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Abstract

The distance function to surfaces in three dimensions plays a key role in many geometric
modeling applications such as medial axis approximations, surface reconstructions, offset com-
putations, feature extractions among others. In many cases, the distance function induced by the
surface can be approximated by the distance function induced by a discrete sample of the sur-
face. The critical points of the distance functions are known to be closely related to the topology
of the sets inducing them. However, no earlier theoretical result has found a link between topo-
logical properties of a geometric object and critical points of the distance to a discrete sample of
it. We provide this link by showing that the critical points of the distance function induced by a
discrete sample of a surface fall into two disjoint classes: those that lie very close to the surface
and those that are near its medial axis. This closeness is precisely quantified and is shown to
depend on the sampling density. It turns out that critical points near medial axis can be used to
extract topological information about the sampled surface. With this result, we provide a new
flow-complex-based surface reconstruction algorithm that, given a tight ε-sample of a surface,
approximates the surface geometrically, both in distance and normals, and captures its topology.
Furthermore, we show that the same algorithm can be used for curve reconstruction.

1 Introduction

Given a compact surface Σ smoothly embedded in three dimensional Euclidean space R3, a distance
function

hΣ : R3 → R, x 7→ inf
y∈Σ
‖x− y‖.

can be defined over R3 by assiging to each point in space its distance to Σ. hΣ carries a great deal
of information about Σ and its embedding. The surface Σ itself is trivially the zero level set h−1

Σ (0).
Less trivial is the encoding of the embedding of Σ in space in the inner and outer components of
its medial axis. For example, the homotopy type of the outer medial axis of an embedded torus can
be used to determine if the the torus is knotted or not. It is well known that medial axis consists
of exactly those points in space where hΣ is not differentiable except for the points in Σ itself.
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In many applications Σ is only known through a finite sample P ⊂ Σ from which one desires to
learn about Σ and its embedding. This is of course a reasonable goal only if P is a dense enough
sample of Σ. There are various models for specifying the density of a sampling. A uniform ε-sample
of a surface Σ is one that includes a sample point within ε distance from every point of Σ. In other
words, the sample and surface must have Hausdorff distance of ε or less. For a uniform ε-sample
to be capable of capturing the topology of the sampled surface, ε should be chosen proportional
to the size of the smallest feature of the surface. As a result, a uniform ε-sample can be rather
excessive. This has motivated the introduction of models that allow the sampling density to vary
locally depending on the size of the features and therefore result much smaller samples.

The well-known ε-sampling theory of Amenta and Bern [1] is one of the most prominent models
for relative sampling of surfaces. An ε-sample of a surface Σ in this model is one that contains a
point within ε times the local feature size of every point x ∈ Σ. The local feature size of the point
x is defined as the distance between x the medial axis M(Σ) of the surface and appears to be a
dependable measure for the required local density of sampling. The results of the present paper are
based on this sampling model which we describe formally in section 2.

Sampling relative to local feature size has been used successfully to analyze algorithms that re-
construct Σ from P or approximate M(Σ). Given an ε-sample of a smooth surface Σ, for a small
enough value of ε, the algorithms of Amenta and Bern [1], Amenta, Choi, Dey and Leekha [3],
Amenta, Choi and Kolluri [4], and Boissonnat and Cazals [5] reconstruct surfaces with the same
topology as Σ that geometrically approximate its in terms of ε. Likewise, progress on the medial axis
approximation problem was made in this model by the algorithm of Amenta, Choi and Kolluri [4]
which succeds to capture the homotopy type of the medial axis M(Σ) of the sampled surface Σ
and the algorithm of Dey and Zhao [10] that geometrically approximates M(Σ) in terms of ε when
ε approaches zero.

Considering the wealth of information encoded in hΣ, when a sample P of Σ is at hand, it is natural
to try to approximate hΣ by the function

hP : R3 → R, x 7→ min
p∈P
‖x− p‖,

and try to extract the desired topological information from hP instead of hΣ. This idea has been used
by Edelsbrunner [11], Chaine [6], and Giesen and John [12] to reconstruct Σ from P . Although all
three of these algorithms work relatively well in practice, none provides a guarantee on the geometry
and topology of the generated ouput.

The distance functions hΣ and hP are not smooth everywhere. Nevertheless, there is a well de-
veloped theory of critical points of such functions [13]. The critical points of hΣ are all points in
Σ (minima) plus a subset of its medial axis M(Σ) (consisting of saddle points and maxima). All
surface reconstruction algorithms based on hP make use of its critical points, i.e., its local extrema
and saddle points. These points are easily computable from the Delaunay triangulation of P [12].
A first contribution of our paper is to associate these critical points for an ε-sampling of Σ to
either Σ itself or its medial axis M . We can show that for an ε-sampling of a surface Σ, for a small
enough value of ε, all critical points of hP either reside very close to Σ or rather very close to M .
That is, we can label the critical points of hP as either surface critical points if they are close to
Σ or medial axis critical points if they are close to M . Interestingly, all types of critical points,
including local maxima, can be close to Σ. This is particularly remarkable since the 2-skeleton of
the Voronoi complex of P is exactly the medial axis of P , but its vertices, edges, or facets cannot
be unambiguously assigned to either Σ or M even if ε becomes arbitrarily small. It is well know
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that Voronoi vertices can reside almost anywhere in R3 \ P .

This separation of the critical points of hP leads to an algorithm for reconstruction of Σ from P by
considering only medial axis critical points and regarding the surface critical points as an artifact of
the discretization of Σ into P . This is the second main contribution of our paper. We can show that
the reconstructed surface is homeomorphic to Σ and geometrically close to it both in distance and
deviations of normals provided the input is a tight ε-sample of Σ. Similar results hold for curves
and curve reconstruction.

The structure of the paper is as follows. Section 2 introduces the basic concepts including flow
complex and critical points of the distance function induced by a point set. In section 3, we state
and prove our separation of critical points lemma. Section 4 describes how it can be algorithmically
determined for a critical point whether it is close to the surface or to the medial axis and uses
this to build a surface reconstruction algorithm. Section 5 analyzes the quality of the produced
reconstruction and establishes its geometric closeness and topological correctness. Section 6 studies
the critical points of a smooth curve in R3 and gives algorithms for classification of critical points and
reconstruction of the curve analogous to those for the surface. An example of our experiments and
concluding remarks are given in Section 7. Appendix A quotes necessary background information
about the structure of stable manifolds of index 2 saddle points from [12].

2 Basic concepts

Throughout this paper Σ is a connected and compact smooth 2-manifold without boundary em-
bedded in R3. Since it does not have a boundary, Σ separates R3 into a bounded region and an
unbounded region. With a slight abuse of terminology we refer to the bounded region as the interior
of Σ and to the unbounded region as its exterior. Since Σ is smooth, the normal to Σ at any point
x ∈ Σ is well defined. For x ∈ Σ, we denote by n+

x and n−x , the normal vectors at x pointing to the
exterior and interior of Σ respectively. By nx (with no “+” or “−” superscript) we denote either
of n+

x or n−x , i.e. the direction of the line normal to Σ at x without a particular orientation. Also,
throughout, P ⊂ Σ is a discrete sample satisfying certain conditions to be specified shortly. To
simplify our exposition we assume that P is in general position.

Any point set S ⊂ R3 induces a distance function

hS : R3 → R, x 7→ inf
p∈S
‖x− p‖,

where ‖·‖ denotes the Euclidean norm. It is easy to check that every distance function in the above
sense is 1-Lipschitz, i.e. for all x, y ∈ R3, |hS(x) − hS(y)| ≤ ‖x − y‖. In this paper, we work with
two major distance functions, one induced by Σ and the other by P . To simplify our notation, in
the sequel, we use s(·) instead of hΣ(·) and h(·) instead hP (·).

2.1 Surface samples

The medial axis M = M(Σ) of Σ is the set of all points in R3 that have at least 2 distinct closest
points in Σ, i.e.

M =
{
x ∈ R3 : |{y ∈ Σ : ‖x− y‖ = hΣ(x)}| ≥ 2

}
.
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For a point c ∈ R3 and real number r, the ball with center c and radius r, denoted Bc,r, is the set
of all points x ∈ R3 at distance no more than r from c. We call a ball empty, if its interior does
not contain any point from Σ. A medial ball is a maximal empty ball, i.e. an empty ball that is not
contained in any other empty ball.

Medial feature size. For any point x ∈ R3 \ Σ we denote by x̂ the unique closest surface point
to x, i.e.,

x̂ = argmin
y∈Σ

‖x− y‖,

and by x̌ ∈M we denote the center of the medial ball tangent to Σ at x̂ and at the same side of Σ
as x. The medial feature size is the function

µ : R3 \ (Σ ∪M)→ R ∪ {∞}, x 7→ ‖x̂− x̌‖.

Note that for a point x in the unbounded component of R3 \Σ, x̌ can be at infinity. This happens
exactly when x̂ lies on the boundary of the convex hull of Σ and the boundary of the medial ball
tangent to Σ at x̂ turns into the plane tangent to Σ at x̂. In such a case we declare that the medial
feature size of x is ∞.

Besides the medial feature size we will also use the function

m : R3 \ (Σ ∪M)→ R ∪ {∞}, x 7→ ‖x− x̌‖,

which we call the medial projection length. Notice that for every x ∈ R3 \ (Σ ∪M) we have the
identity µ(x) = m(x) + s(x).

Feature size. The function

f : Σ→ R, x 7→ inf
y∈M
‖x− y‖,

which assigns to each point in Σ its distance to the medial axis M , is called the local feature size.
Notice that for x ∈ R3 \ (Σ ∪M) it always holds that f(x̂) ≤ µ(x). Notice also that f(·), being a
distance function, is 1-Lipschitz, i.e. |f(x)− f(y)| ≤ ‖x− y‖ for all x, y ∈ Σ.

Sampling conditions. For a constant ε > 0, a finite sample P ⊂ Σ is called an ε-sample if

∀x ∈ Σ ∃p ∈ P such that ‖x− p‖ ≤ εf(x).

An ε-sample P is called an (ε, δ)-sample or a tight ε-sample if it satisfies the additional condition

∀p, q ∈ P it holds that ‖p− q‖ ≥ δf(p)

for some δ, with 0 < δ < ε.

Poles. For a sample point p ∈ P we denote by Vp the closed Voronoi cell of p. If Vp is bounded,
the positive pole of p, denoted p+, is the Voronoi vertex of Vp farthest away from p. The positive
pole vector ν+

p is the vector p+ − p if Vp is bounded or is taken as the unit vector in the direction
which is the average of all unbounded Voronoi edges in Vp. In the latter case we informally refer to
a point at infinity in the direction ν+

p as the positive pole. The negative pole p− of p is the farthest
Voronoi vertex of Vp from p for which the smaller angle between the vectors ν+

p and ν−p = p− − p
is greater than than π/2 (or equivalently the inner product 〈ν−p , ν+

p 〉 is negative). We call ν−p the
negative pole vector at p.
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Notation. The angle between two vectors u and v, denoted ∠(u, v) is always smaller than π.
For three points x, y, and z, we denote by ∠xyz the angle between vectors x − y and z − y, i.e.,
∠(x − y, z − y). The angle between two lines is the nonobtuse angle formed by them. The acute
angle between vectors u and v is the smaller of the two angles made by the lines through u and v.

We will extensively use the following two lemmas due to Amenta and Bern [1] and the corollary
following them.

Lemma 2.1 Let x and y be points on Σ with ‖x− y‖ ≤ ξf(x) for ξ ≤ 1/3. Then

∠(n+
x , n

+
y ) = ∠(n−x , n

−
y ) ≤ ξ

1− 3ξ
.

Lemma 2.2 Let p be a sample point in an ε-sample P . Let x be any point in Vp with ‖x−p‖ ≥ ξf(p)
for ξ > 0. Then

∠(x− p, np) ≤ arcsin
ε

1− ε
+ arcsin

ε

ξ(1− ε)
.

Corollary 2.3 For any point p of an ε-sampling P of a surface Σ, the acute angle between the
normal to surface at p, np, and either of ν+

p and ν−p is at most 2 arcsin(ε/(1− ε)).

2.2 Induced flows

Critical points. Our results involve the critical points, i.e., its local extrema and saddle points of
the distance function h. For every point x ∈ R3 we define

A(x) = {p ∈ P : ‖x− p‖ = h(x)}

as the set of all sample points closest to x. There is a simple characterization for critical points
of h [12], namely, a point c is a critical point if and only if c ∈ convA(c). It turns out that these
points are exactly the intersection points of Voronoi faces and their dual Delaunay simplices. A local
maximum is a Voronoi vertex that is contained in its dual Delaunay tetrahedron. Every sample
point is a minimum and there are no other minima. The remaining critical points are saddle points.
The dimension of the Delaunay simplex that contains a critical point c is interpreted as the index
of c. We call a non-critical point of h a regular point.

Flow. Although the gradient of h is not defined everywhere, there is a unique direction of steepest
ascent at every regular point of h. The direction of steepest ascent at x ∈ R3 is given by the vector
x− d(x) where

d(x) = argmin
y∈convA(x)

‖x− y‖.

We call the point d(x) the driver of x. Assigning to the critical points of h the zero vector and to
every other point in R3 the unique unit vector in the direction of steepest ascent results a vector
field

v : R3 → S2 ∪ {0}

on R3. This vector field is not continuous but nevertheless can be integrated to give a flow, i.e., a
map

φ : [0,∞)× R3 → R3,
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such that at every point (t, x) ∈ [0,∞)× R3 the right derivative

lim
t←t′

φ(t′, x)− φ(t, x)

t′ − t
exists and equals v(φ(t, x)). The flow tells how a point would move if it always followed the direction
of steepest ascent of the distance function h. The flow curve (integral line) that a point x follows
is given by φx : R → R3, t 7→ φ(t, x) and is called the orbit of x. We denote by φ(x), the set
{φx(t) : t ∈ [0,+∞)}.

Stable manifolds. Given a critical point c of h the set of all points whose orbit ends in c, i.e.
the set of all points that flow into c, is called the stable manifold of c and is denoted S(c). The
collection of all stable manifolds forms a cell complex which is known as the flow complex. The
dimension of each cell in the flow complex is the index of its associated critical point. The cells
have a recursive structure, namely, the boundary of the stable manifold of a critical point is made
up of stable manifolds of critical points of lower index. As in [12] we assume throughout this paper
that Voronoi and their dual Delaunay faces intersect in their interiors if they intersect at all. Other
intersections are unstable under small perturbation of the point set and can therefore be considered
degenerate. Here we summarize the basic facts of the stable manifolds for the different indices of
the critical points.

Index-0. The stable manifold of an index-0 critical point, i.e., a local minimum, is just the minimum
itself.

Index-1. The stable manifold of an index-1 critical point, also called a 1-saddle, i.e., the intersection
point of a Delaunay edge with its dual Voronoi facet, is the Delaunay edge which in this case is a
Gabriel edge.

Index-2. The stable manifolds of an index-2 critical point, also called a 2-saddle, is a piecewise
linear surface patch. See [12] and Appendix A for details on structure and computation of these
patches.

Index-3. The stable manifolds of index-3 critical points, i.e. local maxima, are the bounded regions
in the complex built by the stable manifolds of critical points of indices 0, 1 and 2.

3 Separation of critical points

In the following P is always an ε-sample (with ε to be specified) of a smooth closed surface Σ
embedded in R3. Also, h is the distance function associated with P and φ is the flow induced by P
following the vector field v.

Lemma 3.1 Let x be a point in R3 \ (Σ ∪M) with µ(x) =∞. Then, x is not a critical point of h
and the angle between the vectors x̌− x and v(x) is strictly less than π/2.

Proof. If m(x) =∞ then x̌ is at infinity and the plane H tangent to Σ at x̂ does not have any point
from Σ on the same side as x̂. Therefore, H separates x from Σ and in particular from convA(x).
Consequently, x cannot be a critical point of h and for every point y except x̂, on the ray from x̂
through x, the angle between the vectors v(y) and ŷ − y is strictly less than π/2. �

The next lemma states that for x ∈ R3 \ (Σ ∪M) with µ(x),m(x) < ∞ any critical point of h on
the line segment x̂x̌ must be very close to one of the two ends of this segment.
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Lemma 3.2 Let ε < 1/3 and let x be a point in R3 \ (Σ∪M) for which µ(x) is bounded. Moreover
assume that 2εµ(x) < m(x) and ε2f(x̂) < s(x). Then v(x) 6= 0 and ∠(x̌− x, v(x)) < π/2.

Proof. By the definition of local feature size f(x̂) ≤ µ(x). Thus the closest sample point in P to x̂
lies inside a ball centered at x̂ with radius at most εf(x̂). Hence the distance from x to its closest
sample point is at most s(x)+εf(x̂). Consequently, the set A(x) ⊆ P , of sample points at minimum
distance from x, is contained in the ball B centered at x with radius s(x) + εf(x̂). Let B′ be the
open ball centered at x̌ with radius µ(x). Since B′ is empty of any sample points, every point of
A(x) is contained in B \ B′. The driver d(x) of the flow induced by P at x is by definition in the
convex hull of A(x) and is therefore contained in the convex hull of B \B′.

Consider the disk D = H∩B′ where H is the plane containing x perpendicular to the line through x̂
and x̌. Let r be the radius of this disk. If s(x) + εf(x̂) < r, then x 6∈ conv (B \B′). Consequently, x
is not a critical point of h and the angle between the vectors x̌−x and v(x) is strictly less than π/2,
see Figure 1. Thus for the statement of the lemma to hold, it suffices to show that s(x)+εf(x̂) < r.
By the Pythagorean theorem

r2 = µ(x)2 −m(x)2.

Therefore, since
s(x) + εf(x̂) = µ(x)−m(x) + εf(x̂),

s(x) + εf(x̂) < r is equivalent to

(µ(x)−m(x) + εf(x̂))2 < µ(x)2 −m(x)2,

which in turn is equivalent to,

m(x)2 −
(
µ(x) + εf(x̂)

)
m(x) + εµ(x)f(x̂) +

ε2

2
f(x̂)2 < 0.

x

x̂

B

B′

x̌

µ(x)

εf(
x̂)

s(x
) +

εf
(x̂)

r

Figure 1: Flow can escape the center of the medial ball only close to surface or close to center.
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This inequality holds between the two roots of the quadratic function of m(x) on the left hand side
of the inequality, i.e., for

m(x) >
1

2

(
µ(x) + εf(x̂)−√
µ(x)2 − ε2f(x̂)2 − 2εµ(x)f(x̂)

)
m(x) <

1

2

(
µ(x) + εf(x̂) +√
µ(x)2 − ε2f(x̂)2 − 2εµ(x)f(x̂)

)
.

Using f(x̂) < µ(x) the lower bound on m(x) can be weakened as follows

m(x) >
1

2

(
µ(x) + εµ(x)−√
µ(x)2 − ε2µ(x)2 − 2εµ(x)2

)
=

µ(x)

2

(
1 + ε−

√
1− 2ε− ε2

)
.

Notice that our assumption that ε < 1/3 implies

0 < 1− 2ε− ε2 < 1,

i.e., we have a real lower bound on m(x) and can further weaken this bound, taking into account
that

√
x > x for x ∈ (0, 1), to get

1 + ε−
√

1− 2ε− ε2 < 1 + ε− (1− 2ε− ε2)

= 3ε+ ε2 < 4ε,

which implies the weaker lower bound m(x) > 2εµ(x). Next we want to show that s(x) > ε2f(x̂)
implies the upper bound on m(x), i.e., s(x) < ε2f(x̂) is a weaker form of this upper bound.
Assuming s(x) > ε2f(x̂) we get

m(x) = µ(x)− s(x) < µ(x)− ε2f(x̂).

Thus it is enough to show that

µ(x)− ε2f(x̂) <
1

2

(
µ(x) + εf(x̂) +√
µ(x)2 − ε2f(x̂)2 − 2εµ(x)f(x̂)

)
.

The latter inequality is equivalent to

−3

4
µ(x)2 +

(
3

2
ε− ε2

)
µ(x)f(x̂) +(

5

4
ε2 + ε3 + ε4

)
f(x̂)2 < 0.

Plugging in f(x̂) ≤ µ(x) we get the stronger inequality

−3

4
+

3

2
ε+

1

4
ε2 + ε3 + ε4 < 0,
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which in turn gives by summarizing

1

4
ε2 + ε3 + ε4 into

9

4
ε2

the even stronger inequality
−1 + 2ε+ 3ε2 < 0

which is satisfied through our assumption that ε < 1/3. Thus s(x) > ε2f(x̂) implies the upper
bound on m(x). �

η-tubular neighborhoods. For a constant η ≤ 1, define the η-neighborhood of the medial axis,
denoted Mη as

Mη = {x ∈ R3 \ (Σ ∪M) : m(x) < ηµ(x)} ∪M.

Similarly let
Ση = {x ∈ R3 \ (Σ ∪M) : s(x) < ηf(x̂)} ∪ Σ.

Corollary 3.3 Every critical point of the distance function h either belongs to Σε2 or M2ε provided
ε < 1/3.

Surface and medial axis critical points. Let ε < 1/3. We call a critical point of h a surface
critical point if it is contained in Σε2 and we call it a medial axis critical point if it is contained in
M2ε.

4 Algorithms

4.1 Separating the critical points

Our goal here is to devise an algorithm that can separate the surface critical points from the medial
axis critical points. To prove the correctness of our algorithm we will frequently make use of the
following definition.

Associating critical point to sample points. A critical point c is said to be associated with a
sample point p ∈ P if ‖p− c‖ = h(c), i.e., if c is contained in the closed Voronoi cell of p.

At first we want to deal with surface critical points. The following two lemmas turn out to be useful
to this end.

Lemma 4.1 For any sample point p ∈ P the ball B with diameter pp+ does not contain any
critical point associated with p in its interior. The analogous statement holds for the negative pole
p−.

Proof. If p+ lies at infinity then the ball B becomes a half-space with normal ν+
p . The boundary

of this half-space is a plane that supports the convex hull of P . Since any critical point of h must
be contained in the convex hull of P it follows that the the interior of B, i.e., the open half space,
cannot contain any critical point of h. Thus we can assume that p+ is finite. Let c be a critical
point associated with p. If c is a minimum, then c = p and there is nothing to prove. Otherwise,
|A(c)| > 1. All points in A(c) lie on the boundary of the ball B′ of radius ‖c− p‖ centered at c. Let
B′′ be the open ball of radius ‖p− p+‖ centered at p+. By construction there can be no points of
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p

p+

c

B

B′

B′′

Figure 2: The ball with diameter pp+ contains no critical point associated with p.

P in B′′. Thus all points of A(c) must belong to ∂B′ \B′′. On the other hand, for c to be a critical
point, it must be in the convex hull of A(c). This happens only if the angle ∠pcp+ is smaller than
π/2. The latter condition is in turn identical to c being outside the ball B, see Figure 2. The proof
of the analogous statement for p− follows along the same lines. �

Lemma 4.2 Let c be a surface critical point associated with sample point p ∈ P . If ε < 0.1 then

‖c− p‖ ≤ 1.1ε

1− 1.2ε
‖p− p−‖ ≤ 1.1ε

1− 1.2ε
‖p− p+‖.

Proof. Let q ∈ P be the closest sample point to ĉ. By the sampling condition it holds that ‖ĉ−q‖ ≤
εf(ĉ). Using the triangle inequality we obtain

‖c− p‖ ≤ ‖c− q‖ ≤ s(c) + ‖ĉ− q‖
≤ ε2f(ĉ) + εf(ĉ) = ε(1 + ε)f(ĉ). (1)

Since the local feature size f is 1-Lipschitz we can write

f(ĉ) ≤ f(p) + ‖ĉ− p‖
≤ f(p) + s(c) + ‖c− p‖
< f(p) + ε2f(ĉ) + ε(1 + ε)f(ĉ)

= f(p) + ε(1 + 2ε)f(ĉ)

< f(p) + 1.2εf(ĉ).

Rearranging, we obtain

f(ĉ) <
1

1− 1.2ε
f(p). (2)

Combining (1) and (2) we finally get

‖c− p‖ ≤ ε(1 + ε)f(ĉ) <
ε(1 + ε)

1− 1.2ε
f(p)

<
1.1ε

1− 1.2ε
f(p) ≤ 1.1ε

1− 1.2ε
‖p− p−‖

≤ 1.1ε

1− 1.2ε
‖p− p+‖. �

From Lemmas 4.1 and 4.2 we derive the following corollary.
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Corollary 4.3 Let c be a surface critical point associated with sample point p ∈ P . If ε < 0.1 then
then the acute angle between the vector c − p and each of the vectors ν−p and ν+

p is at least 75.5
degrees.

Proof. By Lemma 4.1 neither of the two balls with diameters pp+ and pp− respectively contain
any critical points associated with p. Thus we get from using Lemma 4.2 and Thales theorem that

cos∠(c− p, ν+
p ) ≤ 1.1ε

1− 1.2ε
.

The same bound holds for cos∠(c− p, ν−p ). Thus for ε < 0.1, the resulting angles are between 82.5
and 180 degrees. By Corollary 2.3,

∠(ν+
p , ν

−
p ) ≥ π − 4 arcsin

ε

1− ε
.

Since ε < 0.1 this angle is at least 173 degrees. Thus

∠(c− p, ν+
p ) ≤ 360− 173− 82.5 = 104.5 degrees,

with the same bound holding for ∠(c− p, ν−p ). From this, both ∠(c− p, ν+
p ) and ∠(c− p, ν−p ) and

their complements are at least 180− 104.5 = 75.5 degrees. �

Next we deal with medial axis critical points.

Lemma 4.4 Let c be a medial axis critical point associated with p ∈ P . If ε < 1/3 then ‖p− c‖ ≥
(1− 2ε)f(p).

Proof. We have s(c) ≤ ‖c− p‖ since s(c) is the distance from c to Σ and we have m(c), µ(c) <∞
by Lemma 3.1. From the definition of a medial axis critical point we have

m(c) ≤ 2εµ(c) = 2ε(m(c) + s(c)).

Combining these inequalities we obtain

m(c) ≤ 2ε

1− 2ε
s(c) ≤ 2ε

1− 2ε
‖c− p‖,

which gives

f(p) ≤ ‖č− p‖ ≤ m(c) + ‖c− p‖

≤
(

2ε

1− 2ε
+ 1

)
‖c− p‖ =

1

1− 2ε
‖c− p‖

and thus ‖p− c‖ ≥ (1− 2ε)f(p). �

Corollary 4.5 Let c be a medial axis critical point associated with p ∈ P . If ε < 0.1 then the
acute angle between the vector c− p and each of the vectors ν−p and ν+

p is at most 28 degrees.

Proof. Using Lemma 4.4 we can plug in 1− 2ε for ξ in Lemma 2.2 to obtain that the acute angle
between c− p and np is at most

arcsin
ε

1− ε
+ arcsin

ε

(1− 2ε)(1− ε)
.
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Reconstruct(P )
1 C := set of the critical points of h.
2 (CM , CΣ) := Separate(P,C).
3 for each c ∈ CM do
4 U.make(c).
5 for each c ∈ CM do
6 for all c′ ∈ ∂S(c) ∩ CM
7 U.union(c, c′).
8 O := union of all stable manifolds in one component of
U .
9 T := ∂O.

10 return T

Figure 3: The surface-reconstruction algorithm.

By Corollary 2.3, the acute angle between np and each of ν+
p or ν−p is at most 2 arcsin(ε/(1− ε)).

Thus the acute between c− p and each of ν+
p or ν−p is at most

3 arcsin
ε

1− ε
+ arcsin

ε

(1− 2ε)(1− ε)
,

which amounts to less than 28 degrees when ε < 0.1. �

Corollary 4.3 and Corollary 4.5 show that for a critical point c associated with a sample point p,
the angle between c−p and a pole of p falls into one of the two disjoint ranges of 0 to 45 degrees or
75.5 to 90 degrees, depending on whether c is a surface or a medial axis critical point, respectively.
Thus the two types of critical points can be distinguished by simply measuring this angle.

4.2 Reconstruction

The algorithmic classification of the critical points of h as either surface or medial axis critical
points suggests the algorithm of Figure 3 for reconstruction of Σ from P . By Separate(P,C) we
refer the to the algorithm described above that partitions the input set of critical points C into
two sets CM , of medial axis critical points, and CΣ, of surface critical points, and returns the pair
(CM , CΣ).

The algorithm Reconstruct maintains a Union-Find data structure U on the set of medial axis
critical points. In line 4, U.make(c) adds a singleton set {c} to U and in line 7, U.union(c, c′)
combines the sets containing c and c′ into a single set. The Union-Find data structure is used to
find all connected components of stable manifolds S(c) of medial axis critical points c ∈ CM . In
the end the boundary of one arbitrary component is returned. Notice that this boundary is made
of stable manifolds of surface critical points.

5 Reconstruction Properties

In this section, we give geometric and topological guarantees for the output of the algorithm Re-
construct under (ε, δ)-sampling. We summarize the results in the following Theorem.

12



Figure 4: A sink cone (left) and enclosing of the surface with sink cone envelopes (right).

Theorem 5.1 For any 0 < ρ < 1 there exists ε0 such that given an (ε, δ)-sample P from a smooth
closed surface Σ, where ε < ε0 and δ/ε = ρ, the algorithm Reconstruct outputs a sub-complex
T of the flow complex of P with the following properties:

(i) T is contained in the tubular neighborhood Σ3ε2 .

(ii) The normal to every triangle pqr in T, with p ∈ P , forms an angle of O(ε) with the normal
to Σ at p, np.

(iii) T is homeomorphic (in fact, isotopic) to Σ.

In particular these claims hold for ρ ≥ 1/3 and ε0 ≤ 0.01.

5.1 Closeness

To analyze local geometry of the flow near the surface, we place at sample points p ∈ P cones that
open along inner and outer normal directions at p. We show that, under certain conditions, such
cones are sinks, i.e., on their surfaces and sufficiently close to Σ, the flow is either tangential or
points to the inside of the cones. By overlapping together these close-reaching cones (see Figure
4), we obtain inner and outer envelopes that enclose the surface and are in a sense “one-way” for
the flow. This means that flow cannot escape from these envelopes leading to properties of the flow
complex central to the analysis of the output of our algorithm.

Sink Cones. For a point p, and a direction vector n, let C = cone(p, n, θ, r) be the cone-patch
consisting of points x for which ‖x − p‖ ≤ r and ∠(n, x − p) = θ. We call θ, and r, the angle and
the reach of C, respectively. A cone-patch is essentially part of the surface of an infinite cone. With
a slight abuse of notation we refer to a cone-patch also as a cone. The boundary of C consists of
points x ∈ C for which ‖x− p‖ = r. We say that C is a sink if at every point in the relative interior
of C (thus excluding the boundary of C) the flow is either tangential or directed toward the interior
of the convex hull of C.

Lemma 5.2 For any point p ∈ P , the two cones C+
p = cone(p, n+

p , θ, r) and C−p = cone(p, n−p , θ, r)
are sinks for any 0 < θ < π

2 and r = f(p) cos θ. Furthermore, the interior of the convex hulls of C+
p

and C−p do not contain any critical points.

Proof. We only prove that C+
p is a sink. The proof for C−p is similar. Let c be the point on the ray

in direction n+
p at distance f(p) from p. Let B′ be the ball with radius f(p) = ‖p− c‖ centered at

c. Note that B′ cannot contain any points from Σ in its interior since it is contained in a medial
ball. Let B be the ball centered at c with radius f(p) sin θ. Then C+

p is the cone tangent to B with

13
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Figure 5: Sink cone for a sample point p.

apex p (see Figure 5). For every x ∈ C+
p , the set A(x) of closest sample points to x are inside the

ball B′′ of radius ‖x − p‖ centered at x but outside B′. Let H be the plane tangent to C+
p at x.

Since r = f(p) cos θ we have that conv (B′′ \B′) is entirely on the opposite side of H with respect
to B and therefore, v(x) points toward the interior of C+

p . Thus C+
p is a sink and no point in the

relative interior of C+
p is a critical point. Every point in the interior of the convex hull of C+

p is
on a cone cone(p, n+

p , θ
′, r) for some θ′ < θ or in the relative interior of the line segment pc. As we

have seen the points on the cones cannot be critical. But neither can be any point y in the relative
interior of the line segment pc since for such a point A(y) = {p} and y 6= p. �

Fixing cone angles. Notice that the above lemma puts at every sample point two sink cones with
the same apex, angle, reach, and axis but in opposite direction. For the rest of the paper, we shall
consider only such cones with a fixed cone angle that depends only on the density of sampling.
Indeed, we fix θ = θ(ε) = π

2 −1.1ε and we respectively denote the outer and inner cones at a vertex
p by C−p = cone(p, n−p , θ, f(p) cos θ) and C+

p = cone(p, n+
p , θ, f(p) cos θ). We also denote by Cp the

union of the two cones C+
p and C−p .

Lemma 5.3 For any point x ∈ Vp ∩ Σ, the ray shot in direction n+
x (n−x ) hits C+

p (C−p ) provided
that ε ≤ 0.05.

Proof. Let β be the angle between n+
x and n+

p . Since x ∈ Vp ∩ Σ, we have ‖x − p‖ ≤ εf(x) and
therefore β ≤ ε

1−3ε < θ. Therefore, the ray shot from x in direction of n+
x hits cone(p, n+

p , θ,∞),
the infinite extension of C+

p , at some point x′. Let η = ‖x′ − p‖/f(p). If η ≤ cos θ, then x′ ∈ C+
p

and there is nothing to prove. Otherwise ‖x′ − p‖ > f(p) cos θ. It can be easily observed that the
closest point to p on the line through x′ and x is at distance no less than

‖x′ − p‖ sin(θ − β) > cos θ sin(θ − β)f(p)

from p. On the other hand, since x ∈ Vp ∩ Σ, ‖x− p‖ ≤ ε
1−εf(p). This implies

ε

1− ε
f(p) ≥ ‖x− p‖

> cos θ sin(θ − β)f(p)

= sin(1.1ε) cos(1.1ε+ β)f(p)

≥ sin(1.1ε) cos

(
1.1ε+

ε

1− 3ε

)
f(p)
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which is a contradiction for ε ≤ 0.05. �

Lemma 5.4 Let x be a point on Cp. Then ‖x− x̂‖ ≤ 3ε2f(x̂) when ε ≤ 0.05.

Proof. Without loss of generality assume that x ∈ C+
p (the proof for the case where x ∈ C−p is

similar). Shoot a ray from x, parallel to n−p until it hits C−p at a point x′. Since each of C+
p and

C−p is completely contained in its corresponding medial ball tangent to Σ at p, the line segment xx′

intersects Σ. Therefore

‖x− x̂‖ ≤ ‖x− x′‖ = 2‖x− p‖ cos θ ≤ 2f(p) cos2 θ. (3)

On the other hand, by the triangle inequality,

‖x̂− p‖ ≤ ‖x− x̂‖+ ‖x− p‖
≤ 2f(p) cos2 θ + f(p) cos θ

≤ 3f(p) cos θ.

Since f(·) is 1-Lipschitz

f(x̂) ≥ f(p)− ‖x̂− p‖
≥ f(p)− 3f(p) cos θ,

which gives us

f(p) ≤ f(x̂)

1− 3 cos θ
.

Plugging this into (3) we get

‖x− x̂‖ ≤ 2 cos2 θ

1− 3 cos θ
· f(x̂) ≤ 3ε2

for ε ≤ 0.05 and θ = π/2− 1.1ε.

�

Cone envelopes. Let C+ =
⋃
p∈P C

+
p and let Σ+ be the set of points x ∈ C+ for which the

segment xx̂ has no point of C+ in its relative interior. We call Σ+ the outer cone envelope of Σ.
The inner cone envelope Σ− is defined analogously.

Lemma 5.5 The surface Σ is homeomorphic to both Σ− and Σ+. Both cone envelopes divide R3

into a bounded and an unbounded component. The bounded component of the inner cone envelope
and the unbounded component of the outer cone envelope are closed under the flow φ.

Proof. We only present the proof for the outer cone envelope. The proof for the inner cone envelope
follows the same lines.

Let π : R3 \M → Σ project into Σ, i.e. π maps every point to its closest point in Σ. It is well
known that this map is continuous. Let π+ be the restriction of π to Σ+. Since Σ+ ∩ M = ∅
(because Σ+ ⊂ Σ3ε2 by Lemma 5.4), π+ is defined and continuous on Σ+. By definition of Σ+, π+

is injective and by Lemma 5.3, π+ is surjective. This along with the compactness of Σ+ (inferred
from the compactness of Σ and the continuous one to one mapping given by π+) implies that π+

is a homeomorphism.
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Since we assumed that Σ is a manifold without boundary, so is Σ+. Thus Σ+ divides R3 into a
bounded and an unbounded component. By Lemma 5.2 the bounded component has to be closed
under the flow φ. �

Cone neighborhood. We call the closed volume sandwiched between Σ− and Σ+ the cone neigh-
borhood of Σ and denote it by Σ̃.

Theorem 5.6 The output of the algorithm Reconstruct lies in Σ̃ and the latter itself is con-
tained in Σ3ε2 .

Proof. By Lemmas 5.2 and 5.5, the stable manifold S(c) of any surface critical point c has to be
contained in Σ̃. Thus the output of Reconstruct completely lies in Σ̃. By Lemma 5.4, Σ+ and
Σ− are contained in Σ3ε2 . This implies that Σ̃ is also contained in Σ3ε2 . �

The following Corollary will be needed later.

Corollary 5.7 For every x ∈ Σξ, i.e., for every x satisfying ‖x−x̂‖ ≤ ξf(x̂), and for every p ∈ A(x),

‖x − p‖ ≤ ε+ξ
1−ε−2ξf(p). In particular, when ε ≤ 0.05, for every point x ∈ Σ̃, and every p ∈ A(x),

‖x−p‖ ≤ 1.23εf(p), and for every surface critical point c, and every p ∈ A(c), ‖c−p‖ ≤ 1.12εf(p).

Proof. Let x be a point in Σξ. From the definition of ε-sampling, ‖x̂− q‖ ≤ εf(x̂), where q ∈ A(x̂),
i.e. q is a closest sample point to x̂. For any sample point p ∈ A(x), by the triangle inequality

‖x− p‖ ≤ ‖x− q‖ ≤ ‖x− x̂‖+ ‖x̂− q‖ ≤ (ε+ ξ)f(x̂). (4)

Thus we get

‖p− x̂‖ ≤ ‖x− p‖+ ‖x− x̂‖ ≤ (ε+ ξ)f(x̂) + ξf(x̂) ≤ (ε+ 2ξ)f(x̂),

and from this and because the local feature size is 1-Lipschitz,

f(p) ≥ f(x̂)− ‖x̂− p‖ ≥ f(x̂)− (ε+ 2ξ)f(x̂). (5)

Combining (4) and (5) we get

‖x− p‖ ≤ ε+ ξ

1− ε− 2ξ
f(p).

Using ε ≤ 0.05 along with Theorem 5.6 implies the bounds for the case where x ∈ Σ̃. In the case
of x being a surface critical point we invoke Corollary 3.3, instead. �

5.2 Convergence of Normals

The output T produced by the algorithm Reconstruct consists of stable manifolds of index-2
saddle points that lie in a small tubular neighborhood of the surface. We refer to these stable
manifolds as surface patches. We want to show that under (ε, δ)-sampling, with a fixed ρ = δ/ε, the
normal of triangles in these surface patches is within O(ε) from the normal to surface at a nearby
point, for sufficiently small ε. We use the following two lemmas from [3].
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Figure 6: A generic patch triangle on the stable manifold of a surface 2-saddle.

Lemma 5.8 For any two points p, q ∈ Σ, the angle between segment pq and either of n+
p and n−p

is greater than π
2 − arcsin ‖p−q‖2f(p) .

Lemma 5.9 For points p, q, r ∈ Σ, let p be a vertex of the triangle pqr with the largest angle and
let r be its circumradius. If r = λf(p), then the acute angle between the normal to pqr and the
normal to surface at p is at most β(λ) where

β(λ) = arcsin(λ) + arcsin

(
2√
3

sin(2 arcsinλ))

)
≤ 4λ,

for λ ≤ 1
4 .

The stable manifold S(c) of every 2-saddle is a piece-wise linear surface made of a finite number
of triangles, which we call patch triangles. Each patch triangle t has exactly one vertex in P . Note
that for every point x in a patch triangle t, the vertex of t that belongs to P is a closest sample
point to x (refer to [12] for details on the structure of stable manifolds of critical points). If x is
on the boundary of t, it can have more than one closest sample point as it belongs to more than
one patch triangle. The following lemma shows that under tight sampling, each patch triangle must
have a normal close to surface normal at its vertex in P .

Lemma 5.10 For any 0 < ρ < 1, there exists ε0 such that if P is an (ε, δ)-sample of Σ with
ε ≤ ε0 and δ = ρε, then for any x ∈ S(c), the stable manifold of a surface 2-saddle c, the acute
angle between np, where p is a closest sample point to x, and nt, the normal direction of the patch
triangle t ⊂ S(c) that contains x and has p as a vertex, is at most

arcsin

(
sin(1.23ε)

2 sin
(

1
2 arcsin (ρ/2.46)

)) = O(ε/ρ).

Proof. Let P be an ε-sample of Σ for ε ≤ ε0. By Corollary 5.7, ‖x−p‖ ≤ 1.23εf(p) for every closest
sample point p to x. Every point x on S(c) is on a patch triangle t = pou of S(c) with the following
structure (see Figure 6): t has exactly one vertex p in P . The edge uo of t opposite to p is on the
Voronoi facet dual to a Delaunay edge pq and ends on the dual Voronoi edge e of a Delaunay triangle
pqr in which ‖r−p‖ > ‖q−p‖. The mid-point d of pq is the driver of the points on uo. Furthermore,
the line containing e does not intersect the triangle pqr except when o is the critical point c in
which case the patch triangle t is coplanar with (an in fact contained in) the Delaunay triangle tc
containing c. We postpone the study of this special case for later. Let s be the circumcenter of pqr
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and let p′ be a point on the circumcircle of pqr opposite to p with respect to s. Then ∠p′qp = π/2
and that ‖d− s‖ = 1

2‖q− p
′‖. Furthermore, ‖q− p′‖ > ‖q− r‖. Therefore we get ‖d− s‖ ≥ 1

2δf(r).
On the other hand, since r ∈ A(o), by Corollary 5.7, ‖s − p‖ = ‖s − r‖ < ‖r − o‖ ≤ 1.23εf(r).
Combining these we get for the angle α = ∠qps:

sinα ≥ ‖d− s‖
‖p− s‖

≥ δ

2.46ε
=

ρ

2.46
.

On the other hand, π/2 > ∠qpo > ∠qps ≥ α. Also, o ∈ S(c) and S(c) is contained in Σ̃ and
therefore, po makes an angle of at least θ = π

2 − 1.1ε with np. Moreover, ‖p − q‖ ≤ 2.46εf(p)
and therefore by Lemma 5.8, q − p makes an angle of at least π

2 − 1.23ε < θ with np. Thus, the
three points p, q, and o, make a triangle t′ = pqo with an angle of at least α at vertex p satisfying
arcsin(ρ/2.46) < α < π

2 , and with both of the edges incident to p making an angle of at least
π/2− 1.23ε with np. It can be shown through elementary calculations that under these conditions,
nt′ , the normal to t′, and np, make an angle of at most

arcsin

(
cos(π/2− 1.23ε)

2 sin(α/2)

)
,

which matches the bound in the statement of the lemma. We now consider the special case when o
coincides with c. This happens when the Voronoi edge e intersects its dual Delaunay triangle pqr
at c and the patch triangle t in question becomes coplanar with the Delaunay triangle tc = pqr.
Notice that A(c) = {p, q, r} and by Corollary 5.7, ‖p− c‖ ≤ 1.12εf(p). Similar inequalities hold for
q and r. As in the previous case, let p′ be the point on the circumcircle of pqr opposite to p with
respect to circumcenter c. We denote the angles ∠qpp′ and ∠rpp′ by β and γ respectively, and their
sum by α. Since the angles ∠pqp′ and ∠prp′ are each 90 degrees, we have sinβ = 1

2‖q− p
′‖/‖p− c‖

and sin γ = 1
2‖r − p

′‖/‖p− c‖. In order for c to be a critical point, all the angles of the triangle tc
must be acute. Since the sine function is concave for acute angles we have

sin
α

2
≥ sinβ + sin γ

2

=
‖r − p′‖+ ‖q − p′‖

4 · ‖p− c‖

≥ ‖r − q‖
4 · ‖p− c‖

≥ δf(r)

4 · 1.12εf(r)

=
ρ

4.48
.

On the other hand ‖p−q‖ ≤ ‖p−c‖+‖q−c‖ ≤ 2.24εf(r) by Lemma 5.8. Thus pq makes an angle of
at most π/2− 1.12ε with np. A similar argument establishes the same bound for the angle between
pr and np. Similar to the previous case, We have shown for the triangle pqr that the angle α at p
is at least 2 arcsin(ρ/4.48) and that the edges pq and pr make an angle of at least π/2− 1.12ε with
np. This implies that the angle between the normal to the plane of this triangle and the normal to
Σ at p is at most

arcsin

(
cos(π/2− 1.12ε)

2ρ/4.48

)
.

It can be verified that the this bound results a smaller angle than the one obtained above (matching
the bound in the statement of the lemma) for the general case, whenever the two bounds are defined
for any 0 < ε ≤ 0.05 and 0 < ρ < 1. �
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Corollary 5.11 For ε ≤ 0.01 and ρ ≥ 1/3, we have for every point x on the stable manifold of
a surface 2-saddle c that the acute angle between normal nt to any patch triangle t of S(c) that
contains x, and the normal nx̂ to Σ at x̂ is at most 7 degrees.

Proof. Plugging ε ≤ 0.01 and ρ ≥ 1/3 in Lemma 5.10, gives an upper bound of 6 degrees for the
angle between nt and np, where np is the normal to Σ at a closest sample point p to x. Since by
Theorem 5.6, S(c) is contained in Σ3ε2 , we have ‖x− x̂‖ ≤ 3ε2f(x̂). Let q be a closest sample point
to x̂. By sampling condition, ‖x̂− q‖ ≤ εf(x̂) and therefore

‖x̂− p‖ ≤ ‖x̂− x‖+ ‖x− p‖.

On the other hand ‖x− p‖ ≤ ‖x− x̂‖+ ‖x̂− q‖. Therefore we get

‖x̂− p‖ ≤ 2‖x− x̂‖+ ‖x̂− q‖ ≤ (6ε2 + ε)f(x̂) ≤ 1.06εf(x̂),

for ε ≤ 0.01. Therefore by Lemma 2.1 the angle between n+
p and n+

x̂ is at most 1.06ε/(1−3·1.06ε) ≤
1◦. �

The following proposition is directly based on the structure of the stable manifolds of 2-saddles [12]
and the fact that flow lines never bend by more than 90 degrees.

Proposition 5.12 If t1 and t2 are patch triangles of S(c) for a surface 2-saddle c such that t1 and
t2 have one edge in common, then the dihedral angle between t1 and t2 is no less than π/2.

Lemma 5.13 Let c be a surface 2-saddle. Suppose we orient the patch triangles in S(c) arbitrarily
but consistently so that for any patch triangle t, n+

t and n−t are respectively the outer and inner
normal directions on t with respect to the applied orientation. Then, under the assumptions of
Corollary 5.11 exactly one of the following cases holds.

1. ∠(n+
t , n

+
x̂ ) ≤ 7◦, for every patch triangle t of S(c) and for every x ∈ t.

2. ∠(n+
t , n

−
x̂ ) ≤ 7◦, for every patch triangle t of S(c) and for every x ∈ t.

Proof. First notice that as was shown in the proof of Corollary 5.11, for any point x ∈ t, where t is
a patch triangle of S(c), ∠(n+

x̂ , n
+
p ) ≤ 1◦, where p is the vertex of t that is a sample point. Thus,

if for the arbitrary orientation of t and for a point x ∈ t, ∠(n+
t , n

+
x̂ ) = α, the same holds for every

other point y in t, modulo changing α by 1 degree.

Let tc be the Delaunay triangle that contains c. All patch triangles t ⊂ tc of S(c), have the same
n+
t which agrees with one of the two orientations of the direction normal to tc. By Corollary 5.11,

the normal direction of tc makes an angle of at most 7◦ with either n+
ĉ or n−ĉ . Assume without loss

of generality that the first case holds, i.e. ∠(n+
t , n

+
ĉ ) ≤ 7◦. We show now that this will imply that

that for every patch triangle t of S(c) and every x ∈ t, ∠(n+
t , n

+
x̂ ) ≤ 7◦. We prove this by extending

the result for the triangles we already have this property for to their neighboring patch triangles.
Thus, assume t and t′ are two patch triangles with an edge e in common. Let z be a point on e.
Since t and t′ are oriented consistently, the dihedral angle between t and t′ is π − ∠(n+

t , n
+
t′ ). By

Proposition 5.12 this angle is at least π/2 and therefore ∠(n+
t , n

+
t′ ) ≤ π/2. Therefore using triangle

inequality for angles we get ∠(n+
ẑ , n

+
t′ ) ≤ ∠(n+

t , n
+
ẑ ) +∠(n+

t , n
+
t′ ) ≤ 90 + 7 = 97◦. But by Corollary

5.11, ∠(n+
ẑ , n

+
t′ ) is either less than 7◦ or more than 180◦−7◦ and we have just shown that the latter

case does not hold. �
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5.3 Orientation of surface patches

The output the algorithm Reconstruct is a collection of stable manifolds of surface 2-saddles
(patches) that are attached to each other at Gabriel edges (stable manifolds of surface 1-saddles).
In order to establish that this reconstruction has the same topology as the original surface Σ, we
shall provide a homeomorphism between the two surfaces. We have shown in the previous section
that, roughly speaking, each patch is almost flat and lies almost orthogonal to the normal to Σ
at the 2-saddle into which the patch points flow. In order to achieve the desired homeomorphism
we need to show that neighboring patches do not fold over each other. Our way of showing this
can be summarized as follows: we observe that the normal to a patch induced by a 2-saddle c at
c itself is close to the normal to Σ at a near surface point to c. This gives a natural orientation of
the patch. We prove afterward that the side of the patch that faces the union of stable manifolds O
of the critical points in the component computed by the algorithm Reconstruct is consistently
determined by the given orientation.

We will need the following two technical lemmas.

Lemma 5.14 Let C1 and C2 be two infinite cones with cone angle θ, with the same apex p and
same axis, extended in opposite directions. Let x be a point not in the interior of either of the
convex hulls of C1 or C2. Consider a line ` passing through x, making an angle of α < θ with the
common axis of C1 and C2, and hitting C1 and C2 in points x1 and x2, respectively. Then

‖x1 − x2‖ ≤ 2 · ‖x− p‖ · cos θ

sin(θ − α)
.

Proof. Without loss of generality assume that p is the origin and that the common axis of C1 and C2

is the z-axis. By the assumptions of the lemma, x1 and x2 are in opposite sides of x on `. Consider
the vertical plane H containing x and the z axis. When x is fixed, if we consider an arbitrary line
` through x making an angle of α with the z-axis, it is easy to observe that ‖x− x1‖ is maximized
when ` is contained in H, in which case by the law of sines ‖x− x1‖ = ‖x− y1‖ · sin θ/ sin(θ − α),
where y1 is the vertical projection of x to C1. Thus in general

‖x− x1‖ ≤ ‖x− y1‖ · sin θ/ sin(θ − α). (6)

Similarly we get for the distance between x and x2

‖x− x2‖ ≤ ‖x− y2‖ · sin θ/ sin(θ − α), (7)

where y2 is the vertical projection of x to C2. On the hand, when ‖x − p‖ is fixed, ‖y1 − y2‖ is
maximized when x is in the plane z = 0, in which case ‖y1− y2‖ = 2 · ‖x− p‖ · cot θ. So, in general

‖y1 − y2‖ ≤ 2 · ‖x− p‖ · cot θ. (8)

Combining (6), (7), and (8) we get

‖x1 − x2‖ = ‖x− x1‖+ ‖x− x2‖
≤ (‖x− y1‖+ ‖x− y2‖) · sin θ/ sin(θ − α)

= ‖y1 − y2‖ · sin θ/ sin(θ − α)

≤ 2 · ‖x− p‖ · cos θ/ sin(θ − α). �
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Lemma 5.15 Assume ε ≤ 0.01. Let x be a point in Σ̃ with {p, q, r} ⊂ A(x). Then the acute angle
between normal to the Delaunay triangle pqr and each of the normals np, nq, and nr is at most 8ε.

Proof. Assume without loss of generality that p is the vertex of pqr with the largest face angle. Since
x ∈ Σ̃ ⊂ Σ3ε2 , by Corollary 5.7, ‖x−p‖ = ‖x−q‖ = ‖x−r‖ ≤ 1.23εf(p). On the other hand, ‖x−p‖ is
an upper bound for the circumradius of pqr. Thus using Lemma 5.9, the acute angle between np and
normal to pqr is at most β(1.23ε) ≤ 5ε. On the other hand, ‖p−q‖ ≤ ‖p−x‖+‖x−q‖ ≤ 2·1.23f(p).
Therefore by Lemma 2.1, ∠(n+

p , n
+
q ) ≤ 2.46ε

1−3·2.46ε ≤ 3ε for ε ≤ 0.01. The same argument can be
repeated with r instead q. �

We say that a triangle t = pqr with p, q, r ∈ P lies flat to surface or simply is flat if the normal of
t is within 8ε from one of np, nq, or nr. For such a triangle, it is meaningful to distinguish between
the side that faces the interior of Σ and the one that faces its exterior. We refer to these sides as
inner and outer sides, respectively.

Let c be a surface 2-saddle. By definition, c is the intersection point of a Delaunay triangle tc
and its dual Voronoi edge ec. Thus |A(c)| = 3 and by Lemma 5.15, the normal to tc makes an
angle of 8ε or less with the surface normal at any of the vertices of tc. Thus, tc lies flat to surface.
Since tc intersects ec in a point of its relative interior (by our non-degeneracy assumption), we can
distinguish between the two endpoints of ec as its inner and outer vertices and refer to them as v−c
and v+

c , respectively. We denote the the segment cv+
c excluding c by e+

c , and define e−c similarly.
Notice that c is the driver for points on ec and therefore the flow direction on ec \ {c} is toward
its endpoints at each side of c. Therefore, every point of ec between c and v+

c flows to the same
maximum that v+

c flows into. A similar statement holds for the points between c and v−c . We define
U+
c = e+

c ∪ φ(v+
c ) and U−c = e−c ∪ φ(v−c ). In fact, U+

c and U−c together constitute the unstable
manifold of c [12]. Thus, if U+

c intersects Σ+ then the flow originated at any point of e+
c , arbitrarily

close to c must end up in an exterior medial axis maximum m implying that S(c) is incident to
S(m) through the outer side of tc. Similar statements can be made by replacing U+

c with U−c and
Σ+ with Σ−.

Lemma 5.16 For any 0 < ρ < 1, there exists ε0 small enough such that if P is an (ε, δ)-sampling
of Σ for ε ≤ ε0 and δ = ρε, then for any x ∈ U+

c ∩ Σ̃, ∠(v(x), n+
p ) ≤ 8ε, and for every point

x ∈ U−c ∩ Σ̃, ∠(v(x), n−p ) ≤ 8ε, where p is any point in A(x). In particular, for ρ = δ/ε ≥ 1/3,
ε0 ≤ 0.01 suffices.

Proof. We only prove the lemma for points in U+
c ∩ Σ̃. The proof for points in U−c ∩ Σ̃ is analogous.

For simplicity we enforce ε0 ≤ 0.01 although the statement of the lemma may hold for larger values
of ε0. Let P be an (ε, δ)-sampling of Σ with ε ≤ ε0 ≤ 0.01 and δ = ρε.

Since x ∈ Σ̃ ⊂ Σ3ε2 , by Corollary 5.7, ‖x−p‖ ≤ 1.23εf(p) for every p ∈ A(x). Notice that it suffices
to prove that ∠(v(x), n+

p ) ≤ 5ε for only one point p ∈ A(x). This is because for any other point
q ∈ A(x), ‖p − q‖ ≤ ‖p − x‖ + ‖q − x‖ ≤ 2 · 1.23εmax{f(p), f(q)} and therefore by Lemma 2.1,
∠(n+

p , n
+
q ) ≤ 2.46ε

1−3·2.46ε ≤ 3ε for ε ≤ 0.01.

As above, let tc and ec be the Delaunay triangle and its dual Voronoi edge for which {c} = tc ∩ ec.
Notice that U+

c is a piece-wise linear curve. Let u0, u1, . . . , uk be the vertices of this curve with
u0 = c, u1 = v+

c , and uk = m, where m, the maximum at which U+
c ends. Notice of course that u0

itself does not belong to U+
c as v(u0) = v(c) = 0. We prove the lemma inductively starting from the

segment u0u1 and going up to ui−1ui for the smallest i for which ui−1 ∈ Σ̃ but ui−1ui has a point
outside Σ̃. For this last line segment ui−1ui, the argument we provide will be true only for the initial
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Figure 7: Proof of Lemma 5.16, cases 1 (left) and 2 (right).

part ui−1u
∗, where u∗ is the first point of U+

c (starting from ui−1) not in Σ̃. Since no flow enters Σ̃,
no point of U+

c past u∗ will be in Σ̃. From the structure of flow complex [12], it is easy to see that
every vertex in {u1, . . . , uk} is either a Voronoi vertex or lies on a Voronoi edge. Furthermore, the
relative interior of every segments ui−1ui, i = 1, . . . , k, falls entirely inside a Voronoi edge or facet.

For the base case of our induction we observe that the lemma holds for points x ∈ u0u1 (excluding
u0). To see this, notice that the direction of v(x) for such points agrees with the vector v+

c − c. Let
p be the vertex of tc with the largest angle in tc. Using Lemma 5.15, and taking into account that
x is on the outer side of t, implies that the angle between n+(p) and v+

c − c is at most 8ε.

In fact, by Lemma 5.15, for any point x ∈ U+
c ∩ Σ̃ that flows on a Voronoi edge e, the Delaunay

triangle t dual to e must lie flat to surface and thus we can distinguish between its side facing
outward and the one facing inward. Informally, we will say that in such a case x is above t if x is
on the side of t facing outward, or below t otherwise.

For the induction step, we assume that the statement of the lemma holds for points on a segment
ui−1ui of U+

c ∩ Σ̃ and show that this entails the same for the point on the segment uiui+1. Let f1

be the Voronoi face of dimension d1 that contains the relative interior of ui−1ui, and let f2 be the
Voronoi face of dimension d2 containing ui. Finally let f3 be the Voronoi face that contains the
relative interior of uiui+1 and let d3 be its dimension. Notice that f1 and f3 are cofaces of f2 and
therefore d1 and d3 are both greater than d2. We prove the induction step by going over all possible
combinations of f1, f2, and f3.

1. Edge-vertex-edge. First we study the case in which the flow on a Voronoi edge e, reaches a Voronoi
vertex v and enters another Voronoi edge e′. We assume that the statement of the lemma holds for
points on e and show that it remains true as the flow moves on to e′. To see this, let t = pqr be
the Delaunay triangle dual to e and let t′ = qrs be the one dual to e′ (See Figure 7 (left)). The
Voronoi vertex v must be dual to the Delaunay tetrahedron ∆ with vertex set {p, q, r, s}. Since the
flow through v continues on e′, the driver of points in e′ must lie in the interior of the triangle t′

or in other words, the line through e′ must intersect t′. As discussed above both t and t′ are flat
and v is above t. It is easy to see that extending the statement of the Lemma to e′, is identical to
showing that v is also above e′. By Lemma 5.15, the outward normal direction for both t and t′ are
within 8ε from n+

q . If v is not above t′, it must be in ∆. But in that case v is a maximum and the
flow does not leave it to enter e′.

2. Facet-vertex-edge. Next, we consider the case where the flow through a Voronoi facet f dual to
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Delaunay edge pq reaches a Voronoi vertex v dual to tetrahedron ∆ = pqrs and continues on a
Voronoi edge e dual to Delaunay triangle t = qrs (See Figure 7 (right)). We assume that the lemma
holds for the points x on U+

c ∩ f and show that this extends to the points on e. As in the previous
case t is flat and we only need to show that v is above t. By induction hypothesis, ∠(v−d, n+

q ) ≤ 8ε

where d = 1
2(p + q) is the driver of the points on f . It can be verified that if v is not above t, it

must be that v ∈ ∆ making v a local maximum, a contradiction.

3. Edge-vertex-facet. Consider now the case where the flow through a Voronoi edge e reaches a
Voronoi vertex v and enters a Voronoi facet f incident to v. Let pqr be the Delaunay triangle dual
to e and let rs be the Delaunay edge dual to f . Note that v is the circumcenter of the Delaunay
tetrahedron ∆ = pqrs. We assume that the lemma holds for points on e which is identical to
assuming that v is above t. Since the flow through v continues on f , the closest point of ∆ to v
is the midpoint m = 1

2(r + s) of the edge rs (see Figure 8, left). For this to happen, v must be
in the wedge made by two half-planes π1 and π2 both having the line through rs as boundary
and respectively being orthogonal to triangles t1 = prs and t2 = qrs. Since A(v) = {p, q, r, s}, by
Lemma 5.15, the normals to both t1 and t2 make an angle of at most 8ε with nr. Since v is above
t but not contained in ∆, it must be above both t1 and t2. If we base at m, two vectors v1 and
v2, respectively normal to t1 and t2 in their outward directions, v1 will lie in π1 and v2 in π2. The
segment vm is on the plane bisecting rs and so are v1 and v2. It follows from the triangle inequality
for angles that v −m = v(x), for x ∈ f ∩ U+

c , also makes and angle of at most 8ε with n+
r . Notice

that with exactly the same argument but with using s instead of r, we get the same bound with
respect to n+

s .

4. Facet-vertex-facet. The proof of this case is a simple combination of the proofs of cases 2 and 3.

5. Facet-edge-facet. We show now that under tight enough sampling, i.e. by choosing ρ large enough,
if the flow through a Voronoi facet f arrives at a Voronoi edge e of f , it will continue on e and does
not enter another facet f ′ incident to e, given that the statement of lemma holds for the points of
U+
c ∩ f . Suppose to the contrary that this is not the case, i.e. (see Figure 8, right) the flow crosses

e and enters another facet f ′ incident to e. Let rs be the Delaunay edge dual to f . The driver of
the flow on f is m = 1

2(r + s). Let y be the point where the flow reaches e. The dual Delaunay
triangle t to e has r and s for vertices plus another vertex s′. For the flow to cross e and enter f ′, f ′

must be dual to the Delaunay edge ss′. Furthermore, the line of e must not intersect t. Let o be the
circumcenter of t. By our assumption, the flow direction on f , which coincides with y −m makes
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an angle of no more than 8ε with n+
r . On the other hand, y ∈ Σ̃ and thus t lies flat to surface and

since the largest angle in t is at r, the normal to t, i.e. direction of e, makes an acute angle of at
most 5ε with nr (See proof of Lemma 5.15). This in particular implies that y is above t. Therefore,
∠myo is at most 13ε. In order for the line of e not to intersect t, it must hold that ∠mss′ < ∠mso.
The two triangles mso and myo both share the edge mo and both have a right angle on one of the
end-points of this edge. We will show below that ‖m− y‖ < ‖m− s‖. Since ‖m− s‖ < ‖o− y‖, this
will imply that ∠mso < ∠myo. Using exactly the same argument as in the proof of Lemma 5.10,
we get ∠mso ≥ arcsin(ρ/2.46), and therefore since ∠myo ≤ 13ε, we must have

13ε > arcsin
( ρ

2.46

)
.

This inequality is violated for ε ≤ ε0 for ε0 ≤ 1
13 arcsin(ρ/2.46) (in particular for ε0 ≤ 0.01 when

ρ ≥ 1/3) giving us the desired contradiction.

Now we prove that ‖m − y‖ ≤ ‖m − s‖. Notice that s is a closest sample point to y and by our
assumption y ∈ Σ̃. Therefore, y is between the cones C+

s and C−s . On the other hand by Corollary
5.7, ‖r − s‖ = 2‖m − s‖ ≤ 2‖y − s‖ ≤ 2 · 1.23εf(s) and therefore using Lemma 5.8, ms makes an
angle of at least π

2 − 1.23ε > θ with the normal to Σ at s. This implies that m is also between C+
s

and C−s . By our inductive hypothesis, my makes an angle of at most 8ε with n+
s . Lemma 5.14 can

now be used to get

‖m− y‖ ≤ 2 · 1.23ε · f(s)
sin(1.1ε)

cos(9.1ε)
<

1

2
δf(s) ≤ ‖m− s‖,

where the middle inequality holds for ε ≤ 0.01 and ρ ≥ 1/3. In fact for any constant 0 < ρ < 1 the
above inequality holds (and the desired contradiction is achieved) for any ε ≤ ε0 for small enough
ε0 since the left hand side has a quadratic dependence on ε.

Thus we have proved that whenever the flow on U+
c moves to a Voronoi facet f , it leaves f by

either hitting a Voronoi edge e and continuing on e, or by hitting a vertex v. Thus we have covered
all cases in the inductive step and this completes the proof of the lemma. �

In the following Lemma we show that if S(c) is incident to the stable manifold S(m) of an interior
(exterior) medial axis maximum m, then the part of S(c) that is contained in tc is incident to S(m)
at the inner (outer) side of tc.

Lemma 5.17 For any surface 2-saddle c, U+
c does not intersect Σ− and U−c does not intersect Σ+.

Proof. We prove the claim for U+
c . The other claim is proved analogously. Suppose to the contrary

that U+
c intersects Σ− at x. Let v be the last turning point of U+

c before reaching x. Let q be a
sample point for which x ∈ C−q and let p be a closest sample point to x. Then ‖x− p‖ ≤ ‖x− q‖ ≤
f(q) cos θ = f(q) sin(1.1ε). Therefore, ‖p− q‖ ≤ 2f(q) sin(1.1ε) and therefore by Lemma 2.1,

∠(n+
p , n

+
q ) ≤ 2 sin(1.1ε)

1− 3 · 2 sin(1.1ε)
= O(ε).

On the other hand, by Lemma 5.16, the vector x− v makes an angle of O(ε) with n+
p . It is easy to

observe that this contradicts the assumption that the flow hits C−q . �

The following lemma is a direct consequence of Lemma 5.16 and Lemma 5.13.
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Lemma 5.18 Let c1 and c2 be two surface critical points with S(c1) and S(c2) put by Recon-
struct into T, such that boundaries of S(c1) and S(c2) have a Gabriel edge e in common. Let
t1 and t2 be the patch triangles incident to e in S(c1) and S(c2), respectively. Then, the dihedral
angle between t1 and t2 is larger than π/2.

Proof. Orient patch triangles of S(c1) by taking for every patch triangle t of S(c1), the normal
to t pointing to the side of t incident to the interior of the reconstruction. Denote this normal
by n−t . Lemma 5.16 implies that in this case for every point x ∈ t where t is a patch triangle of
S(c1), ∠(n+

x̂ , n
+
t ) < 23◦. In particular, by letting t = t1 and choosing x to be a point on e, we get

∠(n+
x̂ , n

+
t1

) < 23◦

If we do a similar orientation on S(c2), we get ∠(n+
x̂ , n

+
t2

) < 23◦. Thus, the dihedral angle between
t1 and t2 is at least 180◦ − 46◦ = 134◦. �

5.4 Homeomorphism

Theorem 5.19 Under assumptions of Theorem 5.1, the output T produced by the algorithm Re-
construct is a 2-manifold without boundary homeomorphic to Σ.

Proof. First we observe that the complex T produced by Reconstruct is the boundary of the
union of stable manifolds of either the inner or outer medial axis critical points. Let m1 and m2

be medial axis maxima such that S(m1) and S(m2) are neighboring 3-cells in the flow complex,
i.e. they both have S(c) contained in their boundaries, where c is a 2-saddle. If m1 is an inner
medial axis maximum and m2 an outer one, then c must be a surface critical point as the common
boundary of S(m1) and S(m2) must lie in Σ̃ ⊂ Σ3ε2 . On the other hand, if m1 and m2 are both
inner (outer) medial axis maxima then S(c) cannot be a surface critical point since otherwise both
U+
c and U−c arrive at inner (outer) medial axis maxima and therefore both must have crossed Σ−

(Σ+) and this violates Lemma 5.17. This in particular implies that the algorithm Reconstruct
in fact partitions the medial axis critical points into two subsets.

We consider in this proof the case where T is the boundary of the union of stable manifolds of
the inner medial axis critical points (the outer case being analogous). We argue that T and Σ are
homeomorphic. Consider the restriction ζ : T → Σ of the closest point map x 7→ x̂. We prove that ζ
is a homeomorphism. Since both T and Σ are compact, it is sufficient to show that ζ is continuous,
one-to-one and onto.

First, we argue that ζ is one-to-one. Orient the normal to each patch triangle t so that it makes
an angle less than π

2 with the oriented normal n+
p at the vertex p of t which is a sample point.

Because of Lemma 5.13 and Lemma 5.18, the triangles of T can be oriented consistently satisfying
this condition. We denote this oriented normal for a patch triangle t by nt. Notice that although
Lemmas 5.13 and 5.18 are stated for the special case where ρ ≥ 1/3 and ε ≤ 0.01, they can
effectively be reproduced for any smaller ρ provided that ε is chosen small enough accordingly.

By Lemma 5.10, for every point x in a patch triangle t the oriented triangle normal nt makes an
angle of O(ε/ρ) with n+

x̂ . In particular when ε ≤ 0.01 and ρ ≥ 1/3, this angle is at least 23◦.
Suppose ζ is not one-to-one. Then, there are two points x and x′ in T that are both mapped to
the same point x̂ by ζ. Consider the line ` normal to Σ at x̂. This line passes through both x and
x′. Assume without loss of generality that x and x′ are consecutive intersection points of ` and T.
Then, at one of x and x′ the line ` enters and at the other exits the interior bounded by T. In other
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words, if we orient ` along n+
x̂ , it makes an angle at least π

2 with one of the oriented normals of T
at x or x′, an impossibility.

Next, we argue that T is a manifold. For this we first observe that each edge in T is incident to at
least two triangles. This of course holds by definition for the interior edges of each surface patch. If
a Gabriel edge on the boundary of a surface patch is incident only to that patch, the patch must be
incident to the stable manifold of the same inner (or outer) medial axis maximum on both sides.
This contradicts Lemma 5.17. We show now that the triangles incident to each vertex v of T form
a topological disk and hence T is a 2-manifold. If not, there are two triangles incident to v so that
a normal line stabs both of them at points arbitrarily close to v since they lie almost parallel to Σ.
This is in contradiction with ζ being one-to-one.

We are left to show that ζ is continuous and onto. The continuity of ζ follows from the fact that
the original closest point function x 7→ x̂ is continuous everywhere except at the medial axis. To
show that ζ is onto, consider ζ(T) ⊆ Σ. We claim that ζ(T) = Σ. Since T is a 2-manifold without
boundary and ζ maps it homeomorphically to ζ(T), we have ζ(T) as a compact 2-manifold without
boundary and ζ(T) ⊆ Σ. This is only possible if ζ(T) = Σ as both ζ(T) and Σ are compact
2-manifolds without boundary. �

6 Curves in R3

The separation of critical points and the resulting surface reconstruction algorithm both have
analogues when we consider the distance function to an ε-sample of a smooth curve Γ in R3,
instead of that of a surface.

6.1 Separation of critical points

Let P be an ε-sample of a smooth closed curve Γ ⊂ R3. We analyze the critical points of the
distance function h induced by P .

Lemma 3.2 still holds, i.e., all critical points of h are either near the curve (called the curve critical
points), or near the medial axis (called the medial axis critical points). However, unlike surfaces,
not all types of critical points can be near the curve.

Lemma 6.1 If the boundary of a ball B intersects Γ in three or more points, then it contains a
medial axis point.

Proof. Shrink B centrally until its boundary becomes tangent to a point, say x of Γ. Then keeping
x fixed on the boundary shrink it further by moving its center toward x. Stop when the interior of
B becomes empty of Γ. At this moment B is tangent to Γ. If x is the only point of tangency, B is
a curvature ball and its center is on the medial axis. If it is tangent to two or more points of Γ, its
center is again a medial axis point. In both cases the medial axis point is in the original ball B. �

Lemma 6.2 Let c be a critical point of h. If c ∈ Γε2 , then c is either an index-0 or an index-1
critical point provided that ε < 0.3.

Proof. If c is an index-2 or index-3 critical point, we have a ball B centered at c whose boundary
intersects Γ in three or more points. Let r be the radius of B. By Lemma 6.1, B contains a medial
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axis point and hence r > 1
2f(p) for any point p ∈ P ∩B. Therefore, c is at least f(p) distance away

from its closest point in P . We claim that c is also at least ε2f(ĉ) distance away from ĉ proving
that c 6∈ Γε2 .

To reach a contradiction assume that s(c) = ‖c − ĉ‖ is no more than ε2f(ĉ). The closest sample
point, say p, to ĉ is within εf(ĉ) distance from it. This point p is within (ε+ ε2)f(ĉ) distance from
c. Applying the Lipschitz property of the feature size f as in the proof of Corollary 5.7, we get that
‖p− c‖ ≤ ε+ε2

1−ε−2ε2
f(p). On the other hand we know ‖p− c‖ > 1

2f(p). Thus we reach a contradiction
if ε < 0.3. �

6.2 Reconstruction

We will state some more results regarding the critical points of the distance from a curve. These
results lead straightforwardly to a reconstruction algorithm. The edges that connect two consecutive
points on Γ are called correct edges. All other edges are incorrect. It is known that all correct edges
are Delaunay edges if ε < 1/3. Also, it is easy to show that they intersect their dual Voronoi facets,
i.e., they contain index-1 critical points. It is further known that the length of any correct edge pq
is at most 2ε

1−εf(p) [9]. This means the index-1 critical point which is the midpoint of pq is at most
ε

1−εf(p) distance away from its closest sample point which suggests that this critical point cannot
lie in M2ε and hence resides in Γε2 . On the other hand, as the next lemma shows, the incorrect
edges containing index-1 critical points are longer.

Lemma 6.3 Let pq be a Delaunay edge containing an index-1 critical point c.

(i) If pq is correct then the distance of c from p is at at most ε
1−εf(p).

(ii) If pq is incorrect then the distance of c from p is at least f(p)/2.

Proof. If pq is correct, its length is at most 2ε
1−εf(p) by Lemma 3.4 of [9]. So, its midpoint c has

distance at most ε
1−εf(p) from p proving (i).

Now assume that pq is incorrect. If the boundary of the ball B centered at c with radius ‖c − p‖
intersects Γ only in p and q then B is a medial ball and the distance of c from p is at least f(p).
Otherwise the boundary of B intersects Γ in more than two points and hence B contains a medial
axis point by Lemma 6.1. Therefore, the diameter of B is at least f(p) and the distance of c from
p is at least f(p)/2 proving (ii). �

The curve critical points can be separated from the medial critical points using an algorithm
similar to the one given for surfaces. For a sample point p we determine the nearest critical point.
By Lemma 6.2 and Lemma 6.3 this critical point has index 1 and is the midpoint of a correct edge.
A result of Amenta et al. [2] implies that a correct edge makes an angle of at most arcsin(ε/2) with
the tangent tp at p. Thus the vector from p to its nearest critical point makes an angle no larger
than arcsin(ε/2) with tp. On the other hand any index-1 critical point in M2ε is at least f(p)/2
distance away from p as a result of Lemma 6.3. This fact along with the following result due to
Dey et al. [8] give the required critical point separation. For a point p ∈ Γ, the space spanned by
the vectors normal to tp is called its normal space.

Lemma 6.4 [8] Let x be a point in Vp where ‖p − x‖ ≥ ξf(p). Then there is a vector vp in the
normal space of p so that ∠(vp, x− p) ≤ arcsin ε

ξ(1−ε) + arcsin ε
1−ε .
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Figure 9: Form left to right: the 2-skeleton of the flow complex; the segmentation of the index-2
stable manifolds into surface (green) and medial axis critical points (red); the stable manifolds of
surface critical points only.

Combining the results of [2], Lemma 6.3 and Lemma 6.4 we get the following corollary.

Corollary 6.5 Let c be any index-1 critical point on an edge pq. Let c′ be the nearest index-1
critical point of p. Then, for ε < 0.3

(i) ∠(c′ − p, c− p) < 3π/4 if pq is incorrect, and

(ii) ∠(c′ − p, c− p) > 3π/4 if pq is correct.

We get an immediate separation algorithm for index-1 critical points which also gives a curve
reconstruction algorithm: For every point p determine the shortest Gabriel edge pq incident to p.
Choose the other Gabriel edge pr incident to p satisfying ∠(q− p, r− p) > 3π/4. These are the two
correct edges for p. Note the similarity between this algorithm and that of [9].

7 Experiments and conclusion

We provide the first theoretical results that link the critical points of the distance function to a
tight ε-sampling of a curve or surface embedded in R3 to either the surface (curve) or its medial
axis. This allows us to derive reconstruction algorithms for curves and surfaces embedded in R3 that
come with topological and geometric reconstruction guarantees. Although our proofs for normal
convergence and orientation of surface patches and, because of those, our proof of homeomorphism
depend on the assumption that the given ε-sample is tight, we believe that these guarantees can
be strengthened to the case of general ε-sampling.
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The output of our algorithm is not a Delaunay sub-complex, a property sometimes desired in
practice. However, this output can be easily modified to satisfy this requirement. A natural way is to
replace the stable manifold of a surface 2-saddle with the union of Delaunay triangles corresponding
to its flow complex triangles (See Appendix A). Notice that doing this, we replace each patch with
a patch made of the Delaunay triangles which shares the same boundary of Gabriel edges with
the original patch. Furthermore, these triangles are asymptotically as close to the surface as our
reconstruction. For a related heuristic method for approximating stable manifolds of maxima with
collections of Delaunay tetrahedra see [7].

We experimented with the separation of the critical points for surface samples using an implemen-
tation that computes the 2-skeleton of the flow complex, i.e., the union of the stable manifolds of
index-2 saddle points. It turned out that the union of the stable manifolds of surface critical points
(see Figure 9) already gives a good reconstruction. However, this reconstruction is not guaranteed
to be (in fact, due to slivers, it is rather unlikely to be) a manifold.
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Appendix A. Stable manifolds of index-2 critical points

An index-2 critical point, i.e., a saddle point s, is the intersection point of a Delaunay triangle t
with its dual Voronoi edge e. Under a mild non-degeneracy condition, the stable manifold of s is
a surface patch that can be constructed explicitly, see [12]. The degeneracy condition is that the
inflow of s does not contain a Voronoi vertex which can be always achieved by an arbitrarily small
perturbation of the sample points. We start by constructing a polygon P whose interior points all
flow into s. This polygon contains s and is contained in t. To simplify our exposition assume that
there are three Voronoi facets incident to every Voronoi edge. We are going to construct a polyline
for each of the three Voronoi facets incident to e. These three polylines together make up the
boundary of the polygon P . The drivers of the Voronoi facets incident to e are points on their dual
Delaunay edges. These Delaunay edges are all in the boundary of t. Note that it is possible that
such a driver is a index-1 critical point. First, consider a driver d which is not an index-1 critical
point. The line segment that connects d with s is contained in t and intersects the boundary of the
corresponding Voronoi facet in two points, namely in s and in a second point s′. We get a polyline
from the two segments that connect s′ to the two Delaunay vertices incident to the Delaunay edge
that contains d. Second, if the driver of the Voronoi facet is a saddle of index-1 we take its dual
Delaunay edge as the polyline. That is, we get three polylines all contained in t, one for each
Voronoi facet incident to e. Let P be the polygon whose boundary is given by these polylines. P
is contained in t and all its interior points flow into s. It can be triangulated by connecting s with
the points s′ and the Delaunay vertices incident to t. Figure 10 shows two examples of two such
polygons P .

Let s′ be a point as constructed above for a Voronoi facet that is not driven by an index-1 critical
point. By construction s′ is contained in a Voronoi edge e′. Furthermore, by our assumption it has
to be an interior point of e′. We can assume again that e′ is incident to three Voronoi facets. For one
of these Voronoi facets we have already computed a polyline. For the remaining two we do it exactly
the same way we did it above for P . Thus we have again three polylines, one for each Voronoi facet
incident to e′. Two of these polylines always intersect in a common Delaunay vertex. That is, the
three polylines together form a polyline which is homeomorphic to S1. The latter polyline need
not be contained in a hyperplane but it can be triangulated by connecting the point s′ with newly
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Figure 11: In this example the stable manifold of s is made up from five surface patches. Note that
the surface patches need not be planar.

computed points s′ and to the Delaunay vertices incident to the Delaunay facet dual to e′. This
gives us a new triangulated surface patch whose interior points all flow into s.

We continue with the above construction until there are no more points s′ left for which we have
not already constructed a surface patch. The surface of points that flow into the index-2 saddle s
is made up from all the patches. By construction the boundary of this surface consists of Gabriel
edges, i.e. Delaunay edges. Figure 11 shows an example of the stable manifold of some index-2
critical point.
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