h induced
by P.

Lemma 4 still holds, i.e., all critical points of h are either
near the curve (called the curve critical points), or near the
medial axis (called the medial azis critical points). However,
unlike surfaces, not all types of critical points can be near
the curve.

LEMMA 21. If the boundary of a ball B intersects T' in
three or more points, then it contains a medial azxis point.

PRrROOF. Shrink B centrally untill its boundary becomes
tangent to a point, say x of I'. Then keeping z fixed on
the boundary shrink it further by moving its center toward
x. Stop when the interior of B becomes empty of I'. At this
moment B is tangent to I'. If x is the only point of tangency,
B is a curvature ball and its center is on the medial axis. If
it is tangent to two or more points of I, its center is again a
medial axis point. In both cases the medial axis point is in
the original ball B. O

LEMMA 22. Let ¢ be a critical point of h. If c € T'.2, then
c 1s either an indez-0 or an index-1 critical point provided
that e < 1/3.

PrOOF. If ¢ is an index-2 or index-3 critical point, we
have a ball B centered at ¢ whose boundary intersects I' in
three or more points. Let r be the radius of B. By Lemma 21,
B contains a medial axis point and hence r > f(p) for any
point p € P N B. Therefore, c is at least f(p) distance away
from its closest point in P. We claim that c is also at least
e?f(¢é) distance away from ¢é proving that ¢ ¢ T'.2.

To reach a contradiction assume that s(c¢) = ||c — ¢|| is no
more than EQf(é). The closest sample point, say p, to ¢ is
within ef(¢) distance from it. This point p is within (¢ +
€?) f(¢) distance from c¢. Applying the Lipschitz property of
the feature size f we get that ||p — ¢|| < ete® f(p). On

1—e—e2

the other hand we know [[p — ¢[| > f(p). Thus we reach a
contradiction if & < 3. o

6.2 Reconstruction

We will state some more results regarding the critical points
of the distance from a curve. These results lead straightfor-
wardly to a reconstruction algorithm. The edges that con-
nect two consecutive points on I" are called correct edges. All
other edges are incorrect. It is known that all correct edges
are Delaunay if ¢ < 1/3. Also, it is easy to show that they
intersect their dual Voronoi facets, i.e., they contain index-1
critical points. It is further known that the length of any
correct edge pq is at most 12f6 (p). This means the index-1
critical point which is the midpoint of pq is at most = f(p)
distance away from its closest sample point which suggests
that this critical point cannot lie in M. and hence resides
in I';2. On the other hand, as the next lemma shows, the

incorrect edges containing index-1 critical points are longer.

LEMMA 23. Let pq be a Delaunay edge that contains an
index-1 critical point c.

(i) If pq is correct then the distance of ¢ from p is at at
most 1fsf(p).

(i1) If pq is incorrect then the distance of ¢ from p is at
least f(p)/2.

PROOF. If pq is correct, its length is at most %f(p) by

Lemma 3.4 of [9]. So, its midpoint ¢ has distance at most
£

= f(p) from p proving (i).




Now assume that pq is incorrect. If the boundary of the ball
B centered at ¢ with radius ||¢ — p|| intersects I" only in p
and ¢ then B is a medial ball and the distance of ¢ from p
is at least f(p). Otherwise the boundary of B intersects I'
in more than two points and hence B contains a medial axis
point by Lemma 21. Therefore, the diameter of B is at least
f(p) and the distance of ¢ from p is at least f(p)/2 proving

[l

(i)

The curve critical points can be separated from the medial
critical points using an algorithm similar to the one for sur-
faces. For a sample point p we determine the nearest critical
point. By Lemma 22 and Lemma 23 this critical point has
index 1 and is the midpoint of a correct edge. A result of
Amenta et al. [2] implies that a correct edge makes an angle
of at most arcsin(e/2) with the tangent t, at p. Thus the
vector from p to its nearest critical point makes an angle
no larger than arcsin(e/2) with ¢,. On the other hand any
index-1 critical point in Ma. is at least f(p)/2 distance away
from p as a result of Lemma 23. This fact along with the
following result due to Dey et al. [8] give the required critical
point separation. For a point p € I', the space spanned by
the vectors normal to ¢, is called its normal space.

LEMMA 24. Let x be a point in V, where ||p—z| > §f(p).
Then there is a vector vy in the normal space of p so that
Z(vp, — p) < arcsin 57— + arcsin

e
1—e"

Combining the results of [2], Lemma 23 and Lemma 24 we
get the following corollary.

COROLLARY 7. Let ¢ be any indez-1 critical point on an
edge pq. Let ¢’ be the nearest index-1 critical point of p.
Then, fore <1/3

(i) Z(c' —p,c—p) > /4 if pq is incorrect, and
(ii) Z(c' — p,c —p) < w/4 if pq is correct.

We get an immediate separation algorithm for index-1 criti-
cal points which also gives a curve reconstruction algorithm.
For each point p determine the shortest Gabriel edge. Let
this edge be pg. Choose the other Gabriel edge incident to
p which makes less than m/4 angle with pg. These are the
two correct edges for p.

7. CONCLUSION

We provide the first theoretical results that link the critical
points of the distance function to an e-sampling of a curve
or surface embedded in R* to either the surface (curve) or
its medial axis. This allows us to derive reconstruction al-
gorithms for curves and surfaces embedded in R? that come
with topological and geometric reconstruction guarantees.
Although our proofs of normal convergence and because of
that topological correctness depend on the assumption that
the given e-sampling is tight, we believe that these guaran-
tees can be strengthened to the case of general e-sampling.

The output of our algorithm is not a Delaunay subcom-
plex, a property sometimes desired in practice. However,

the output of the algorithm can be easily modified to sat-
isfy this requirement. A natural way is to replace the stable
manifold of a surface 2-saddle with the union of Delaunay
triangles corresponding to its flow complex triangles (See
Appendix A). Notice that doing this, we replace each patch
with a patch made of the Delaunay triangles which shares
the same boundary of Gabriel edges with the original patch.
Furthermore, these triangles are asymptotically as close to
the surface as our reconstruction. Another provable method
that uses the ideas applied in this paper and is related to
the heuristic method of construction of flow complex used
in [7] is given in Appendix B.
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APPENDIX

A. Stable manifolds of index-2 critical points

An index-2 critical point, i.e., a saddle point s, is the inter-
section point of a Delaunay triangle ¢ with its dual Voronoi
edge e. Under a mild non-degeneracy condition, the stable
manifold of s is a surface patch that can be constructed ex-
plicitly, see [12]. The degeneracy condition is that the inflow
of s does not contain a Voronoi vertex which can be always
achieved by an arbitrarily small perturbation of the sample
points. We start by constructing a polygon P whose interior
points all flow into s. This polygon contains s and is con-
tained in t. To simplify our exposition assume that there are
three Voronoi facets incident to every Voronoi edge. We are
going to construct a polyline for each of the three Voronoi
facets incident to e. These three polylines together make up
the boundary of the polygon P. The drivers of the Voronoi
facets incident to e are points on their dual Delaunay edges.
These Delaunay edges are all in the boundary of ¢. Note
that it is possible that such a driver is a index-1 critical
point. First, consider a driver d which is not an index-1
critical point. The line segment that connects d with s is
contained in ¢ and intersects the boundary of the corre-
sponding Voronoi facet in two points, namely in s and in
a second point s’. We get a polyline from the two segments
that connect s’ to the two Delaunay vertices incident to the
Delaunay edge that contains d. Second, if the driver of the
Voronoi facet is a saddle of index-1 we take its dual Delau-
nay edge as the polyline. That is, we get three polylines all
contained in ¢, one for each Voronoi facet incident to e. Let
P be the polygon whose boundary is given by these poly-
lines. P is contained in t and all its interior points flow into
s. It can be triangulated by connecting s with the points s’
and the Delaunay vertices incident to t. Figure 7 shows two
examples of two such polygons P.

Figure 7. Two examples of polygons that are contained in a Delaunay
triangle that is intersected by its dual Voronoi edge in s. The interior
points of these polygons flow into s. The polygon in the figure on
the right has one index-1 critical point on its boundary.

Let s’ be a point as constructed above for a Voronoi facet
that is not driven by an index-1 critical point. By construc-
tion s’ is contained in a Voronoi edge e’. Furthermore, by
our assumption it has to be an interior point of ¢’. We can
assume again that e’ is incident to three Voronoi facets. For
one of these Voronoi facets we have already computed a poly-
line. For the remaining two we do it exactly the same way
we did it above for P. Thus we have again three polylines,
one for each Voronoi facet incident to e’. Two of these poly-
lines always intersect in a common Delaunay vertex. That is,
the three polylines together form a polyline which is homeo-
morphic to S*. The latter polyline need not be contained in

a hyperplane but it can be triangulated by connecting the
point s’ with newly computed points s’ and to the Delaunay
vertices incident to the Delaunay facet dual to ¢’. This gives
us a new triangulated surface patch whose interior points all
flow into s.

We continue with the above construction until there are no
more points s” left for which we have not already constructed
a surface patch. The surface of points that flow into the
index-2 saddle s is made up from all the patches. By con-
struction the boundary of this surface consists of Gabriel
edges, i.e. Delaunay edges. Figure 8 shows an example of
the stable manifold of some index-2 critical point.

Figure 8. In this example the stable manifold of s is made up from five
surface patches. Note that the surface patches need not be planar.

B. Delaunay subcomplex

The flow complex is not a subcomplex of the Delaunay tri-
angulation. Often a Delaunay mesh is preferred over other
ones. So, we describe here briefly an algorithm to compute a
Delaunay 2-complex whose Hausdorff distance to X is small.
The following definition becomes handy to describe and an-
alyze the algorithm.

DEFINITION 1. A Delaunay triangle t is almost critical
if the plane of t intersects the dual Voronoi edge of t. The
intersection point is called an almost critical point.

This algorithm approximates the stable manifolds of the me-
dial axis maxima with an union of Delaunay tetrahedra. It
processes these maxima in the order of their distances to
P. Let ¢ be a medial axis maximum (critical point of index
3) to be processed. Let S(c) denote the approximation of
S(c) which we compute. The algorithm initializes S(c) with
the Delaunay tetrahedron containing c¢ and collects adja-
cent Delaunay tetrahedra iteratively as follows: Let ¢ be any
not almost critical triangle on the boundary of the union of
tetrahedra collected so far. Let o and ¢’ be the two tetrahe-
dra incident to ¢ out of which o is already in the collection
for c. If ¢’ is not already in the approximate stable manifold
of another maximum z’, then ¢ is put into S(c). The fol-
lowing lemma guarantees that, at the termination g(c) has
only almost critical triangles on the boundary.

LEMMA 25. Ift € 3S(c), then t is almost critical.

PROOF. The triangle t can be on dS(c) for the following
reasons: (i) ¢ is almost critical, (ii) one tetrahedron incident



to ¢ already belongs to S (c') for a maximum ¢’ # c. There
is nothing to prove in (i). So, consider (ii). The tetrahedron
incident to ¢ and collected for S(¢) could not be in S(c’) only
because t is almost critical.

The output Delaunay 2-complex T is the boundary of the
union of S(c) for all medial axis maxima c. By Lemma 25,
all triangles in 7" are almost critical. We show that they all
lie close to ¥ and their unoriented normals agree with the
surface normals.

First, we observe that the almost critical points have similar
properties as the critical ones in that they also lie either near
the surface ¥ or near the medial axis M. The proof follows
the proof of Corollary 2.

LEMMA 26. Leta be an almost critical point. Fore < 1/3,
either a € ¥.2 or a € Mo..

Now we argue that T' does not have any triangle ¢ whose
almost critical point resides in Ma..

LEMMA 27. Let t be a triangle in T'. The circumcenter
of t is not in Ma. for e < min{l1/3,vV2A} where A =

infx’x/eg % .

PROOF. Suppose on the contrary, the point a where the
plane of ¢ and its dual Voronoi edge intersect resides in Mo..
Let t belong to S(c). The tetrahedron incident to ¢ which is
not in S (c) is included in some approximate stable manifold,
say S(c'). We claim that ¢’ is a medial maximum and thus ¢
cannot be in the boundary of the union U S’x for all medial
maxima .

The distance of a from P is at least (1 — 2¢)u(a). Since the
maximum c is further away from P than a is, we have ¢’ at
least (1 — 2¢)p(a) distance away from P. If (1 — 2¢)u(a) >
€2 f(¢') the point ¢’ has to be a medial axis maximum. The

condition is satisfied for ¢ < v2A. O

Since the circumcenter of each triangle in 7" is in ¥_2, their
circumradius is small. The normals of such triangles are al-
most parallel to the surface normals due to Theorem 5 of
Amenta et al. [3].

LEMMA 28. Let n: be the normal of any triangle t € T'.
Then the acute angle between the line of ny and the surface
normal at any vertezx of t is O(e) when ¢ is sufficiently small.



