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Abstract

A terrain M is the graph of a continuous bivariate function. We assume that M is represented
as a triangulated surface with N vertices. A contour (or isoline) of M is a connected component
of a level set of M. Generically, each contour is a closed polygonal curve; at “critical” levels
these curves may touch each other or collapse to points. We present I/O-efficient algorithms for
the following two problems related to computing contours of M:

(i) Given a sequence `1 < · · · < `s of real numbers, we present an I/O-optimal algorithm that
reports all contours of M at heights `1, . . . , `s using O(sort(N) + T/B) I/Os, where T is
the total number of edges in the output contours, B is the “block size,” and sort(N) is
the number of I/Os needed to sort N elements. The algorithm uses O(N/B) disk blocks.
Each contour is generated individually with its composing segments sorted in clockwise
or counterclockwise order. Moreover, our algorithm generates information on how the
contours are nested.

(ii) We can preprocess M, using O(sort(N)) I/Os, into a linear-size data structure so that all
contours at a given height can be reported using O(logB N + T/B) I/Os, where T is the
output size. Each contour is generated individually with its composing segments sorted in
clockwise or counterclockwise order.
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Figure 1: Examples of equidistant contours of a terrain. (a) Rendered on a perspective view of
the terrain in 3d. (b) Projected onto the 2d plane.

1 Introduction

Motivated by a wide range of applications, there is extensive work in many research communities
on modeling, analyzing, and visualizing terrain data. A three-dimensional (digital elevation) model
of a terrain is often represented as a two-dimensional uniform grid, with a height associated with
every grid point, or a triangulated xy-monotone surface; the latter is also known as triangulated
irregular network (TIN). A contour (or isoline) of a terrain M is a connected component of a
level set of M. Contour maps (aka topographic maps), consisting of contour lines at regular height
intervals, are widely used to visualize a terrain and to compute certain topographic information
of a map; this representation goes back to at least the eighteenth century [19]. In this paper we
propose efficient algorithms for computing contour maps as well as computing contours at a given
level.

With the recent advances in mapping techniques and equipment, such as the laser based LIDAR
technology, hundreds of millions of points on a terrain, at sub-meter resolution with very high
accuracy (∼10-15 cm), can be acquired in a short period of time. The terrain models generated
from these data sets are too large to fit in main memory and thus reside on disks. Transfer of data
between disk and main memory is often the bottleneck in the efficiency of algorithms for processing
these massive terrain models (see e.g. [12]). We are therefore interested in developing efficient
algorithms in the two-level I/O-model [3]. In this model, the machine consists of a main memory
of size M and an infinite-size disk. A block of B consecutive elements can be transferred between
main memory and disk in one I/O operation (or simply I/O). Computation can only take place on
elements in main memory, and the complexity of an algorithm is measured in terms of the number of
I/Os it performs. Over the last two decades, I/O-efficient algorithms and data structures have been
developed for several fundamental problems, including sorting, graph problems, geometric problems,
and terrain modeling and analysis problems. See the recent surveys [4, 24] for a comprehensive

review of I/O-efficient algorithms. Here we mention that sorting N elements takes Θ
(
N
B logM/B

N
B

)
I/Os, and we denote this quantity by sort(N).

Related work. A natural way of computing a contour K of a terrain M is simply to start at
one triangle of M intersecting the contour and then tracing out K by walking through M until
we reach the starting point. If we have a starting point for each contour of a level set of M, for a
given level `, we can compute all contours of that level set in time linear on the size of the output
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in the internal-memory model. The so-called contour tree [9] encodes a “seed” for each contour of
K. Many efficient internal-memory algorithms are known for computing a contour tree; see e.g. [9].
Hence, one can efficiently construct a contour map of K. This approach of tracing a contour
has been extended to higher dimensions as well, e.g., the well-known marching-cube algorithm for
computing iso-surfaces [16].

An O(sort(N)) algorithm in the I/O-model was recently proposed by Agarwal et al. [2] for
constructing a contour tree of M, so one can quickly compute a starting point for each contour.
However, it is not clear how to trace a contour efficiently in the I/O-model, since a naive im-
plementation requires O(T ) instead of O(T/B) I/Os, to trace a contour of size T . Even using a
provably optimal scheme for blocking a planar (bounded degree) graph, so that any path can be
traversed I/O-efficiently [1, 17], one can only hope for an O(T/ log2B) I/O solution. Nevertheless,
I/O-efficient algorithms have been developed for computing contours on a terrain. Chiang and
Silva [11] designed a linear-size data structure for storing a TIN terrain M on disk such that all
T edges in the contours at a query level ` can be reported in O(logB N + T/B) I/Os, but their
algorithm does not sort the edges along each contour. Agarwal et al. [1] designed a data structure
with the same bounds so that each contour at level ` can be reported individually, with its edges
sorted in either clockwise or counterclockwise order. However, while the space and query bounds
of these structures are optimal, preprocessing them takes O(N logB N) I/Os. This bound is more
than a factor of B away from the desired O(sort(N)) bound. Thus using this structure one can
at best hope for an O(N logB N + T/B) I/O algorithm to compute a contour map; here T is the
total size of all the output contours. We refer the reader to the tutorial [18] and references therein
for a review of practical algorithms for contour and iso-surface extraction problems, and to [12, 15]
for a sample of I/O-efficient algorithms for problems arising in terrain modeling and analysis.

Our results. Let M be a terrain represented as a triangulated surface (TIN) with N vertices. For
a contour K of M, let F (K) denote the set of triangles intersecting K. We prove (in Section 3) that
there exists a total ordering ‘/’ on the triangles of M that has the following two crucial properties:

(C1) For any contour K, if we visit the triangles of F (K) in / order, we visit them along K in
either clockwise or counter clockwise order.

(C2) For any two contours K1 and K2 on the same level set of M, F (K1) and F (K2) are not
interleaved in / ordering, i.e., suppose the first triangle of F (K1) in / appears before that of
F (K2), then either all of the triangles in F (K1) appear before F (K2) in /, or all triangles of
F (K2) appear between two consecutive triangles of F (K1) in /.

We call such an ordering a level-ordering of the triangles of M. We show that / can be computed
using O(sort(N)) I/Os. Next, we present two algorithms that rely on this ordering.

Computing a contour map. Given as input a sorted list `1 < · · · < `s of levels in R, we present
an algorithm (Section 4) that reports all contours of a terrain M at levels `1, . . . , `s using
O(sort(N)+T/B) I/Os and O(N/B) blocks of space, where T is the total number of edges in
the output contours. Each contour is generated individually with its edges sorted in clockwise
or counterclockwise order. Moreover, our algorithm reports how the contours are nested; see
Section 4 for details.

Answering a contour query. We can preprocess M, using O(sort(N)) I/Os, into a linear-size
data structure so that all contours at a given level can be reported using O(logB N + T/B)
I/Os, where T is the output size. Each contour is generated individually with its edges sorted
in clockwise or counterclockwise order (Section 4.5).
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regular minimum saddle maximum splitting a 2-fold saddle

Figure 2: Link of a vertex; lower link is depicted by filled circles and bold edges. The type of a
vertex is determined by its lower link.

2 Preliminaries

Let M = (V,E, F ) be a triangulation of R2, with vertex, edge, and face (triangle) sets V , E, and
F , respectively. We assume that V contains a vertex v∞, set at infinity, and that each edge {u, v∞}
is a ray emanating from u. The triangles in M incident to v∞ are unbounded. Let h : R2 → R
be a continuous height function with the property that the restriction of h to each triangle of M
is a linear map. Given M and h, the “graph” of h is a terrain M = (M, h) which describes an
xy-monotone triangulated surface in R3 whose triangulation is induced by M. That is, vertices,
edges, and faces of M are in one-to-one correspondence with those of M. With a slight abuse of
notation, in what follows we write V , E, and F , to respectively refer to the sets of vertices, edges,
and triangles of both the terrain M and its underlying plane triangulation M.

For convenience we assume that h(u) 6= h(v) for all vertices u 6= v, and that h(v∞) = −∞.
Within each bounded triangle f ∈ F , h is uniquely determined as the linear interpolation of the
height of the vertices of f . This is not the case for an unbounded face f since interpolation using
h(v∞) = −∞ is undefined; in which case to determine h on f an extra parameter, such as the
height of a point in f , is needed.

For a given terrain M and a level ` ∈ R, the `-level set of M, denoted by M`, is defined as
h−1(`) =

{
x ∈ R2 | h(x) = `

}
. Equivalently, M` is the vertical projection of M ∩ z` on the

xy-plane, where z` is the horizontal plane z = `. The closed `-sublevel and `-superlevel sets of M
are defined respectively as M≤` = h−1((−∞, `]) and M≥` = h−1([`,+∞)), and the open `-sublevel
and `-superlevel sets M<` and M>` are M≤` \M` and M≥` \M`, respectively. For any R ⊆ R2,
let M(R) denote the subset of the surface M whose vertical projection into the xy-plane is R, i.e.
M(R) = {(x, y, z) ∈M : (x, y) ∈ R}. We shall also use the shorthand notations of M`, M<`, etc,
for M(M`), M(M<`), etc, respectively.

In much of what follows we need to compare the heights of two neighboring vertices of a terrain
M. To simplify the exposition we “orient” each edge of M toward its higher endpoint, and treat M
as a directed triangulation in which a directed edge (u, v) indicates that h(u) < h(v).

The dual graph M∗ = (F ∗, E∗, V ∗) of the triangulation M is defined as the planar graph that
has a vertex f∗ ∈ F ∗ for each face f ∈ F , called the dual of f . For any directed edge e ∈ E, there
is a directed dual edge e∗ = (f∗1 , f

∗
2 ) ∈ E∗ where f1 and f2 are the faces to the left and to the right

of e respectively. The graph M∗ is naturally embedded in the plane as follows: the vertex f∗ is
placed inside the face f and e∗ is is drawn as a curve that crosses e but no other edges of M. A
vertex v ∈ V leads to a dual face v∗ in M∗ that is bounded by the duals of the edges incident to v.
The dual of M∗ is M itself. For a given subset V0 of V , we use the notation V ∗0 to refer to the set
of duals to the vertices in V0, i.e., V ∗0 = {v∗ : v ∈ V0}. A similar notation is also used for subsets
of F or E.

Links and critical points. For a vertex v of M, the link of v, denoted by Lk(v), is the cycle in M
consisting of the vertices adjacent to v, as joined by the edges from the triangles incident upon v.
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Figure 3: Examples of sublevel sets of negative (left) and positive (right) saddle points.

The lower link of v, Lk−(v), is the subgraph of Lk(v) induced by vertices lower (of smaller height)
than v. The upper link of v, Lk+(v) is defined analogously; see Figure 2.

If a level parameter ` varies continuously along the real line, the topology of M≤` changes only
at a discrete set {`1, . . . , `m} of critical levels of h, where each `i is h(vi) for some vertex vi ∈ V .
v1, . . . , vm are critical vertices of M. A non-critical level of h is also called regular. Vertices with
regular heights are regular vertices. By our assumption that the height of every vertex is distinct,
there is only one critical vertex at each critical level.

There are three types of critical vertices: minima, saddles, and maxima. The type of a vertex
v can be determined from the topology of Lk−(v): v is minimum, regular, saddle, or maximum if
Lk−(v) is empty, a path, two or more paths, or a cycle, respectively. We assume that all saddles are
simple, meaning that the lower link of each saddle consists of precisely two paths. Multifold saddles
can be split symbolically into simple saddles; see Figure 2. Equivalently, a vertex can be classified
based on the clockwise ordering of its incoming and outgoing edges: a minimum has no incoming
edges, and a maximum has no outgoing edges. For other vertices v, we count the number of times
incident edges switch between incoming to outgoing as we scan them around v in clockwise order.
This number is always even. Two switches indicate that v is regular while four or more switches
take place if v is a saddle.

A saddle vertex v is further classified into two types. At ` = h(v) the topology of M≤` differs
from that of M<` in one of two possible ways: either two connected components of M<` join at v to
become the same connected component in M≤`, or the boundary of the same connected component
of M<` “pinches” at v introducing one more “hole” in M≤`. Saddles of the former type are negative
saddles and those of the latter type are positive saddles; see Figure 3. It is well-known that the
number of minima (resp. maxima) is one more than the number of negative (resp. positive) saddles,
and therefore

#saddles = #minima + #maxima− 2. (1)

This classification of saddles is related to persistent homology and a more general statement is
proved in [13].

Contours. A contour of a terrain M is a connected component of a level set of M. Each contour
K at a regular level is a simple closed curve and partitions R2 \K into two open sets: a bounded
one called inside of K and denoted by K i, and an unbounded one called outside of K and denoted
by Ko. This is violated at critical levels at which a contour may shrink into a point (an extremum),
or may consists of two simple closed curves whose intersection is the critical point (a saddle).
When the level parameter ` scans the open interval between two consecutive critical values of h
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Figure 4: Red and blue contours in a level-set of a terrain.

the contours of M` change continuously and the topology of M` remains unchanged. However, at a
critical level the contours that contain the corresponding critical point undergo topological changes.
Let K1 and K2 be two contours at levels `1 and `2 respectively with `1 < `2. We regard K1 and K2

as “the same” if K1 continuously deforms into K2 (without any topological changes), as z` sweeps
M in the interval [`1, `2].

Following [1], we call a contour K in M` blue if, “locally”, M<` lies in K i, and red otherwise; see
Figure 4. Every blue contour is born as a single point at a minimum. Conversely, a blue contour is
born at every minimum except at v∞. Because of being placed at infinity, a red contour is born at
v∞. Likewise, a red contours “dies” by shrinking into a single point at a maximum, and conversely,
some red contour dies at every maximum. Two contours, with at least one of them being blue,
merge into the same contour at a negative saddle. The resulting contour is red if one of the merging
contours is red, and blue otherwise. A contour splits into two contours at a positive saddle. A red
contour splits into two red contours while a blue contour splits into one red and one blue contour.

Two contours Ki and Kj of a level set M` are called neighbors if no other contour K of M`

separates them, i.e., one of Ki and Kj is contained in K i and the other in Ko. If Ki is neighbor
to Kj and Ki ⊂ K i

j , then Ki is called a child of Kj . If Ki ⊂ Ko
j and Kj ⊂ Ko

i then Ki is called a
siblings of Kj . It can be verified that all children of a red (resp. blue) contour are blue (resp. red)
contours while all siblings of a red (resp. blue) contour are red (resp. blue) contours.

We conclude this section by making a key observation, which is crucial for our main result.
Each regular contour of M corresponds to a cycle in M∗: let K be a contour in an arbitrary level
set M`, and let F (K) (resp. E(K)) denote the set of faces (resp. edges) of M that intersect K.
If K is a red (resp. blue) contour, all the edges in E(K) are oriented toward K i (resp. Ko).
Consequently, the vertices in F ∗(K) are linked by the edges in E∗(K) into a cycle in M∗. We refer
to this cycle as the representing cycle of K. We use C(K,M) to denote the circular sequence of
triangles dual to the representing cycle of K in M. The sequence in C(K,M) is oriented clockwise
(resp. counterclockwise) if K is blue (resp. red); see Figure 5.
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(a) (b)

Figure 5: (a) Orientation of the edges in the plane triangulation M of a terrain. Critical points
and a contour K in a regular level set are shown. (b) the dual M∗ of M. The representing cycle of
K in M∗ is shown with bold edges. Triangles in C(K,M) are shaded.

3 Level-ordering of Triangles

In this section we present our main result, i.e. the existence of a level-ordering on triangles of
any terrain M, i.e., an ordering that satisfies conditions (C1) and (C2). We begin by proving the
existence of a level-ordering for terrains that do not have saddle vertices. We call such terrains
basic. Next we prove certain structural properties of terrains and show that any arbitrary terrain
can be transformed into a basic terrain through a surgery that effectively “preserves” the contours
of the original terrain. We then argue that a level-ordering on the transformed terrain corresponds
to a level-ordering on the original one.

3.1 Basic terrain

Let M be a basic terrain. The above discussion and (1) imply that M has one (global) minimum,
v̌, which coincides with v∞, and one (global) maximum, v̂, and that every level set consists of a
single red contour. At v̂ this contour collapses into a single point.

Lemma 3.1 Let P ⊂ E be a directed (monotone) path in M from v̌ to v̂. Then every cycle of M∗
contains exactly one edge from P ∗. In particular, the graph M∗ \ P ∗ obtained from deleting the
edges in P ∗ from M∗ is acyclic.

Proof. We claim that v̂ is reachable in M from every vertex v ∈ V . Recall that v̂ is the only
local maximum in M and that every other vertex has at least one outgoing edge. If one starts at
v and follows an arbitrary outgoing edge at each step, the height of the vertex at which we arrive
is greater than that of the previous one. This process can only stop at v̂. By a similar argument,
every vertex v ∈ V is reachable from v̌.

Consider an arbitrary cycle C∗ in M∗. In the plane drawing of M∗, C∗ is a Jordan curve. Let
V0 ⊂ V be the set of vertices that are contained in the inside of C∗ (equivalently, V ∗0 ⊂ V ∗ is the
set of faces of M∗ whose union is bounded by C∗). Let C ⊂ E be the set of edges in M dual to
those in C∗. Since C∗ is a cycle, the edges in C are either all oriented from V0 to V \V0 or all from
V \ V0 to V0.

The former case cannot happen because v∞ 6∈ V0 and every vertex in V is reachable from v∞. If
all edges of C are oriented from V \ V0 to V0, then v̂ ∈ V0 because otherwise v̂ cannot be reachable
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from the vertices of V0. Since v̂ ∈ V0 and v∞ ∈ V \ V0, |P ∩C| ≥ 1. There is no edge directed from
V0 to V \ V0, so once P reaches a vertex of V0 it cannot leave V0, implying that |P ∩C| = 1. Thus,
every cycle of M∗ is destroyed by the removal of the edges in P ∗, implying that M∗ \ P ∗ is acyclic.
�

Let P be the path from v̌ to v̂ as defined in Lemma 3.1. The graph M∗ \ P ∗ has all of the
vertices of M∗. Thus every face f of M is represented by f∗ in M∗ \ P ∗. Let ≺ be the a binary
relation on F (triangles in M) defined as f1 ≺ f2 if (f∗1 , f

∗
2 ) ∈ E∗ \P ∗. Since by Lemma 3.1 M∗ \P ∗

is acyclic, ≺ is a partial order on F . We call ≺ the adjacency partial order induced by the acyclic
graph M∗ \ P ∗. A linear extension of ≺ is any total order / on F that is consistent with ≺, i.e.
f1 ≺ f2 implies f1 / f2. Such a linear extension can be obtained by topological sorting of M∗ \ P ∗.
By definition, the existence of a directed path from f∗i to f∗j in M∗ \ P ∗ implies that fi / fj . Thus
condition (C1) of the definition of level ordering holds for /. Since in a basic terrain each level
consists of only one contour, condition (C2) holds trivially. This results the following statement.

Corollary 3.2 Let M be a basic terrain, and let P be a directed (monotone) path from v̌ to v̂
in M. Let / be a linear extension of the adjacency partial order induced by M∗ \ P ∗. Then / is a
level-ordering of the triangles of M.

3.2 Red and blue cut-trees

Consider now a non-basic terrain with saddle vertices. We first introduce the notions of ascending
(red) and descending (blue) cut-trees of M as subgraphs of the triangulation M, which we later
use to turn M into a basic terrain M̃. Contours of each level set of M will then be encoded in a
corresponding level set of M̃ which consists of a single contour.

A descending (resp. ascending) path on M from a vertex v ∈ V is a path v0, v1, . . . , vr where
v0 = v and h(vi) < h(vi−1) (resp. h(vi) > h(vi−1)) for i = 1, . . . , r. For each negative saddle v, let
P1(v) = u0, u1, . . . , ur and P2(v) = w0, . . . , ws be two descending paths from v such that ur and ws
are both minima and u1 and w1 belong to different connected components of Lk−(v). Furthermore
assume that for any two negative saddles u and w, if Pi(u) = u0, . . . , ur and Pj(w) = w0, . . . , ws,
for some i, j ∈ {1, 2}, and uk = wl for some 1 ≤ k ≤ r and 1 ≤ l ≤ s, then uk+1 = wl+1; in other
words, descending paths from different vertices can join but then cannot diverge. Such a set of
paths always exist: one can assign such paths to negative saddles in the increasing order of their
heights. At any negative saddle u, we follow a descending paths through each of the two connected
components of Lk−(u) until it either reaches a minimum or joins a path already assigned to a
lower negative saddle. Let P (u) = P1(u) ∪ P2(u) for any negative saddle u. Since P1(u) \ {u} and
P2(u) \ {u} are contained in different connected components of M<h(u), the underlying undirected
graph of P (u) is a simple path. For a positive saddle u, P1(u) and P2(u) are defined similarly using
ascending paths that start at different connected components of Lk+(u) and end in maxima.

We define the descending (blue) cut-tree Ť = (V̌ , Ě) of M to be the union of the paths P (u)
over all negative saddles u. Similarly, we define the ascending (red) cut-tree T̂ = (V̂ , Ê) of M to be
the union of all the paths P (u) over all positive saddles u. It is, of course, not clear that Ť and T̂
are trees but this and some of their other properties are proven below.
Remark. The definitions of red and blue cut-trees are closely related to the notions of split and
join trees in the context of contour trees [21]. Intuitively the contour tree is the result of contracting
each contour of M into a single point 1 and is topologically a connected collection of simple curves

1Taking the terrain M as a topological space with the usual topology of R2 and defining an equivalence relation
∼ between points on M as x ∼ y if and only if x and y are on the same contour (connected component of some level
set), the contour tree M∼ of M is the quotient space of M modulo ∼.
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Figure 6: A terrain for which the join tree cannot be embedded as a subgraph of the underlying
triangulation in such a way that the edges are realized by ascending paths. Level sets of saddles are
depicted in dotted lines. The contour tree of the terrain on the left is shown on the right. Notice
that there is no directed (ascending) path from x to y on the terrain.

whose endpoints correspond to the critical points of M. These curves can only intersect at their
endpoints and thus realize the edges of a graph on a set of vertices that correspond to the critical
points of M. It can be shown that this graph is always connected and acyclic — hence the name
contour tree.2 Each point on a curve realizing an edge represents a contour at some height. The
heights of points along any edge of the contour tree vary monotonically from one end to the other.
The contour tree is often described as the union of two of its subtrees, namely the merge and split
trees. The join tree is the minimal connected subtree of the contour tree that contains minima and
negative saddles and the split tree is defined analogously using maxima and positive saddles.

The similarity between the notions of blue (resp. red) cut-tree and join (resp. split) tree natu-
rally poses the question of whether our cut-trees can be replaced by their contour tree counterparts.
We emphasize here that our cut-trees are subgraphs of the triangulation M and this plays a crucial
role in our algorithms. It is possible to draw the contour tree on the terrain in such a way that the
vertices coincide with their corresponding critical points and edges are realized by monotonically
ascending curves on the terrain. It is easy to observe that if one can realize each edge of the join
or split tree as a monotonically ascending path in M then it is indeed possible to simply use the
merge or split trees in place of our cut-trees. However, this is not always possible as the terrain
depicted in Figure 6 demonstrates.

Lemma 3.3 The underlying undirected graph of a blue (resp. red) cut-tree Ť (resp. T̂) has no
cycles.

Proof. We prove the claims for blue cut-tree. The argument for red cut-tree can be made symmet-
rically. Let u1, . . . , ur be the list of all negative saddles of M in the increasing order of their heights.
Let Ť0 be the empty graph and for each i = 1, . . . , r, let Ťi =

⋃i
j=1 P (uj); Ťi−1 is a subgraph of

Ťi, and Ťr = Ť. We prove by induction on i that the underlying undirected graph of each Ťi is
a forest. This trivially holds for Ť0. Assume now that the underlying undirected graph of Ťi is
a forest. By construction, adding P (ui+1) connects two distinct connected components of Ťi, one
contained in each of the two distinct connected components of M<h(ui+1) that join at ui+1.

Moreover, once each of P1(ui+1) or P2(ui+1) reaches a vertex of Ťi, it continues by following a

2Indeed such graphs, known generally as Reeb graphs [22], can be obtained from arbitrary continuous real valued
functions defined on more general topological spaces such as arbitrary manifolds. Contour trees are Reeb graphs of
terrains as determined by their height functions.
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Figure 7: Cutting a triangulation along a tree.

path contained in Ťi, and therefore does not introduce a cycle within the corresponding connected
component of Ťi. �

For a set U ⊆ R2, let Ť(U) (resp. T̂(U)) be the union of the paths P (u) for all negative (resp.
positive) saddles u ∈ U . In particular, Ť = Ť(R2) and T̂ = T̂(R2).

Lemma 3.4 For a blue (resp. red) contour K, the underlying undirected graph Ť(K i) (resp.
Ť(Ko)) connects all of the minima in K i (resp. Ko). A symmetric statement holds regarding T̂
and maxima by switching “red” and “blue”.

Proof. We prove the lemma for Ť and blue contours. The other cases are similar. Let K be a
blue contour in Mλ for some λ ∈ R. We show that for each ` ∈ R, the minima in each connected
component of U` = M<` ∩K i are connected by Ť(U`). The statement of the lemma then follows
by taking ` to be larger than the height of all vertices in K i and from the fact that in that case U`
consists of a single component.

To prove the lemma we sweep ` from −∞ toward +∞ and verify the claim for U`. Every time
` reaches the height of a minimum in K i, a new connected component is added to U`. The lemma
holds for this new component since it originally has only a single minimum which is vacuously
connected by Ť(U`) to every other minimum in that component. The validity of the claim as `
continues to raise can only be altered when ` reaches the height of a negative saddle u in K i at
which two connected components U1 and U2 of U<`, where ` = h(u), join at u. At this time the
path P (u) is added to Ť(U`). The crucial observation here is that because K is a blue contour, no
descending path started at a vertex u ∈ K i can reach Ko. Thus the endpoints of P (u) have to be
minima in K i. In other words P (u), which reaches a minimum in U1 and another in U2, connects
Ť(U1) and Ť(U2) as desired. �

Corollary 3.5 The underlying undirected graphs of Ť and T̂ are trees. Moreover, all minima are
vertices of Ť and all maxima are vertices of T̂.

We conclude this discussion by mentioning a property of T̂ and Ť that follows from their
constructions.

Lemma 3.6 Let u be a vertex of T̂ (resp. Ť). If u is a positive (resp. negative) saddle, then u
has two outgoing (resp. incoming) edges in T̂ (resp. Ť) — one to each connected component of
the upper (resp. lower) link of u in M. If u is a regular vertex or a negative saddle, then u has
one outgoing (resp. incoming) edge. Finally, if u is a maximum (resp. minimum), then it has no
outgoing (resp. incoming) edges.

3.3 Surgery on terrain

Let T̂ be a red cut-tree for M. Consider the following combinatorial operation on M. First we
duplicate every edge e of T̂, thus creating a face fe that is bounded by the two copies of e. We then
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(a) (b) (c)

Figure 8: (a) A red (ascending) cut-tree marked T̂ marked on the terrain M of Figure 5. (b)
Construction of the graph M0: the terrain is cut along T̂ and a new maximum v̂ is inserted in the
opened face. On the right, a blue cut-tree of M0 is marked. (c) Construction of the graph M̃: the
terrain is cut open on the red cut-tree and a new maximum is inserted.

perform an Eulerian tour on the subgraph of M induced by the copies of the edges of T̂ in which
at each vertex the next edge of the tour is the first unvisited edge of the subgraph in clockwise
order, relative to the previous edge of the tour. We then combine all of the faces fe into a single
face f̂ that is bounded by this Eulerian tour by making as many copies of each vertex as its degree
in T̂ (or equivalently the number of times the tour has passed through it) and connecting non-tree
edges incident on u to appropriate copies of u; see Figure 7. Geometrically, the above modification
of the terrain triangulation can be interpreted as “puncturing” the plane along the edges of T̂ and
introducing a new face f̂ bounded by the 2|Ê| edges in the Euler tour.

We then subdivide f̂ by placing a new vertex v̂ inside it and connecting v̂ via incoming edges
(u, v̂) to every vertex u on the boundary of f̂ . The result is a triangulation M0 = (V0, E0, F0); see
Figures 8 (a) and (b). The newly added triangles are all incident to v̂, and we refer to them as
v̂-triangles. The edge e opposite to v̂ in a v̂-triangle f (which is a copy of a T̂ edge) is called the
base of f and f is said to be based at e. One can modify the plane drawing of M into a (singular)
plane drawing of M0, that has faces of zero area and edges that bend and overlap, by jamming all
the new faces and edges in the (zero-area) hole that results from cutting the plane along T̂.

M0 can be regarded as the triangulation of a terrain M0: Fáry’s theorem [14] can be used to
straight-line embed M0 while preserving all its faces and the height function of M induces a height
function on triangles of M0 that are also in M. The height of v̂ is then chosen to be higher than
the heights of all vertices of M and is used to linearly interpolate a height function on v̂-triangles.

Lemma 3.7 M0 has no positive saddles and exactly one maximum, namely v̂. The minima of M0

are precisely those of M. Each negative saddle of M0 is a copy of a negative saddle of M, and only
one copy of each negative saddle of M is a negative saddle of M0.

Proof. For a vertex u 6∈ T̂, Lk(u) is the same in M and M0 modulo taking copies of T̂ vertices as
identical. In particular, minima of M stay minima in M0. Thus it suffices to consider v̂ and copies
of T̂ vertices. Clearly, v̂ is a maximum. Let u be a vertex of T̂, and let u′ be a copy of u in M0.
Let e′1 and e′2 be copies of T̂ edges that enter and leave u′, respectively, in the Eulerian tour of T̂.
Both of these edges remain incident to u′ in M0. Let v′1 and v′2 be other endpoints of e′1 and e′2 in
M0, respectively. Let vi and ei, i = 1, 2, be the vertex and edge in M corresponding to v′i and e′i,
respectively. Lk(u′) consists of a path π(u′) from v′1 to v′2 followed by v̂. Moreover, e′1 and e′2 are
the only edges incident on u′ that are copies of T̂ edges, and π(u′) is also a path in Lk(u) in M,
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modulo taking copies of T̂ vertices as identical.
First, u′ cannot be a maximum because u′ is adjacent to v̂. It cannot be a minimum either

because then π(u′) ⊆ Lk+(u) and e1 and e2 are outgoing edges from u in T̂ connected to some
component of Lk+(u), which contradicts Lemma 3.6. Next, if Lk+(u′) is not connected, then its
component U not containing v̂ does not contain v′1 and v′2 either and thus u lies in the interior of
the path π(u′). Then U is also a connected component of Lk+(u) in M. Unless u is a negative
saddle, by Lemma 3.6, there is an outgoing edge in T̂ from u to a vertex in U , contradicting the
fact that e′1 and e′2 are the only edges adjacent to u′ that are copies of T̂ edges. Hence, unless u is
a negative saddle, Lk+(u′) is connected and u′ is a regular vertex in M0.

Finally, suppose u is a negative saddle, with two components U1 and U2 in Lk+(u). By Lemma
3.6, u has exactly one outgoing edge e in T̂. Without loss of generality assume that e is connected
to U1. Then U2 will appear as a connected component of the upper link of exactly one copy u′ of u,
namely if U ⊆ π(u′), and u′ will be a negative saddle in M0. The upper link of all other copies of u
will be connected — consisting of v̂ and possibly a portion of U1. Consequently, one copy of every
negative saddle of M becomes a negative saddle in M0 and other copies become regular vertices.
This completes the proof of the lemma. �

Next we perform a similar surgery on M0 only using a blue cut-tree Ť of M0. As above, the
idea is to slice the plane along Ť and insert a new vertex v̌ in the resulting face and connect v̌
to every copy u of a vertex in Ť by an outgoing edge (v̌, u). We call the resulting triangulation
M̃ = (Ṽ , Ẽ, F̃ ). A slight technicality arises in this case as a result of the fact that v∞ is a minimum
of M0 which by Corollary 3.5 is a vertex of Ť. As it will become clear later, we only need to treat
v̌ symbolically below v∞ by connecting them by an edge oriented toward v∞. We conclude, using
the same argument as in Lemma 3.7, the following:

Lemma 3.8 M̃ does not have saddle vertices.

Lemma 3.9 If (f∗1 , f
∗
2 ) is an edge of M∗, then there is a path from f∗1 to f∗2 in M̃∗.

Proof. If f1 and f2 are adjacent in M̃ then (f∗1 , f
∗
2 ) is an edge in M̃∗. Thus we only need to consider

the case in which an edge e shared by f1 and f2 in M is an edge of T̂ or Ť (or both). Suppose e is an
edge of T̂. In constructing M0, e is duplicated to create two edges e1 and e2, respectively, incident
to f1 and f2. Let φ1 and φ2 respectively be the v̂-triangles based at e1 and e2. By construction, f1
is to the left and φ1 to the right of e1 and therefore (f∗1 , φ

∗
1) is an edge in M̃∗. Similarly (φ∗2, f

∗
2 ) are

edges in M̃∗. Consider the subgraph of M̃∗ induced by v̂-triangles. Since all the edges incident to v̂
are incoming, their duals make a cycle in M̃∗ which includes φ∗1 and φ∗2. Since there is a path from
φ∗1 to φ∗2 on this cycle and there are edges from f∗1 to φ∗1 and from φ∗2 to f∗2 in M̃∗, we get a path
from f∗1 to f∗2 . It is easy to observe that the same argument extends to neighboring M triangles
that are separated by the edges of Ť or both T̂ and Ť. �

3.4 Encoding of contours in the resulting basic terrain

Although we argued above that M̃ can be realized and therefore treated as the triangulation of a
terrain M̃, to relate the level sets of M̃ to those of M, in the rest of this section we use a degenerate
realization of M̃ as a surface in R3 that differs from what a straight-line embedding of M̃ results.
This substantially simplifies the arguments that follow. We shall realize the v̂- and v̌-triangles as
vertical curtains: An upward (resp. downward) extending curtain based at a segment pq in R3 is
the convex hull of two infinite rays shot in positive (resp. negative) direction of the z-axis from the
points p and q respectively. A curtain can be regarded as a vertical (orthogonal to the xy-plane)
triangle that has a vertex at infinity.
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Figure 9: Left: The red cut-tree T̂ of a terrain is drawn using heavier segments on the terrain
M. Middle: The terrain is sliced along T̂ and v̂-triangles are represented by upward extending
curtains. Note that each edge e of T̂ results two overlapping curtains one based at each of the two
(overlapping) copies of e that results from cutting the terrain along T̂. Right: A contour of the
resulting terrain (dashed) overlapping itself on v̂-triangles.

We realize M̃ by preserving the geometry of every triangles that existed in M and representing
v̂-triangles (resp. v̌-triangles) as upward (resp. downward) extending curtains based at segments
corresponding to the edges of T̂ (resp. Ť) on M; see Figure 9. Note that in this realization of
M̃, the two copies of each T̂ or Ť edge overlap as do the segments that represent them on M̃ and
therefore the curtains tha realize their corresponding v̂- or v̌-triangles also overlap. Although in
this sense M̃ is not the graph of a bivariate function, it can still be regarded as a (self-overlapping)
piece-wise linear surface in R3 and a level set M̃` of it can be defined as the projection into the
xy-plane of the set M̃` = M̃ ∩ z`. Let T̂ and Ť respectively be shorthands for M(T̂) and M(Ť).
Note that T̂ and Ť are also contained in M̃, although under the topology of this surface they are
(self-overlapping) closed curves that correspond to Eulerian traversals of T̂ and Ť on M.

Since every triangle of M is also in M̃ and is geometrically realized by the same triangle in both
M and M̃, M` ⊆ M̃` for all ` ∈ R and M̃` \M` ⊂ T̂ ∪ Ť (with some abuse of notation we write T̂
and Ť to refer the red and blue cut-trees as subgraphs M as well as their drawings as subsets of
R2). In other words M̃` consists of the contours of M` together with fragments of the red and blue
cut-trees.

Lemma 3.10 Let K0 be a blue (resp. red) contour in a level set M` and let K1, . . . ,Kr be its
children. Let R be the interior of K i

0 \ (K i
1 ∪ · · · ∪K i

r). Then M̃` ∩R = T̂ ∩R (resp. Ť ∩R).

Proof. We prove the lemma for the case where K0 is blue. The proof for the case where it is red is
symmetric. Let Q and Q̃ respectively be shorthands for M(R) and M̃(R). By definition, Q ⊆ Q̃.
Since K0 is a blue contour of M, Q is entirely below the plane z`. Since Q and Q̃ differ only in
curtains based at T̂ or Ť segments, z` ∩ Q̃ is contained in such curtains. On the other hand any
curtain whose intersection with Q̃ intersects z` has to be extending upward from some segment of
T̂ that intersects Q. Thus M̃` ∩R ⊆ T̂. Conversely, any segment of T̂ that intersects Q is the base
of an upward extending curtain which intersects z`. Thus T̂ ∩R ⊆ M̃`. �

Let us fix a regular level ` of h and and let K1, . . . ,Kt be the contours in M`. For sim-
plicity, we virtually add an infinitely large contour K0 that bounds the entire plane. Let K` =
{K0,K1, . . . ,Kt}. Consider the set R` = {R0, R1, . . . , Rt} of the connected component of R2 \M`.
The boundary of each Ri, i ≥ 0, consists of a set B(Ri) = {Ki0 ,Ki1 , . . . ,Kir(i)} ⊆ K` of r(i)
contours in which Ki1 , . . . ,Kir(i) are the children of Ki0 in the arrangement of contours in K`.

For any R ∈ R` we construct an undirected graph G`(R) = (VR, ER) as follows. By Lemma
3.10, M̃` ∩ R is contained in exactly one of T̂ or Ť; let T denote that tree. The vertex set VR of
G`(R) consists of all the vertices of T that are contained in R together with one auxiliary vertex
vK associated with every contour K ∈ B(R). The edge set ER of G`(R) consists of an edge {u, v}
corresponding to each edges (u, v) of T whose endpoints u and v are both in R together with an edge
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{v, vK} for any edge of T that crosses a contour K ∈ B(R) and its endpoint in R is v. Equivalently,
G`(R) is obtained from the subgraph of T that is induced by those edges of T that intersect R, by
identifying all vertices that are contained in each component R′ 6= R of R` that is separated from
R by a contour K ∈ B(R) into a single vertex vK .

Lemma 3.11 For any R ∈ R` the graph G`(R) as defined above is a tree.

Proof. Let K0,K1, . . . ,Kr be the contours bounding R and let K0 be the parent of K1, . . . ,Kr. We
prove the lemma for the case where K0 is blue. The proof for the case where it is red is symmetric.
We prove that the existence of a cycle in G`(R) implies the existence of a cycle in the underlying
undirected graph of T̂ which contradicts Corollary 3.5. Consider any contour Kj , j ≥ 1 and let

e1 = (u1, v1) and e2 = (u2, v2) be two edges of T̂ that intersect Kj . Since Kj is red, v1, v2 ∈ K i
j .

Since e1 is an edge of T̂, v1 is followed in T̂ by an ascending path that ends at a maximum. Since
no ascending path can leave K i

j , T̂ reaches a maximum v′1 in K i
j through v1. Similarly, T̂ reaches a

maximum v′2 in K i
j through v2. Lemma 3.4 implies that v′1 and v′2 are connected by a path in the

underlying undirected graph of T̂ that is contained in K i
j . In other words, any two branches of T̂

that enter K i
j meet in K i

j . Thus if we contract every edge of T̂ whose endpoints are both outside
R, we precisely get the graph G`(R). The proof of the lemma follows from the fact that the result
of contracting a tree edge is a tree. �

We next combine the graphs G`(R), R ∈ R` into a graph G` by identifying, for any two com-
ponents R1 and R2 that share a contour K in their boundaries, the two auxiliary vertices vK
associated to K in G`(R1) and G`(R2). The acyclic structure of the hierarchy of red and blue
contours together with Lemma 3.11 result the following statement.

Corollary 3.12 The graph G` is a tree.

Let P be a v̌-v̂ path in M̃. Since M̃ is a basic terrain (does not have saddle vertices), by
Lemma 3.1 M̃∗ \ P ∗ is acyclic. Let ≺ be the adjacency partial order on F̃ induced by M̃∗ \ P ∗.
Since F ⊂ F̃ , ≺ is also a partial order when restricted to F .

Lemma 3.13 Let / be a linear extension of ≺ on F . If K and K ′ are two contours of a level set
M` and f1, f2 ∈ F (K) and f ′1, f

′
2 ∈ F (K ′) are such that f1 / f

′
1 / f2, then f1 / f

′
2 / f2.

Proof. Since M̃ is a basic terrain, M̃` consists of a single contour. Let C∗ = C(K,M∗) be the
representing cycle of M̃` in M̃∗. If f1, f2 ∈ F (K) for some contour K in M` and the edge common
to f1 and f2 does not belong to either of T̂ or Ť, then (f∗1 , f

∗
2 ) is an edge in C∗. By Lemma 3.1,

C∗ has exactly one edge in P ∗. Thus C∗ \ P ∗ is a path Q∗ that is exactly one edge short of C∗.
Let G` be the tree of Corollary 3.12. We map the path Q∗ in M̃` into a walk W in G` as follows:

Each vertex f∗ of Q∗ is mapped to a pair (u, v) where either u and v are neighboring vertices in
G` or u = v. Specifically, if f ∈ M`(K), then f∗ is mapped into (vK , vK) where vK is the vertex
of G` that represents K. Otherwise, f∗ is dual to of some v̌- or v̂-triangle f in M̃ that intersects
M̃`. Let e = (u, v) be the edge in M at (a copy of) which f is based in M̃. If the edge e does not
intersect M`, it is contained in G`(R) (as an undirected edge) for precisely one R ∈ R`, in which
case we map f∗ to (u, v). On the other hand, if e intersects M` at a contour K, then by Lemma
3.10 there will be precisely one edge {vK , v} in G` where v is an endpoint of e, in which case we
map f∗ into (v, vK). It can be verified that the set of pairs in the image of Q∗ under this mapping
is indeed a walk W in G`. Since M̃` goes thorough any segment s at most twice, each edge of G`
appears at most twice in W .
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Figure 10: Contours of M` (left) versus those of M̃` (right).

For f1 / f
′
1 / f2 to hold, Q∗ must visit f∗1 , f ′1

∗ and f∗2 in this order. Assume without loss of
generality that f ′1 / f

′
2. In order for f1 / f

′
2 / f2 not to hold, one must have f2 / f

′
2 which means Q∗

must visit f ′2
∗ after f∗2 . But this corresponds to going from K to K ′, then back to K and then again

to K ′. Since each of K and K ′ are represented by a vertex in G` this would mean that W goes
thorugh vK , vK′ , and again vK in this order. Corollary 3.12 implies then that W has to traverse
some edge of G` at least three times, a contradiction. �

Lemmas 3.9 and 3.13 respectively prove that the total order / has properties (C1) and (C2) of
a level-ordering .

Theorem 3.14 For any terrain M with triangulation M, there is exists a level level-ordering of
the triangles of M.

4 Contour Algorithms

In this section we describe I/O-efficient algorithms for computing contour maps as well as an I/O-
efficient data structure for answering contour queries.

4.1 Level-ordering of terrain triangles

We describe an I/O-efficient algorithm for computing, given a terrain M, the triangulation M̃ of
the simplified terrain M̃, and a monotone path P from v̌ to v̂ in M̃. We can then compute a
level-ordering of the triangles of M̃ in O(sort(N)) I/Os using an existing I/O-efficient topological
sorting algorithm for planar DAGs [8]. This induces a level-ordering on the triangles of M.

Computing the red cut-tree. The first step in computing M̃ is to compute a red (ascending)
cut-tree T̂ of M. The I/O-efficient topological persistence algorithm of Agarwal et al. [2] can
determine the type (regular, minimum, negative saddle, . . . ) of every vertex of M in O(sort(N))
I/Os. Moreover, for every vertex v ∈M, it can also compute, within the same I/O bound, a vertex
from each connected component of Lk+(v). Since each saddle of M is assumed to be simple, Lk+(v)
has at most two connected components.

To compute T̂, we apply the time-forward processing technique [10] using a priority queue Q:
we scan the vertices of M in the increasing order of their heights. We store a subset of vertices in
Q, namely the upper endpoints of the edges of T̂ whose lower endpoints have been scanned. The
priority of a vertex v in Q is its height h(v). Suppose we are scanning a vertex v of M and u is
the lowest priority vertex in Q. If h(v) < h(u) and v is not a positive saddle, we move to a new
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vertex in M. Otherwise, i.e. if h(u) = h(v) or v is a positive saddle, we choose a vertex w from
each connected component of Lk+(v), which we have already computed in the preprocessing step.
We add the edge (v, w) to T̂ and add w to Q. Since each operation on Q can be performed in

O
(

1
B logM/B N/B

)
I/Os, T̂ can be computed in O(sort(N)) I/Os.

Adding the blue cut-tree. The second step in computing M̃ is to compute a blue cut-tree Ť of
M0. However, we can compute Ť directly on M if we ensure that T̂ and Ť do not cross each other,
even though they can share edges. This property can be ensured by choosing the ascending and
descending edges, in T̂ and Ť, respectively, out of each vertex v, more carefully. Specifically, we
use the following rule:

1. On an ascending path, the edge following (u, v) is (v, w) where (v, w) is the first outgoing
edge out of v after (u, v) in clockwise order, and

2. On a descending path, the edge following (v, u) is (w, v) where (w, v) is the first incoming
edge of v after (v, u) in counterclockwise order.

It can be verified that T̂ and Ť do not cross. One can therefore compute Ť precisely in the same
way as T̂ directly on M.

Computing a monotone v̌-v̂ path P . While computing Ť we also compute a descending path
starting at the lowest positive saddle v1 of M as though v1 were another negative saddle. This path
P , which ends at a Ť vertex v0, together with (v̌, v0) and (v1, v̂) serves as a monotone path in M̃
connecting v̌ to v̂.

Generating M̃∗ \ P ∗. The topological sorting algorithm of Arge et al. [8] takes as input a planar
directed acyclic graph, represented as a list of vertices along with the list of edges incident upon
each vertex in circular order. Given M, T̂, Ť, and P , we need to compute such a representation
of M̃∗ \ P ∗. Since each face in M̃ is a triangle, M̃∗ is 3-regular. It is easy to compute the circular
order of edges incident upon a vertex of M̃∗ whose dual triangle is neither a v̂- or v̌-triangle, nor
adjacent to a copy of a T̂ or Ť edge. The main task is then to compute these the v̂- and v̌-triangles.
This can be accomplished by computing the Eulerian tours of T̂ and Ť, which takes O(sort(N))
I/Os [8]. Putting everything together, we obtain the main result of this paper.

Theorem 4.1 Given a terrain M with triangulation M, a level-ordering of the triangles of M can
be computed in O(sort(N)) I/Os, where N is the number of vertices of M.

4.2 Contour maps of basic terrains

Let L = {`1, . . . , `s} be a set of input levels with `1 < · · · < `s. Given a basic terrain M, the goal is
to compute the contour map of M for levels in L. Since M is simple, each M`i consists of a single
contour. Generating the segments of M`i in clockwise or counterclockwise order is equivalent to
listing the triangles of M that the contour M`i intersects in that order, i.e. reporting C(M`,M).

Our algorithm uses a buffer tree B to store the triangles of M that intersect a level set. The
buffer tree [5] is a variant of B-tree, which propagates updates from the root to the leaves in a
lazy manner, using buffers attached to the internal nodes of the tree. As a result, a sequence of N
updates (inserts and deletes) can be performed in amortized O(sort(N)) I/Os. Moreover, one can
perform a flush operation on a buffer tree that results in the writing of all its stored elements on
the disk in sorted order. Flushing a tree with T elements takes O(T/B) I/Os.

It is more intuitive to describe the algorithm as a plane sweep of M in R3. At the first step, the
algorithm computes a level-ordering / of the terrain triangles using Corollary 3.2. Then starting
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at ` = −∞, the algorithm sweeps a horizontal plane z` in the positive z-direction. A target level `∗
is initially set to `1. At any time the algorithm maintains the list of triangles of M that intersect
the sweeping plane in a buffer tree B ordered by /. Whenever the sweep plane encounters the
bottom-most vertex of a triangle f , we insert f into B; f is deleted again from B when the plane
reaches the top-most vertex of f . When the sweep plane z` reaches the target level `∗ (or rather
the lowest vertex of height `∗ or more when the sweeping is implemented discretely), we flush the
buffer tree. The generated list of triangles (vertices of M∗) are precisely the set of triangles in M
that intersect z`∗ ordered by /. Corollary 3.2 implies that the output is exactly C(M`∗ ,M). The
algorithm then raises the target level `∗ to the next level in L and continues.

Level-ordering of the terrain triangles takes O(sort(N)) I/Os (Theorem 4.1). Preprocessing
for the sweep algorithm consists of sorting the vertices in their increasing order of heights which
can also be done in O(sort(N)) I/Os. During the sweep each update on the buffer tree takes
O( 1

B logM/B N/B) amortized I/Os [5]. Thus all the O(N) updates can be performed in O(sort(N))
I/Os in total. Each flushing operation takes O(T ′/B) I/Os, where T ′ is the number of triangles
in B. If a triangle is in B but has been deleted, it is not in B after the flushing operation, so a
“spurious” triangle is flushed only once.

Hence, the total number of I/Os is O(sort(N) + T/B), where T is the output size. Finally, in
addition to storage used for the terrain the algorithm uses O(N/B) blocks to store the buffer tree
and thus uses O(N/B) blocks in total.

4.3 Generalization to arbitrary terrains

Given a general terrain M with saddles, one can still compute by Theorem 4.1 a level-ordering of
the triangles of M in O(sort(N)) I/Os. If one runs the algorithm of the previous section on M̃ the
output generated for each input level `i is C(M̃`i , M̃). Running the algorithm on M is equivalent
to running it on M̃ but ignoring all v̂ and v̌-triangles by omitting their insertions into the buffer
tree. Consequently, the produced output for level `i is the same sequence of triangles only with v̂
and v̌-triangles omitted. By Theorem 3.14 this is a subsequence R = 〈f1, . . . , fk〉 of C(M̃`i , M̃))
in which C(K,M) of each contour K in M`i appears as a subsequence RK . Thus all one needs
to do is to extract the subsequence RK and write it separately in the same order as it appears in
R. Property (C2) of a level-ordering allows this to be done in O(k/B) I/Os: if in scanning the
sequence R from left to right some elements of RK are later followed by elements of RK′ , then the
appearance of another element of RK , indicates that no more elements from RK′ remain.

We thus scan the sequence R from left to right and push the scanned triangles into a stack SF .
Every time the last element of a contour is pushed into the stack, the triangles of that contour make
a suffix of the list of elements stored in SF . At such a point, we pop all the elements corresponding
to the completed contour and write them to the disk. To find out when a contour is completed and
how many elements on the top of stack belong to it, we keep a second stack SE of edges. For any
triangle f ∈ F (M`i), two of the edges of f intersect M`i . With respect to the orientation of these
edges, f is to the right of one of them and to the left of the other one which we respectively call
the left and right edges of f at level `i. If e∗ = (f∗j , f

∗
j+1) is an edge of the representing cycle of

a contour in M`i , then e is the right edge of fj and left edge fj+1 at level `i. We therefore check
when scanning a triangle fj whether its left edge is the same as the right edge of the triangle on
top of SF and insert fj into SF if this is the case. Otherwise, we compare the left edge of fj with
the edge on top of SE . If they are not the same, we are visiting a new contour and we insert the
left edge of fj into SE and fj into SF . Otherwise, fj is the last triangle of its contour. Therefore
we write it to the disk and successively pop and write to disk enough triangles from SF until the
left edge of a popped triangle matches the right edge of fj . We also pop this edge from SE . In
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this algorithm each scanned triangle is pushed to the stack once and popped once. In a standard
I/O-efficient stack implementation this costs O(k/B) I/Os.

Theorem 4.2 Given any terrain M with N vertices and a list L = {`1, . . . , `s} of levels with
`1 < · · · < `s, one can compute using O(sort(N) + T/B) I/Os the contour map of M for levels in
L, where T is the total number of produced segments.

4.4 Extracting nesting of contours

In addition to reporting each contour individually, a number of applications call for computing
how various contours are nested within each other. We produce this information by returning the
parent of each contour in a computed contour map.

The parent-child relationship between individual contours in a contour map of a terrain M can
be read from the contour tree of M. Each contour in a contour map corresponds to a point on
some edge of the contour tree. Two contours K and K ′ in the map are neighbors (either siblings
or parent and child) if and only if their corresponding points on the contour tree can be connected
by a path that does not pass through a point corresponding to a third contour K ′′ 6= K,K ′ in the
given contour map. Each edge of the contour tree can be colored red or blue according to the color
of the contours it represents (all contours represented by the points on the same edge of the contour
tree have the same color). By the assumption that all saddles are simple, internal nodes of the
contour tree which correspond to saddles all have degree three. It can be verified that at a joining
(negative) saddle only two color combinations on the edges incident to the saddles are possible.
The same holds for a splitting (positive) saddle. In each case, using the edges colors, and using
the corresponding patterns in which contours of various colors can merge or split, one can uniquely
determine one of the edges incident to the saddle that carries contours that are parents to those
carried by the other two. We “orient” this edge at each saddle away from and the other two toward
the saddle. The resulting orientation on the contour-tree is equivalent to orienting each blue edge
toward its higher end and each red edge toward its lower end. With this orientation of the contour
tree a contour K will be the parent of a contour K ′, if the path between points representing K and
K ′ on the contour tree follows the orientation of the edges of the tree.

The algorithm of Arge et al. [2] for computing the contour tree can return the color of each edge
on the generated tree. Thus if a contour tree of the terrain is available, by oriented the edges of the
tree to point toward the neighboring edge and one can determine the edge of the contour tree on
which each contour in a computed contour map is represented, one can determine the parent-child
relationship between individual contours in O(sort(N) + T/B) I/Os, where T is the number of
contours in the given contour map, through a pre-order traversal of the oriented contour tree.

To facilitate finding of the edge the contour tree that carries a contour in the given map, instead
of the the contour tree, we compute the augmented contour-tree [2]. The augmented contour tree of
a terrain replaces each edge of the contour tree with a monotonically ascending path whose vertices
are the vertices of the terrain. Every regular vertex of the terrain appears precisely once in one of
these paths. All the properties of contour tree are also valid for the augmented contour tree. We
store in each vertex u of the terrain a pointer to each of the (at most two if u is a saddle and one
if u is regular) edges in the augmented contour tree that have u as the lower endpoint. To locate
the edge in the augmented contour tree corresponding to a computed contour K, we scan the list
of triangles that intersect K and determine the vertices u and u′ of these triangles respectively
highest below and lowest above the level of K. Since there are no vertices between u and u′,
shifting K down or up between h(u) and h(u′) does not change the set of triangles it intersects
and therefore its homology class. Consequently, uu′ is an edge of the augmented contour tree. All
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that is needed then is to located the pointer to the contour tree edge stored at u that matches uu′.
Since the augmented contour tree of a terrain of size N can be computed in O(sort(N)) I/Os [2],
we summarize the above discussion as follows:

Theorem 4.3 For a contour map consisting of T contours of a terrain with N triangles, where
each contour is given as a list of triangles that intersect it together with its level, one can report
for each contour in the map a pointer to its parent in O(sort(N) + T/B) I/Os.

4.5 Answering contour queries

The sweep algorithm described in the previous section can easily be modified to construct a lin-
ear space data structure that given a query level ` can report the contours in the level set M`

I/O-efficiently. Unlike the previously known structure for this problem [1], our structure can be
constructed in O(sort(N)) I/Os. To obtain the structure we simply replace the buffer tree B with
a partially persistent B-tree [6, 23]. To build the structure, we sweep M by a horizontal plane in
the same way as we did in the algorithm of Section 4.2, inserting the triangles when the sweep
plane reaches their bottom-most vertex, without checking for them to intersect any target levels,
and deleting them when the sweep plane passes their top-most vertex. There will also be no need
to flush the tree.

Since O(N) updates can be performed on a persistent B-tree in sort(N) I/Os [20, 7], the
sweeping of the terrain require O(sort(N)) I/Os. A persistent B-tree allows us to query any
previous version of the structure and in particular produce the list of the elements stored in the
tree in O(logB N+T/B) I/Os when T is the number of reported elements. Therefore we can obtain
M` in the same bound, simply by querying the structure for the triangles it contained when the
sweep-plane was at height ` and then utilize Theorem 3.14 and the contour extraction algorithm
discussed above to extract individual contours of M`.

Theorem 4.4 Given a terrain M with N vertices, one can construct in O(sort(N)) I/Os a linear
size data structure, such that given a query level `, one can report contours of M` in O(logB(N) +
T/B)) I/Os where T is the size of the query output. Each contour is reported individually, and the
edges of each contour are sorted in clockwise order.

5 Conclusions

We defined level-ordering of terrain triangles and proved that every terrain has a level ordering that
can be computed I/O-efficiently. Based on this, we provided algorithms that compute contours of
a given terrain within similar I/O bounds. An immediate question is whether this approach can
be generalized to triangulated surfaces of arbitrary genus with arbitrary piecewise linear functions
defined on them. Notice that the problem is valid even if the input surface is not embedded in R3.
Another interesting open problem for surfaces that are embedded in R3 is computing of level sets
or answering contour queries for a height function defined by a variable z direction: is it possible to
preprocess a given triangulated surface embedded in the three space so that for any given direction,
the contours of the height function for that direction can be computed I/O-efficiently?
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