
I/O-Efficient Contour Queries on Terrains

Pankaj K. Agarwal∗ Thomas Mølhave† Bardia Sadri‡

Abstract

A terrain M can be represented as a triangulation
of the plane along with a height function associated
with the vertices (and linearly interpolated within
the edges and triangles) of M . We investigate the
problem of answering contour queries on M : Given
a height ` and a triangle f of M that intersects
the level set of M at height `, report the list of
the edges of the connected component of this level
set that intersect f , sorted in clockwise or counter-
clockwise order. Contour queries are different from
level-set queries in that only one contour (connected
component of the level set) out of all those that may
exist is expected to be reported. We present an I/O-
efficient data structure of linear size that answers a
contour query in O(logB N + T/B) I/Os, where N
is the number of triangles in the terrain and T is
the number of edges in the output contour. The data
structure can be constructed using O(Sort(N)) I/Os.

∗Duke University, Durham, NC. Supported by NSF under

grants CNS-05-40347, CCF-06 -35000, IIS-07-13498, and CCF-
09-40671, by ARO grants W911NF-07-1-0376 and W911NF-

08-1-0452, by an NIH grant 1P50-GM-08183-01, by a DOE
grant OEG-P200A070505, and by a grant from the U.S.–Israel
Binational Science Foundation.
†Duke University, Durham, NC. Supported by NSF under

grants CNS-05-40347, CCF-06 -35000, IIS-07-13498, and CCF-
09-40671, by ARO grants W911NF-07-1-0376 and W911NF-

08-1-0452, by an NIH grant 1P50-GM-08183-01, by a DOE

grant OEG-P200A070505, and by a grant from the U.S.–Israel
Binational Science Foundation.
‡University of Toronto, Toronto, ON, Canada

1 Introduction

Over the last two decades there has been extensive
work on modeling, analyzing, and visualizing terrain
data in computational geometry, GIS, and spatial
databases. A three-dimensional (digital elevation)
model of a terrain is often represented as a trian-
gulated xy-monotone surface, also known as a trian-
gulated irregular network (TIN). This surface can be
regarded as the graph of a piecewise-linear height or
elevation function h : R2 → R. A contour (or con-
tour line) of a terrain M is a connected component
of a level set of h. Each contour K in a regular level
set (see Section 2 for the definition) is a polygon in
R2 (See Figure 1). Many terrain processing applica-
tions involve computing of one or many contours on a
given terrain. In particular, a fundamental operation
integral to such systems is answering contour queries:
the user selects a point on the terrain (possibly using
some provided rendering), and the system computes
(and perhaps displays) the contour that goes through
that particular point. These queries are related to
level-set queries in which all contours at a chosen
height, comprising an entire level set, are reported.
Contour queries can be used, among other things, to
compute the projected area of some feature of the ter-
rain. In fact, computing the projected area of a hill
or mountain was one of the earliest motivations for
computing contours [14]. If h represents other mea-
sured quantities over a planar domain, e.g. the baro-
metric pressure, then contour queries can be used to
compute, e.g. the domain or area of a high-pressure
system. These queries also define many fundamental
operations in terrain editing software, where a con-
tour defines a “cut” in a terrain.

An alternative definition for contour queries re-
places the query point with a pair (f, `) where ` is a
height and f is a terrain triangle that spans height `.
The target contour in this case is the (unique) con-
tour at height ` that crosses f , denoted by KM (f, `).1

The contour-query problem thus can be formulated
as follows: Preprocess a terrain M into a data struc-
ture so that for a height ` and a triangle f , the con-

1If M is obvious from the context or not important, we will

simply use the notation K(f, `).

(a) (b)

Figure 1: (a) the plane triangulation of a terrain together with a level set of that terrain consisting of two
contours (shown in dotted lines). Only the bounded edges and triangles of the triangulation are displayed.
(b) The three-dimensional interpretation of the same terrain.

tour KM (f, `) can be reported quickly in an output-
sensitive manner — edges of the contour should be
reported sorted in clockwise or counterclockwise or-
der.

With recent advances in mapping technologies,
such as laser based LIDAR, billions of points on a
geographical terrain, at sub-meter resolution, can
be acquired with very high accuracy (∼10-15 cm)
in a short period of time. The terrain models
generated from these data sets are too large to fit
in main memory and thus reside on disks. Transfer
of data between disk and main memory is often
the bottleneck in the efficiency of algorithms for
processing these massive terrain models (see e.g.
[12]). We are therefore interested in developing
efficient algorithms in the two-level I/O-model [4].
The machine consists of a main memory of size M
and an infinite-size disk. A block of B consecutive
elements can be transferred between main memory
and disk in one I/O-operation (or simply I/O).
Computation can only take place on elements in
main memory, and the complexity of an algorithm is
measured in terms of the number of I/Os it performs.
See the recent surveys [5, 17] for a comprehensive
review of I/O-efficient algorithms. Here we mention

that sortingN elements takes Θ
(
N
B logM/B

N
B

)
I/Os,

and we denote this quantity by Sort(N). It is
common to assume that M ≥ B2. This is usually
called the tall cache assumption.

Related work. A natural way of computing a con-
tour K of a terrain M is simply to start at one trian-
gle of M that intersects K, trace out K by walking
through M one triangle at a time, and stop on ar-
riving at the starting point. However, it is not clear

how to trace a contour efficiently in the I/O-model
since a naive implementation requires O(T), instead
of O(T/B), I/Os to trace a contour of size T . Even
the best-known algorithm for blocking a planar tri-
angulation [1, 15] only leads to an O(T/ log2B) I/O
solution. See [7] for improved bounds in some special
cases. The known I/O-efficient algorithms for an-
swering level-set queries on terrains [2, 1, 9] are not
ideal for answering contour queries because the size
of a level set to which a contour belongs can be much
larger than the size of the contour. This is especially
true for large global terrains that next-generation GIS
software must face. A common approach when deal-
ing with spatially restricted areas of large terrains is
to create a subdivision by splitting the terrain into
disjoint tiles of relatively small size, and then to ex-
tract contour information from a small subset of the
tiles. However, finding the tiles containing a specific
contour is hard and walking between tiles is in gen-
eral no better than any other method of traversing a
plane graph.

Agarwal et al. [2] proposed a linear-size data
structure for storing a TIN M of size N so that
a level-set query (but not a contour query) of out-
put size T can be answered in O(logB N + T/B)
I/Os. This data structure improves the previously
best known I/O-efficient approaches [9, 1]: it re-
ports the contours in circular order (unlike Chiang
and Silva [9]), and it can be efficiently constructed
in O(Sort(N)) I/Os (unlike Agarwal et al. [1]). They
prove the existence of, and present an efficient algo-
rithm for computing, the so-called level ordering for
any given M . A level ordering is a total order ≺
on the triangles of M with the following two crucial
properties:

Figure 2: Level-ordering on triangles intersecting two
contours of the same level set. An arrow points to the
successor of a triangle within the set.

(i) for any contour K at any level, the ≺-sorted list
of triangles that intersect K enumerates these
triangles in the cyclic order they appear along K
(in either clockwise or counterclockwise order),
and

(ii) for any two contours K1 and K2 of the same level
set, in the ≺-sorted list of triangles that intersect
K1 ∪ K2, the triangles intersecting at least one
of K1 or K2 appear contiguously (See Figure 2).

See Section 4 for precise definitions. In the ≺-
sorted sequence of all triangles that intersect a given
level set, those triangles that intersect a particu-
lar contour appear in maximal contiguous subse-
quences, called fragments. Agarwal et al. [2] showed
how the entire collection of contours, i.e., the whole
level set, can be retrieved quickly from these frag-
ments using (i) and (ii). Their data structure
can be modified to answer a contour query using

O
(

logB N + J logM/B N/B + T/B
)

I/Os, where T

is the number of triangles that intersect the output
contour and J is the number of its fragments in the
level ordering used by the algorithm. Unfortunately,
J may be as large as T in the level ordering computed
by Agarwal et al., so the query uses O(logB N + T)
I/Os in the worst case.

Our results. In this paper we propose an I/O-
efficient algorithm for preprocessing M , using
O(Sort(N)) I/Os, into a linear-size data structure so
that a contour query can be answered in O(logB N +
T/B) I/Os, where N is the number of triangles in
M and T is the size of the query output. The
structure relies on the level-ordering method of Agar-
wal et al. [2]. It tackles the fundamental problem of
contour fragmentation by transforming M into an-
other terrain M ′ that has two key properties: (i) M ′

“preserves” individual contours of M . (ii) The image
of each contour of M on M ′ has O(1) fragments in

the level ordering computed on M ′. The key contri-
butions of our paper are the following:

Stretchings We describe in Section 3 a general op-
eration, called “stretching”, that modifies a ter-
rain M into M ′ by changing the heights of some
vertices but maintains its underlying triangula-
tion. We prove that the “stetched” terrain M ′

has the same (augmented) contour tree as that
of M . We preprocess M and M ′ in O(Sort(N))
I/Os into a linear-size data structure (see Sec-
tion 3) that converts, in O(logB N) I/Os, any
contour query (f, `) on M into a contour query
(f, `′) on M ′ such that KM (f, `) and KM ′(f, `′)
intersect the same sequence of triangles of their
commmon underlying triangulation.

Bounding Fragmentation In Section 4, we de-
scribe an algorithm that computes a specific
stretching M ′ of M and a level ordering of M ′,
using O(Sort(N)) I/Os, such that each contour
of M maps to a contour in M ′ with O(1) frag-
ments in the level ordering of M ′.

2 Preliminaries

A triangulation of R2 is a planar subdivision of R2 in
which each face is a (possibly unbounded) triangle.
Let M be a triangulation, and let V (M), E(M), and
F (M) denote the sets of vertices, edges, and faces
(triangles), respectively, of M . We add a vertex v∞
at infinity and connect all unbounded edges (rays) of
M to v∞. Triangles of M that have v∞ as a vertex
are unbounded and all other triangles are bounded. A
height function consistent with M is any continuous
function h : R2 → R whose restriction to each
triangle of M is linear and approaches −∞ at infinity,
i.e., h(v∞) = −∞. A terrain M = (M,h) is a
triangulationM of R2 endowed with a height function
h that is consistent with M . M can be viewed as the
graph of h, an xy-monotone piecewise-linear surface
in R3. For simplicity we assume that vertices of
terrains have distinct heights. We sometimes write an
edge uv as a pair (u, v) to indicate that h(u) < h(v),
i.e., we implicitly regard uv to be oriented from its
lower endpoint u to its higher endpoint v.

Critical vertices. For any vertex v the link lk(v) is
the cycle formed by the edges that are not incident to
v but belong to triangles that are incident to v. The
upper (resp. lower) link lk+(v) (resp. lk−(v)) is the
subgraph of lk(v) induced by vertices u with h(u) >
h(v) (resp. h(u) < h(v)). If lk−(v) (resp. lk+(v)) is
empty then v is a (local) minimum (resp. maximum).
An extremum is a minimum or a maximum (See
Figure 3). A non-extremal vertex v is called regular if

regular minimum saddle maximum splitting a 2-fold saddle

Figure 3: Determining the type of a vertex; lower link vertices are depicted by filled circles.

lk+(v) (or lk−(v)) is connected, otherwise it is called
a saddle. Non-regular vertices (extrema and saddles)
are called critical, and their heights are critical values
of h. For simplicity, we assume that all saddles are
simple, i.e., their upper (equivalently lower) links
have exactly two connected components. (see [13]
and Figure 3).

Level sets and contours. For ` ∈ R, the level
set, sublevel set, and superlevel set of a terrain M =
(M,h) at height ` are subsets M`, M<`, and M>` of
R2 consisting of points x, respectively with h(x) = `,
h(x) < `, and h(x) > `. M≤` and M≥` are defined
analogously.

Each connected component of a level set M` is
called a contour of M at level `. A contour of M`

can be represented by a pair (f, `) ∈ F (M) × R, as
the contour KM (f, `) at height ` that intersects the
triangle f of M . Each vertex v ∈ V (M) is contained
in exactly one contour in Mh(v), which we call the
contour of v. Contours of regular vertices are simple
polygons; contours of extrema are single points; and
contours of saddles are polygons that self-intersect
exactly once at their corresponding saddles. Being
a Jordan curve, the contour K of a regular vertex
partitions R2 \ K into the inside, K in, and outside,
Kout, of K.

Figure 5: The 3D interpretation of F̄M (K) for a
contour K.

A contour is generic if it is not the contour of
any vertex of the terrain. A generic level set M`

is a level set in which all contours are generic, i.e.,
` 6= h(v) for any vertex v. The set of triangles that
intersect M` is denoted by F (M`). For a generic

contour K in M`, let FM (K) be the set of triangles
in F (M) that intersect K.2 Each triangle in F (K)
meets K at a single segment. The order in which K
intersects the triangles induces a cyclic ordering on
F (K). Let F̄ (K) be the resulting cyclically ordered
set (we take a cyclic ordering and its reverse as
equal; See Figure 5). We refer to F̄ (K) as the
(combinatorial) representation of K. Given F̄ (K),
K (as a plane polygon) can be generated in one scan
of F̄ (K). Therefore it suffices to generate the cyclic
sequence F̄ (K(f, `)) to answer a contour query (f, `).

Let V −(K) and V +(K) respectively be vertices
from triangles in F (K) with heights smaller and
greater than `. The lower and upper supporting
vertices of K are respectively defined as

v−(K) = arg max
v∈V −(K)

h(v),

v+(K) = arg min
v∈V +(K)

h(v).

Two contours K and K ′ are equivalent if F̄ (K) =
F̄ (K ′). It can be verified that K and K ′ are
equivalent if and only if they have the same lower
and upper supporting vertices.

Up- and down-contours. Let ε = ε(M) denote a
sufficiently small positive value, in particular, smaller
than height difference between any two vertices of M .
An up-contour of a vertex v is any contour of Mh(v)+ε

that intersects an edge incident on v. Similarly, a
down-contour of v is any contour of Mh(v)−ε that
intersects an edge incident on v. If v is maximum
(resp. minimum), then its up- (resp. down-) contour
is not defined. If v is not a saddle, then its up- and
down-contours are unique and they converge to the
contour of v as ε → 0. A saddle is called positive
if it has two up-contours and one down-contour and
negative if it has two down-contours and one up-
contour. All simple saddles are either negative or
positive.

2As earlier, M will be dropped from the subscript when it

is not important or clear from the context.

Figure 4: Left: a terrain with one positive and one negative saddle. The saddle contours and their up and
down contours are marked in their corresponding colors (or, dotted for blue and dashed for red). Middle:
the sub level set of the lower saddle, indicating (together with the colors of the up- and down-contours that
it is a red positive saddle. Right: sub level set of the upper saddle: a red negative one.

For a generic contour K, if v−(K) has a unique
up-contour Kv, then K and Kv are equivalent. Oth-
erwise, v−(K) is a positive saddle and has two up-
contours, one of which is equivalent to K and the
other intersects no triangles in F (K). The same can
be said about down-contour(s) of v+(K).

Red and blue contours and vertices. A contour
K of M` is called blue if M≤` is locally in the interior
of K and red otherwise. Equivalently, a contour K
is blue if for any (oriented) edge (u, v) intersecting
K, u ∈ K in and v ∈ Kout, and red otherwise.
We define the color of a regular vertex to be the
color of the contour that passes through it, which
agrees with the color of its up- and down-contours.
The color of v∞ is taken to be red, and the color
of all other minima is blue; i.e., the color of their
up-contour; the color of a maximum is taken to be
red, i.e., the color of its down-contour. The color
of a positive (resp. negative) saddle is taken to
be the color of its unique down-contour (resp. up-
contour). Under this coloring scheme, a red positive
saddle will have a red down-contour and two red up-
contours while a blue positive saddle will have a blue
down-contour together with one red and one blue
up-contours (Figure 6). Similarly, a blue negative
saddle has all blue up- and down-contours while a red
negative saddle has one red down-contour, one blue
down-contour, and one red up-contour. The following
lemma is equivalent to Lemma 3.1 of [3].

Lemma 2.1. [3] If a generic red (resp. blue) contour
K in M` passes through a triangle f , then the vertices
of f with height greater than (resp. smaller than) `
are red (resp. blue).

Contour, join, and split trees. Finally, we define
the contour tree, and its two relatives the join and

split trees of a terrain [8, 11],3 which will play crucial
roles in our algorithms. They respectively encode the
topology of the level sets, sublevel sets, and superlevel
sets of M at various heights. The (augmented)
contour tree CM of M (or just C when M is clear
from the context) is a tree on vertex set V (M) in
which uv is an edge if u is the upper and v is the
lower supporting vertex of some generic contour K
of M . The edge uv of C is then said to carry K.
Equivalently, the contour tree of M is the space that
is the quotient of M modulo taking points on the
same contour as equivalent. Under the associated
quotient map πM : M → CM , the image of each
contour of M is a unique point in CM . Contours
of vertices of M are mapped into points that are
regarded as corresponding vertices of C while generic
contours are mapped into points along edges that
carry them (See Figure 7. We color each vertex v
of C with the color of contour of v on M . Points
along the edges of the contour tree are also given the
color of the contours they represent. It can be verified
that all contours mapped to the interior of the same
edge of C have the same color. We choose v∞ as the
root of the contour tree.

The augmented join tree J represents the merging
of connected components of M<` and the augmented
split tree S represents the splittings of the connected
components of M>` when ` varies from −∞ to +∞.
More precisely, JM is a tree on vertex set V (M)
in which uv is an edge if v is the highest vertex in
a connected component of M<h(u) that contains a

vertex of lk−(u). SM is defined symmetrically by
negating the height function h. We choose v∞ as the

3In the literature, contour, join, and split trees are often

defined as trees on the set of critical vertices and regular

vertices are regarded as points along the edges and not as
vertices of the tree. As defined here, these trees are usually

called the “augmented” versions of themselves.

Figure 6: The four possible saddle types. Left to right: red positive, blue positive, blue negative, red negative.
The up- and down-contours of the saddle points, but not the saddle contours themselves, are shown.

6

4

3

5

7

12

9

0

10 8

1

11

-

-

+

+

2

(a)

1
2
3
4
5
6
7
8
9
10
11
12

0

−∞

(b)

Figure 7: (a) A terrain. Level sets of all vertices shown (dashed for blue). Numbers indicate heights of
vertices. (b) (left to right): colored contour tree, split tree, and join tree of the same terrain.

root of S and the highest maximum of M as the root
of J.

3 Stretching Terrains

In this section we introduce stretching as a general
operation on a terrain M , which “preserves” indi-
vidual contours (as described below) while moving
them amongst level sets. We then present an I/O-
efficient algorithm for mapping a contour KM (f, `)
to an equivalent contour on the stretched terrain.

The stretching operation. Let K be a generic
contour of a terrain M = (M,h), and let δ be an
offset parameter; δ > 0 if K is red and δ < 0 if K
is blue. The stretching of M at K by δ is a terrain
M ′ = (M,h′) where for any vertex v:

h′(v) =

{
h(v) + δ if v ∈ K in,
h(v) if v ∈ Kout.

A terrain M ′ is called a stretching of M if there
is a sequence M = M1, . . . ,Mk = M ′ of terrains
where each Mi is obtained from Mi−1 by stretching
it at one of its generic contours. Note that the
underlying triangulations of M ′ and M are the
same. If K1 and K2 are equivalent generic contours
of M with K2 ⊂ K in

1 , then there are no vertices

in K in
1 ∩ Kout

2 . Therefore, stretching M at K1 or
K2 by δ produces the same terrain. The following
lemma shows that certain properties of a terrain are
preserved by stretching.

Lemma 3.1. Let M ′ = (M,h′) be a stretching of a
terrain M = (M,h).

(1) For any adjacent vertices u and v of M , h(u) >
h(v) if and only if h′(u) > h′(v).

(2) The type (regular, minimum, maximum, positive
saddle, or negative saddle) of any vertex v ∈
V (M) is the same in both M and M ′.

(3) For any vertex v, if Kv is the up-contour (resp.
down-contour) of v in M that intersects an
edge vw and K ′v is the up-contour (resp. down-
contour) of v in M ′ that also intersects vw, then
F̄M (Kv) = F̄M ′(K ′v).

Proof. It suffices to prove the lemma assuming that
M ′ is the result of applying a single simple stretching
at a contour K of M . The more general statement
then follows inductively.

(1) Suppose K is a red contour of M and
therefore δ > 0. The endpoints of any edge (u, v)
that does not intersect K lie at the same side of K

and therefore their heights are modified (if at all) by
the same amount. For any (oriented) edge (u, v) of
M that intersects K, u ∈ Kout and v ∈ K in. Using
the fact that δ > 0, we obtain h′(u) = h(u) < h(v) <
h(v) + δ = h′(v).

By part (1), the lower and upper links of every
vertex remain the same after stretching. Therefore,
regular vertices, extrema, and saddles of M remains
the same in M ′. Furthermore, since K is taken to be
generic, up- and down-contour(s) of any saddle are all
contained either in K in or all in Kout. Therefore the
type of a saddle (positive or negative) is not affected
by the stretching operation. The case where K is
blue is similar.

For part (3), assume that K is red (the other
case is symmetric). Let Kv be an up-contour of
v and assume first that K ⊂ K in

v . If Kv is blue,
then no edge (a, b) of M that intersects Kv can also
intersect K since this would mean that b ∈ Kout

v and
b ∈ K in while K ⊂ K in

v . Therefore in this case all
the triangles in FM (Kv) are contained in Kout and
remain unaffected by the stretching at K. Therefore,
Kv remains at the same height in M ′ and continues
to be an up-contour of v. Since it also continues to
intersects the edge vw, it coincides with K ′v and in
particular F̄M (Kv) = F̄M ′(K ′v).

If Kv is red, then V −(Kv) ⊂ Kout
v . Thus

h′(u) = h(u) < h(v) for any u ∈ V −(Kv) while
h′(u) ≥ h(u) > h(v) for all u ∈ V +(Kv). This means
that the triangles in FM (Kv) all intersect some up-
contour of v in M ′. Since the triangles incident to
the edge vw are among these triangles, the mentioned
up-contour has to be K ′v.

The case where K is contained in Kout
v is handled

similarly and the argument for down-contours is done
symmetrically. �

Corollary 3.1. If M ′ is a stretching of M , then
CM (resp. JM , SM) and CM ′ (resp. JM ′ , SM ′) are
combinatorially identical.

The stretching operation has a natural interpre-
tation in terms of the contour trees. Let K be a con-
tour carried by an edge uv of C. Let v be the parent
of u in C (with respect to the root v∞ of C). Let Cu

denote the subtree of C rooted at u. It can be verified
that the vertices of Cu are exactly the vertices of M
that are contained in K in. In particular, the leaves
of Cu are the extrema in K in. Furthermore, if K ′ is
a contour carried by an edge of Cu, then K ′ ⊂ K in.
Thus stretching M at K by δ corresponds to adding
δ to the heights of all vertices in Cu. Since stretching
M at equivalent contours, i.e., contours carried by
the same edge of C, results the same stretched ter-
rain, one can regard stretching M at a contour K by

v∞ v∞

δ1

δ1 + δ2

e1

e2

Figure 8: The effect of stretching on contour tree: on
the left a red edge e1 and a blue edge e2 of a contour
tree C are respectively stretched by δ1 > 0 and δ2 < 0.
The heights of vertices in the subtree rooted at the
tail of e1 are increased by δ1. Those vertices in the
subtree rooted at tail of e2 are displaced by an extra
δ2 amount.

δ as associating an offset amount δ to the edge of C
that carries K. The total change to h(v) for a vertex
v after a series of stretches is then determined by the
sum of the offsets over the edges on the path from v
to v∞ in C (See Figure 8).

Mapping contour queries. Part (3) of Lemma 3.1
along with the discussion on up- and down-contours
implies that if one canonically represent a generic
contour K by, say, the appropriate up-contour of v =
v−(K), then F̄ (K) is identical to F̄ (K ′) where K ′ is
the corresponding up-contour of v in the stretching
M ′ of M ; the same is true for the down-contour of
v+(K). In other words, a generic contour K in M
can be mapped to one in M ′ that intersects the same
set of triangles in the same order. Since a contour is
represented by a pair (f, `), we need to find the lower
(or upper) supporting vertex of KM (f, `) to map it to
M ′. The following lemma shows how join and split
trees can be used to do this.

Lemma 3.2. Let M be a terrain with augmented join
and split trees J and S. Let K be a generic blue
(resp. red) contour in M` and let u be a vertex
in V −(K) (resp. V +(K)). Then the lower (resp.
upper) supporting vertex of K is the highest blue
(resp. lowest red) vertex v on the path from u to
the root of J (resp. S) that satisfies h(v) < ` (resp.
h(v) > `).

Proof. We only prove the lemma for the case where
K is blue; the other case is similar. Let v = v−(K) be

the lower supporting vertex of K, and let u ∈ V −(K).
Let rJ denote the root of J, i.e. the highest maximum
in M . We show that v is the highest blue vertex with
height less than ` on the path between u and rJ in J.

Let f be a triangle incident upon u that intersects
K and let Ku be the up-contours of u that intersect f .
By Lemma 2.1 u is blue and therefore so is Ku. For
any α, let Uα be the connected component of M≤α
that contains u. At α = h(u), u lies on the boundary
of Uα. By the definition of J, as α grows larger, every
time the boundary of Uα reaches a new vertex w, this
vertex is turned into the parent of the highest vertex
of Uα in J. The color of w is determined by the color
of the contour that is the boundary component of
Uα that reaches w. We argue that v is the highest
blue vertex on P with h(v) < `: being a connected
component of a sublevel set with a blue contour on its
boundary, Uh(v)+ε has to be bounded by a single blue
contour K0 (which is the up-contour of v equivalent
to K), and zero or more red contours K1, . . . ,Kr

where Ki ⊂ K in
0 for all i = 1, . . . , r. When α

sweeps the interval [h(v) + ε, `], the blue boundary
component of Uα continuously changes from K0 to
K without passing through any vertices (since v is
the lower supporting vertex of K). This means that
all other vertices encountered at the boundary of Uα
(and therefore added to P between v and rJ) are met
by one of the red boundary components of Uα and
are therefore all red. �

Let (f, `) be the input to a contour query. Let
v0 (resp. v1) be the lowest (resp. highest) vertex of f .
K = K(f, `) intersects the edge v0v1. By Lemma 2.1,
if K is blue then v0 is blue, and if K is red then v1 is
red. By Lemma 3.2, if K is blue, then v−(K) is the
highest blue vertex in J between v0 and the root with
height less than `, and if K is red, then v+(K) is the
lowest red vertex in S between v1 and the root with
height greater than `. If the colors of v0 and v1 agree,
K has to be of the same color. Otherwise, by Lemma
2.1, v0 must be blue, and v1 red, and the color of
contours that intersect v0v1 flips once from blue to
red at a unique height which we denote by η(v0v1).
The following lemma is relatively straightforward:

Lemma 3.3. η(v0v1) is the height of the saddle that
is the lowest common ancestor of v0 and v1 in the
contour tree of M .

One can compute η(e) of all terrain edges e with non-
matching endpoint colors in O(Sort(N)) I/Os using
the so-called time-forward processing technique [10].

We can compute one of v−(K) or v+(K) as
follows: We preprocess the blue (resp. red) vertices
of J (resp. S) in a persistent B-tree [6, 16] BJ (resp.
BS), using their heights as the key. Algorithm

ComputeBJ (Figure 9 left) computes BJ. A similar
algorithm is used to compute BS. The recorded
step number τ(v) is later used to access the instance
BJ[τ(v)] of BJ in which v was first inserted. BJ[τ(v)]
stores the sequence of blue vertices on the path from
v to the root, sorted by their heights. Algorithm
TranslateQuery (Figure 9 right) computes v−(K)
if K is blue and v+(K) if K is red. It then returns a
pair (f, `′) where `′ is the height in M ′ of the up-
contour v−(K) in the former case, or that of the
down-contour of v+(K) in the latter case. We have
thus shown the following:

Theorem 3.1. Let M = (M,h) be a terrain of size
N and let M ′ = (M,h′) be a stretching of M .
M and M ′ can be preprocessed using O(Sort(N))
I/Os into a linear size data structure that converts,
in O(logB N) I/Os, any contour query (f, `) on
M into a contour query (f, `′) on M ′ such that
F̄M (K(f, `)) = F̄M ′(K(f, `′)).

4 Bounding Fragmentations by Stretching

We now describe an algorithm for computing a
stretching of M that enables us to answer contour
queries quickly.

Level-ordering and fragmentations. Let ρ :
F (M) → N be an injective rank function on the tri-
angles of M . A generic contour K agrees with ρ if the
circular list F̄ (K) can be written as 〈f1, . . . , fk, f1〉,
such that ρ(f1) < · · · < ρ(fk). The function ρ is a
level-ordering for M if the following two conditions
hold:

C1. Any generic contour K agrees with ρ.

C2. Let K,K ′ two generic contours of a level set `, let
f1, f2 ∈ F (K), and let f ′1, f

′
2 ∈ F (K ′). If ρ(f1) <

ρ(f ′1) < ρ(f2) then ρ(f1) < ρ(f ′2) < ρ(f2).

Given a level-ordering ρ on M , let Fρ(M`) denote the
list of triangles that intersect M`, ordered by ρ. A
fragment of a generic contour K in M` is a maximal
subsequence f1, . . . , fr of Fρ(M`) consisting of tri-
angles in F (K). M may have several level-orderings,
but we focus on the level-ordering computed by Agar-
wal et al. [2]. As mentioned in Introduction, the only
obstacle in achieving efficient contour queries using
the algorithm of Agarwal et al. [2] is the lack of any
control over the number of fragments of contours un-
der the computed level-ordering. Theorem 3.1 shows
that if some stretching M ′ of the input terrain M
avoids this obstacle, at least for the contours of M ′

that are mapped from M , then it can be used in
place of M . This section proves the existence of such
a stretching and gives an algorithm to compute it in

Algorithm: ComputeBJ

1 Compute an Euler tour Π of JM starting at its root
2 for a vertex v visited at step i of Π do
3 if v is blue
4 if this is the first visit to v
5 insert v into BJ; assign time-stamp i

to BJ; and record τ(v) = i
6 if this is the last visit to v
7 delete v from BJ

Algorithm: TranslateQuery(f, `)

1 v0 ← lowest vertex of f .
2 v1 ← highest vertex of f .
3 if v1 is blue or η(v0v1) < `
4 u ∈ BJ[τ(v0)] highest vertex with h(u) < `
5 return (f , h′(u) + ε)
6 else
7 u ∈ BS[τ(v1)] lowest vertex with h(u) > `
8 return (f , h′(u)− ε)

Figure 9: Algorithms for terrain preprocessing (left) and conversion of contour queries (right).

O(Sort(N)) I/Os. We begin by introducing the no-
tion of ascending and descending cut-trees, which are
used by Agarwal et al.’s level-ordering algorithm.

Ascending and descending cut-trees. For a ter-
rain edge e = (u, v), let λ+(e) be the first outgoing
edge of v in clockwise order after e, and let λ−(e)
be the first incoming edge of u in clockwise order
before e. A rightmost ascending (leftmost descend-
ing) path P from v1 to vk is a path v1 . . . vk where
for each 1 < i < k, (vi, vi+1) = λ+((vi−1, vi)) (resp.
(vi+1, vi) = λ−((vi, vi−1)). An ascending (resp. de-
scending) path P = v1 . . . vk is maximal if vk is a
maximum (resp. minimum). Let V	, V⊕ respectively
be the sets of negative and positive saddles of M .
For each positive saddle s, let P1(s) and P2(s) be two
maximal rightmost ascending paths from s such that
the vertex following s on each of P1 and P2 is the
counterclockwise first neighbor of s in a distinct up-
per link component of s. Similarly, for each negative
saddle s, let P1(s) and P2(s) be maximal leftmost de-
scending paths from s such that the vertex following
s in each of P1 and P2 is the clockwise first neigh-
bor of s in a distinct lower link component of s. For
each saddle s, the subgraph P (s) = P1(s) ∪ P2(s) of
M is uniquely determined. We call the subgraphs
T̂ = ∪s∈V⊕P (s) and Ť = ∪s∈V	P (s) of M the as-
cending and the descending cut-trees, respectively, of
M . Agarwal et al. [2] proved that T̂ and Ť are in-
deed both trees and include all maxima and minima,
respectively, of M among their vertices. They also
showed that they can be computed in O(Sort(N))
I/Os.

Lemma 3.1 implies that a stretching M ′ of M
has exactly the same ascending and descending cut-
trees as M . In [2], T̂ and Ť are used to compute a
specific level-ordering of a terrain M in O(Sort(N))
I/Os. This, in conjunction with the level-ordering
construction of [2] implies the following:

Corollary 4.1. Let M ′ be a stretching of M . A
level-ordering on M can be computed in O(Sort(N))

K

K K �K �
K ��

Figure 10: The effect of stretching on contour frag-
mentation

I/Os that is also a level-ordering on M ′.

The specific construction of the level-ordering ρ
in [2] entails a characterization of the fragments of

contours in relation to T̂ and Ť . This is summarized
in the following lemma. See [2] for details and proof.

Lemma 4.1. Let K and K ′ be contours in M`, and
let ρ be the computed level-ordering of M . Then a
fragment of K is immediately followed by a fragment
of K ′ in Fρ(M`) if and only if K and K ′ are
connected by a polygonal path contained either in
T̂ ∩M≤` or in Ť ∩M≥`.

4.1 The intuitive idea. The intuition as to why
stretching can help us with fragmentations is as
follows. Consider the cartoon terrain of Figure 10.
On the left a terrain M with two hills is shown. The
saddle between the two hills contributes a path to the
ascending cut-tree which ends at the peaks of the two
hills. The two contours K and K ′ on the shown level
set are connected by the ascending cut-tree through
their corresponding sublevel set. By Lemma 4.1, this
means that some fragment of each of these contours
is followed by a fragment of the other in the level-
ordered list of triangles that intersect their level. Let
us assume that K is split into two fragments with
K ′ in between them. On the right, M is stretched
at one of the up-contours of the saddle so that the

Figure 11: Rooting of the ascending cut-tree in a
terrain with only positive saddles.

piece of the terrain bounded by that up-contour (the
portion that contains K) is lifted above the other
peak. Let M ′ be this stretched terrain. K is no
longer fragmented by K ′ in M ′. Although a contour
K ′′ in the shaded area of M ′ is fragmented by K ′, no
contour of M is mapped to K ′′, so the fragmentation
of K ′′ is no concern of us.

Next, consider the case when M does not have
any negative saddles., i.e., M has only one minimum
v∞; see Figure 11. The descending cut-tree of
this terrain is therefore trivial. Each saddle of the
ascending cut-tree can be regarded as the midpoint
of a hyper-edge of the cut-tree that connects the
two maxima at which the ascending paths from that
saddle end. This step compresses the ascending-cut
tree to another tree on the maxima of M . Let us
pick an arbitrary maximum as the root and orient
the hyper-edges toward it. Of the two ascending
paths out of each saddle, one ends at the head and
the other at the tail of the oriented hyper-edge.
We call ascending paths correspondingly as tail or
head ascending paths. It was proved in [2] that the
restriction of the ascending cut-tree to the inside of
each (red) contour is connected. This in conjunction
with the fact that each maximum can be the tail of
at most one hyper-edge (though it could be the head
of many hyper-edges), implies that each contour of
the terrain intersects at most one tail ascending path.
Now, we can use our observation from Figure 10 as
follows: At each saddle, the up-contour crossing the
head ascending path is stretched high enough so that
in the final terrain every points inside this up-contour
ends up higher than every point in the inside of the
other up-contour of the saddle.

In the resulting terrain, any contour can only con-
nect through the sublevel set to another contour of
its level via the ascending cut-tree only by following

Figure 12: Stretching at a red negative saddle

the at most one tail ascending path that crosses it.
By Lemma 4.1, this amounts to at most one frag-
mentation per contour. Terrains with only negative
saddles can be handled in a similar way. However,
the problem becomes more complicated when both
positive and negative saddles are present because in
this case blue positive and red negative saddles ap-
pear; see Figure 12. The figure on the right demon-
strates the idea behind dealing with a red negative
saddle. Notice how the outer down contour of the
saddle is stretched upward so that the entire pit of
the volcano rises above all the points outside of the
stretched contour. This eliminates the possibility of
the red down-contour of the saddle to be fragmented
by its blue down-contour (the one inside the volcano).
Notice that in this case the saddle itself also moves
up.

4.2 The stretching algorithm We now present
our algorithm for stretching M . The stretched
terrain M ′ is derived by stretching exactly one up-
or -down-contour of every saddle of M . We thus
characterize the particular up- or down-contour of
each saddle s of M that is stretched together with
the offset parameter δ(s).

Our algorithm uses compressed versions T̂ and
Ť of T̂ and Ť respectively. Specifically, we define
T̂ = (V̂ , Ê) and Ť = (V̌ , Ě) where V̂ is the set
of maxima and V̌ is the set of minima of M . For
u, v ∈ V̂ , uv ∈ Ê if there is a positive saddle s
for which P (s) ends in u and v, in which case we
label the edge uv with s. Ť is defined symmetrically.
Furthermore, we pick root vertices for T̂ and Ť and
orient their edges toward their roots. For the root ř of
Ť we pick v∞ and the root r̂ of T̂ is chosen arbitrary
among the maxima reachable from v∞ in the contour
tree C = CM through a path of red edges.4 See
Figure 13; T̂ and Ť shown in dotted black.

4The asymmetry here is due to the fact that we cannot
lower the height of any vertex below that of v∞. The choice of

v∞ as the root of Ť then puts restrictions on the choice of r̂.

s

α(s) β(s)

v∞

s

β(s)
α(s)

Figure 13: Illustration of α(s), β(s), head(s), and
tail(s) for two choices of a saddle s on a contour tree.
In each case, the paths from s to head(s) and tail(s)
are highlighted. The edges of T̂ and Ť are drawn in
dashed lines. Vertices of T̂ are the maxima and those
of Ť are the minima.

For an edge uv of T̂ (resp. Ť) labeled with
positive (resp. negative) saddle s, if v is the parent
of u with respect to r̂ (resp. ř), then we set
tail(s) = u and head(s) = v. There is a one-to-
one correspondence between the positive saddles and
the edges of Ê, and there is a similar correspondence
between negative saddles and Ě. For any saddle s,
we distinguish two of the three neighbors of s in C as
α(s) and β(s): α(s) is the neighbor on the path in
C from s to head(s) and β(s) is the neighbor on the
path from s to tail(s) (See Figure 13) For any saddle
s, let n(s) denote the number of leaves in the subtree
Cβ(s) of C rooted at β(s).

We are now ready to characterize the stretch
associated to each saddle s: the stretch associated
with s is applied to the up- or down-contour of s
carried by the edge sα(s) of C. The amount of the
stretch is given by

δ(s) =

{
H · n(s) if s is red,
−H · n(s) if s is blue,

where H = maxu,v 6=v∞ |h(u)− h(v)|.
For any vertex v, let Π(v) denote the set of

vertices in the path from v to the root v∞ in C. In
our algorithm, the stretches that affect the height of
a vertex v are precisely those associated with saddles

s for which sα(s) is an edge in Π(v). We use the
shorthand Σ(v) for the set of all such saddles on Π(v)
and write ΣB(v) and ΣR(v) to respectively represent
the sets of blue and red saddles in Σ(v). For any
saddle s, the edge sα(s) has the same color as s itself.
Thus defining

∆(v) =
∑

s∈Σ(v)

δ(s)

= H ·

 ∑
s∈ΣR(v)

n(s)−
∑

s∈ΣB(v)

n(s)

 ,(4.1)

one has h′(v) = h(v) + ∆(v).
This completes the description of our stretch-

ing algorithm. We describe in Section 5 how the
stretched terrain can be computed using O(Sort(N))
I/Os.

4.3 Bounding fragmentations in M ′ We now
argue that if a contour KM (f, `) on M maps to
KM ′(f, `′) in M ′, then KM ′(f, `′) has O(1) frag-
ments in Fρ(M

′
`′). To prove this, we need to mention

some structural properties of contour trees and rela-
tionship between cut trees and contour trees.

Properties of contour trees. As earlier, let C =
CM be the contour tree of M , rooted at v∞. We also
assume that vertices and edges of C are colored red
or blue as specified in Section 2. Each vertex v of
C has one, two, or three neighbors in C. A neighbor
u of v is an up-neighbor if h(u) > h(v) and a down-
neighbor if h(u) < h(v). An edge of C connecting v to
an up-neighbor or down-neighbor of v is referred to
as an up-going or down-going edge of v, respectively.
An up-going path from u to v in C is a path along the
vertices of which the height function is increasing. A
down-going path is defined similarly. If we orient the
edge of C toward v∞ (the root of C) all red edges will
be oriented from the higher endpoint to the lower and
all blue edges will be oriented from the lower endpoint
to the higher (See Figure 14).

The leaves of C (vertices with only one neighbor)
are precisely the extrema of M . A maximum has one
down-neighbor and a minimum has one up-neighbor.
Each regular vertex has one up- and one down-
neighbor.

Any saddle s of M has three neighbors in C. If
s is positive it has two up-neighbors and one down-
neighbor. If s is a red positive saddle, all the edges
incident to s are red and if it is a blue positive saddle,
then one of its up-going edges is red and its other two
incident edges are blue. The case of negative saddles
are symmetric with ‘red’ exchanged with ‘blue’ and
‘up’ with ‘down’.

v

v∞

Cv

Figure 14: Colored contour tree rooted at v∞; The
red components are shaded. The subtree Cv rooted
at the indicated vertex v is circled by a dashed line.

The subtree of C rooted at a vertex v is denoted
by Cv. Consider the forest CR ⊆ C induced by the red
edges of C. We call each connected component of CR a
red component of C. We define the forest CB induced
by the blue edges of C and the corresponding blue
components similarly. We call red or blue components
the color components of C. Observe that if vertex v
has a red down-going edge incident to it, then all its
up-going edges will be red as well. Symmetrically, if
a vertex has a blue up-going edge, all its down-going
edges will be blue. This means that red components
of C are up-ward closed, i.e., all vertices reachable
from a red vertex through up-going paths are also red.
Similarly, blue components are down-ward closed.

By definition any two red components of C are
vertex disjoint and the same holds for any two blue
components. A vertex shared between a red and a
blue component must be either a red negative saddle
or a blue positive saddle. Since C is acyclic, a red and
a blue component of C can have at most one vertex
in common, in which case we call them neighboring
components in C. Let v be a vertex common between
two color components C and C ′ of opposite colors.
Then either C or C ′ (but not both) is a subgraph
of Cv. If C is a subgraph of Cv, we say C is a child
component of C ′ and C ′ is the parent component of
C. Note that in this case v is the closest vertex of C
to the root v∞ in C and is therefore called the root of
the color component C.

Recall that v∞ is a red vertex. Therefore, it will

be contained in a red component which we call the
root component of C. The children of a red component
R are blue components connected to R through red
negative saddles and the children of a blue component
B are red components connected to B through blue
positive saddles. Thus the root of a blue component is
a red negative saddle and the root of a red component
is a blue positive saddle. Besides the root, all vertices
of a blue component are blue and all vertices in a red
component are red.

Cut trees and contour trees. We consider the
images of T̂ or Ť under the quotient map πM .
Observe that monotone paths on M are mapped into
C injectively. Let s be a positive saddle. The vertices
head(s) and tail(s) of T̂ are the maxima of M in
which P (s) ends. Let P1(s) and P2(s) respectively
be the ascending paths from s to head(s) and tail(s)
that together compose P (s). Since P1(s) and P2(s)
are ascending, their images P+(s) = πM (P1(s))
and P−(s) = πM (P2(s)) are up-going paths in C,
i.e., the heights of vertices along these paths in C

monotonically increase. Similarly, for a negative
saddle s, we get down-going paths P+(s) and P−(s)
in C from s to head(s) and tail(s) respectively. For
any saddle s, let P(s) = P+(s) ∪ P−(s). Thus the

image of the entire T̂ under the map πM is a subtree
T̂ =

⋃
s∈V⊕ P(s) of C. Ť is defined similarly.

Stretching of saddles. Next, we bound relative
heights of saddles in the stretched terrain M ′, which
in turn will bound the number of fragments in a
contour in M ′. We need the following two lemmas
to prove Lemma 4.4, which states the main property
of the saddles in M ′.

Lemma 4.2. For any blue positive saddle s, α(s) and
β(s) are the up-neighbors of s respectively reachable
through the blue and red up-going edges at s. For any
red ngative saddle s, α(s) and β(s) are the down-
neighbors of s respectively reachable through the red
and blue down-going edges at s.

Proof. We prove the lemma for blue positive saddles;
the other case is symmetric. Let s be a blue positive
saddle and let uR and uB be the up-neighbors of s
respectively reachable through the red and the blue
up-going edges of s. Let R and B respectively be the
red and blue components of C that contain the edges
suR and suB . Thus s is the vertex shared between
R and B. Since s is a blue positive saddle, B is the
parent and R is the child component. As discussed
above, one endpoint vB of the T̂ edge labeled s is
in CuB and the other vR is in CuR . We claim that
vR = tail(s) and vB = head(s). To see this, we

observe that no ascending path initiated in CuR can
reach s since the only way for such a path to reach
s is through uR which is an up-neighbor of s. Thus
the two endpoints of the T̂ edge labeled s′ for any
s′ ∈ CuR are contained in CuR . Since r̂ (the root of
T̂) is in the root red component of C, vR can reach
r̂ only through the parent component B of R and
since T̂ edge labeled s is the only edge of T̂ that has
exactly one endpoint in CuR , vB has to be head(s).
This means that uB = α(s) and uR = β(s). �

Lemma 4.3. Let s and s′ be two red (resp. blue)
saddles so that s, α(s), s′, and α(s′) are all on the
same up-going (resp. down-going) path Π0 made of
only red (resp. blue) edges. Then Cβ(s) and Cβ(s′) are
disjoint subtrees of C.

Proof. We only prove the red version of the lemma.
Let R be the red component of C that contains Π0

and let r be the root of R. Being the root of a red
component of CM , r is either v∞ or is a blue positive
saddle. The path Π0 can be extended to an up-going
path Π1 from r. For any vertex v ∈ R, Π(v) must pass
through r. Now, depending on s being positive or
negative, either both α(s) and β(s) are up-neighbors
of s or they are both down-neighbors of s. Thus at
most one of them can be present on Π1. Since α(s) is
on Π1, β(s) cannot be on Π1. Similarly, β(s′) cannot
be on Π1. Since β(s) is a neighbor of s and s is on a
path Π1 to r, Π(β(s)) has to go through s. Similarly,
Π(β(s′)) goes through s′. But this means that neither
of β(s) and β(s′) can be on the path from the other
to r. �

Lemma 4.4. For any positive (resp. negative) saddle
s, and for any vertices u ∈ P−(s) and v ∈ P+(s) with
v 6= s, h′(v) > h′(u) (resp. h′(v) < h′(u)).

Proof. We prove the lemma for positive saddles. The
proof for negative saddles is symmetric. There are
two cases depending on the color of s.

Blue saddle. We first consider the case in which
s is a blue positive saddle. Thus s is the root of
a red component R of C whose parent B is a blue
component. We name the up-neighbors of s in B
and R as u and u′ respectively. By Lemma 4.2,
u = α(s) and u′ = β(s). Let v = head(s) and
v′ = tail(s) as determined by T̂ (See Figure 15).
Since R is upward closed, v′ is a vertex of R and
the path Π(v′) passes through s (the root of R) and
u which is the parent of s in C. Since C is the
contour tree of both M and M ′ and since P+(s)
and P−(s) are up-going paths in C, both h and h′ are
increasing along both of these paths. It is therefore
sufficient to prove that h′(v′) < h′(u). Since u is

s

u = α(s)

s′
1

s′
2

β(s′
1)

β(s′
2)

v∞

v = head(s)

v� = tail(s)

u� = β(s)

Figure 15: Illustrations for the proof of Lemma 4.4;
the blue positive saddle case

a vertex of Π(v′), Σ(u) ⊆ Σ(v′) and therefore by
Eq (4.1) any saddle s′ ∈ Σ(u) contributes the same
amount to both ∆(u) and ∆(v′). Therefore it is
enough to show that D =

∑
s′∈S0

δ(s′) < 0 where
S0 = Σ(v′) \ Σ(u). Since D is an integer multiple of
H, if negative, it must be smaller than or equal to
−H. The statement of the lemma then follows from
the fact that h(u) > h(v′)−H.

Observe now that the only blue saddle in S0 is s,
and since δ is negative for blue saddles and positive
for red ones, letting S1 = S0 \ {s}, we need to show
that

(4.2)
∑
s′∈S1

n(s′) < n(s).

Recall that for any saddle s, n(s) is the number of
leaves in Cβ(s). Since β(s) = u′ which is on the
path from any vertex in R to the root r of R, for
any s′ ∈ S1, Cβ(s′) is a subtree of Cβ(s). On the
other hand, the saddles in S1 all lie on an up-going
red path, namely P−(s), from s to vR. Therefore by
Lemma 4.3 for any two saddles s′, s′′ ∈ S1, Cβ(s′) and
Cβ(s′′) are disjoint. This means that the total number
of leaves in Cβ(s′) over all saddles s′ ∈ S1 are at most
equal to the number of leaves in Cβ(s) and therefore∑
s′∈S1

n(s′) ≤ n(s). The strictness of inequality in
(4.2) follows from the observation that vR 6= tail(s′)
for any s′ ∈ S1, since vR = tail(s), and therefore is
contained in Cβ(s′) for no s′ ∈ S1.

Red saddle. We now assume s to be a red positive
saddle. As in the previous case, let u = α(s), u′ =
β(s), v = head(s) and v′ = tail(s) (See Figure 16).

s

u = α(s)

s′
1

s′
2

β(s′
1)

β(s′
2)

v∞

v = head(s) v� = tail(s)

u� = β(s)

Figure 16: Illustrations for the proof of Lemma 4.4;
the red positive saddle case

Both u and u′ are up-neighbors of s reached through
up-going red edges of s. Again to prove the lemma
it is enough to show that h′(v′) < h′(u). Notice that
this time the parent of s in C is its down-neighbor w.
Thus the paths Π(v′) and Π(u) both pass through s.
In other words, all saddles in Π(s) contribute equally
to ∆(u) and ∆(v′). Since α(s) = u 6∈ Π(s), s 6∈ Σ(s)
while s ∈ Σ(u) and therefore s is the only saddle that
contributes to ∆(u) but not to ∆(v′). Let S0 be the
saddles on Π(v′) between v′ and s, i.e., on P−(s),
that are contained in Σ(v′). Note that since s is a
red positive saddles, all the saddles on P−(s) are red
and therefore δ(s′) > 0 for any s′ ∈ S0. Since s is
a red saddle as well, δ(s) is also positive. Therefore,
as in the previous case, to prove the lemma we show
that

n(s) >
∑
s′∈S0

n(s′).

Since saddles in S0 are on an up-going red path, i.e.,
P−(s), Lemma 4.3 implies that for any s′, s′′ ∈ S0,
Cβ(s′) and Cβ(s′′) are disjoint. On the other hand,
u′ = β(s) and therefore Cβ(s′) is a subtree of Cβ(s) for
any s′ ∈ S0. This means that n(s) ≥ ∑s′∈S0

n(s′).
Again, the inequality follows from observing that v′

cannot be in β(s′) for any s′ ∈ S0 and therefore only
contributes to n(s). �

Corollary 4.2. Let s and s′ be distinct positive
(resp. negative) saddles. If head(s′) is a descendent
of tail(s) in T̂ (resp. Ť), then for any vertex u ∈
P−(s′)∪P+(s′) and any vertex v ∈ P+(s) with v 6= s,
h′(u) < h′(v) (resp. h′(u) > h′(v)).

Proof. Since head(s′) is a descendent of tail(s),
there is a path from tail(s′) to head(s) in T̂ . Let
s′ = s0, s1, . . . , sk = s be labels of the edges on this
path. For each i = 0, . . . , k, let ui = tail(si) and
vi = head(si). Since edges labeled s0, . . . , sk make a
path in T̂ , ui = vi−1 for each i = 1, . . . , k. By Lemma
4.4, h′(vi) > h′(ui) for all i = 1, . . . , k− 1 and by the
same lemma, h′(u) < h′(v0) and h′(vk−1) < h′(v).
Thus h′(u) < h′(v). The proof for negative saddles is
similar. �

Remark. Lemma 4.4 ensures that in M ′ a contour
K carried by an edge in P+(s) of a saddle s is not
fragmented by a contours carried by edges of P−(s).
Corollary 4.2 extends this by saying that K is not
fragmented by contours carried by edges of P(s′) for
any saddle s′ for which head(s′) is a descendent of
tail(s) in T̂ or Ť .

Bounding fragmentation. We are now ready to
bound the number of fragments in the up- or down-
contour of any vertex in M ′.

Theorem 4.1. Let K be the red down-contour (resp.
blue up-contour) of a vertex v in M ′ and let ` =
h′(v)− ε (resp. ` = h′(v) + ε). Then K has at most
three fragments in the level-ordered list of triangles in
F (M ′

`′).

Proof. Let K be a red down counter of v in M ′
` and

let K ′ be another contour in M ′
` such that fragments

from K and K ′ appear consecutively in Fρ(M
′
`). By

Lemma 4.1 this means that there is either a path in
T̂ ∩M ′

≤` or a path in Ť ∩M ′
≥` that connects K and

K ′. Assume that a path Q of the former type exists.
Projecting Q under the map πM ′ into CM ′ , gives
us a walk on CM ′ between the points representing
K and K ′ (both points on edges of C′M) that stays
below level ` throughout. In particular, the points
representing K and K ′ must be connected by a path
in T̂ in which all vertices have heights less than `.

Consider any positive saddle s for which P+(s)
passes through v (and therefore the point represent-
ing K) in C′M . By Lemma 4.4 any contour of M ′ car-
ried by the edges of P−(s) belongs to a level strictly
smaller than `. Furthermore, by Corollary 4.2, any
contour carried by an edge in P(s′), where s′ is a
positive saddle for which head(s′) is a descendent of
tail(s) in T̂ , also belongs to a level strictly lower than
`. Therefore, K ′ can be no such contour. By def-
inition, v can be contained in P−(s0) for only one
positive saddle s0. This is because tail(s0) has out-
degree at most one in T̂ . Let u be the neighbor of s0

in P+(s0), i.e., u = α(s0). By Lemma 4.4 h′(u) > `.
Thus πM ′(Q) cannot include u or any other vertex

of T̂ reachable through u. Therefore, K ′ can only be
carried by the edge s0u of C′M . Thus there can be at
most one such contour K ′. Similarly, there is at most
one contour K ′′ of the latter type (reachable from K
by a path in Ť ∩M ′

≥l. This bounds the number of
fragments of K to no more than three. �

Corollary 4.3. For a contour represented by (f, `)
on M , let (f, `′) be the pair returned by the algorithm
TranslateQuery. Then KM ′(f, `′) has at most
three fragments in Fρ(M

′
`′).

5 I/O-Efficient Implementation

In this section we describe how the stretched terrain
M ′ can be constructed I/O-efficiently and how the
data structure in [2] can be adapted to answer
contour queries on M ′ I/O-efficiently. We rely
on a few standard I/O-efficient techniques such as
list ranking, Euler tour computation of a tree, and
time-forward processing. We do not describe these
techniques in detail and refer the reader to [18].

5.1 Algorithms for computing the stretching
Here we explain how the individual steps of the
algorithm of Section 4 can be implemented using
O(Sort(N)) I/Os.

Computing the colored contour tree. The algo-
rithm of Agarwal et al. [3] computes the augmented
contour tree C of M in O(Sort(N)) I/Os. If C is
rooted, i.e., if the parent of each vertex with respect
to the root v∞ of C is determined, finding the colors
of the edges of C can be achieved through a simple
scan of the edges of C. This is because an upward
edge between a vertex v and a child of v in C is al-
ways red and a downward edge between v and a child
of v is always blue. Rooting C can be achieved in
O(Sort(N)) I/Os as described above. Once the color
of the edges incident to a vertex are determined the
color of the vertex itself follows the local rules de-
scribed in Section 2.

Computing and rooting T̂ and Ť . Agar-
wal et al. [2] have described an algorithm that com-

putes the cut trees T̂ and Ť in O(Sort(N)) I/Os, so

we only describe how to compute T̂ and Ť from T̂
and Ť , respectively. First note that, using the algo-
rithm in [3], we can compute in O(Sort(N)) I/Os the
type of each vertex in M , and also the counterclock-
wise first vertex of each connected component of the
upper link of every vertex.

Recall that T̂ = (V̂ , Ê) where V̂ is the set of
maxima in M and uv ∈ Ê if there is a positive
saddle s for which the path P (s) ends in u and v

(see Section 4 for details). T̂ can be constructed

from T̂ using the time-forward-processing technique
as follows. For the purpose of this algorithm, we
assume that the edges of T̂ are oriented in decreasing
order of the heights of their endpoints. We scan the
vertices of T̂ in the decreasing order of their heights
and compute a labeling ϕ of each edge of T̂ that will
be used to construct T̂ . During the scan we maintain
the set of edges whose upper endpoints have been
visited in an external priority queue Q; the priority
of an edge is the ID of its lower endpoint.

Suppose we reach a vertex v of T̂ . We first delete
all incoming edges at v, i.e., the edges for which v
is the lower endpoint, using the delete-min operation
repeatedly. If v is a maximum (in which case there are
no incoming edges at v), then we label each outgoing

edge e of T̂ at v with ϕ(e) = v. If v is a regular
vertex or a negative saddle, then there is exactly one
incoming edge e− at v, and we label each outgoing
edge e at v with ϕ(e) = ϕ(e−). If v is a positive
saddle, then there are two incoming edges e1 and e2

at v. We report ϕ(e1)ϕ(e2) as an edge of T̂ . For
each outgoing edge e at v, we label e with ϕ(e1)
or ϕ(e2) depending on whichever is λ+(e). Finally,
we insert all outgoing edges at v into Q. Omitting
further details, we note that this procedure requires
O(Sort(N)) I/Os. Next, we pick a maximum r̂ that
is reachable from v∞ through an up-going path in
the contour tree C. This can be done in O(Sort(N))
I/Os using a similar approach — a label from v∞ is
propagated upward in C until it is picked up by some
maximum which is appointed r̂. Once r̂ is chosen,
the edges of T̂ can be oriented toward r̂ as described
above for the contour tree.

Similarly Ť can be computed and rooted at v∞
in O(Sort(N)) I/Os.

Computing α(s) and β(s) for a each s. We
perform an Euler tour on C, initiated at v∞, and
record for each vertex v the steps of the tour in which
v is visited. The number of steps recorded for a vertex
v is its degree in C. Thus extrema get a single number
while saddles record three numbers. Let s be a saddle
in C and let u and v be its two children. Assume that
the Euler tour reaches u before v for the first time.
Since the tour is started at v∞, if the three numbers
recorded at a saddles s, i.e., the steps of the tours
in which s is visited, are a1 < a2 < a3, then all
the step numbers associated to all vertices in Cu are
between a1 and a2 and those associated to vertices
in Cv are between a2 and a3. All other vertices of
C are visited in steps before a1 or in steps after a3.
Thus if s is, say a positive saddle, one can determine
the neighbors α(s) and β(s) on the paths from s to

head(s) and tail(s) by comparing a1, a2, and a3 to
the steps in which each of u and v are visited. This
can therefore be done in O(Sort(N)) I/Os.

Computing n(s) for each saddle. One can com-
pute in O(Sort(N)) I/Os the size of all subtrees
rooted at all vertices of a rooted tree of size N . This
will be enough to determine n(s) for all saddles as
n(s) is by definition the number of leaves in Cβ(s).

Computing M ′. With n(s) and the color of the
saddles known, δ(s) is determined for each saddle. To
compute M ′ we perform another Euler tour initiated
at v∞. As explained in Section 3, the stretching
associated with a saddle s is applied to all vertices
in the subtree of C rooted at the child endpoint of
the edge sα(s). In the Euler tour, we maintain the
total change in height applicable to the vertices being
visited in a variable L, initially set to zero. For
any saddle s, the edge sα(s) is traversed twice in
the Euler tour. The first traversal moves from the
parent endpoint of the edge to the child endpoint at
which time we add δ(s) to L. When sα(s) is visited
for the second time, it will be in the direction from
its child endpoint to its parent endpoint in C. We
thus subtract δ(s) from L. Thus the value of L when
visiting a vertex v is precisely ∆(v). To compute
M ′, all one needs to do is to add L to h(v) when it
is visited for the first time.

5.2 Answering contour queries We now briefly
review the level-set query algorithm of Agar-
wal et al. [2] and explain how one can answer contour
queries using their structure. We refer to the original
paper for further details.

f g g�

Figure 17: Locating a triangle f in the appropriate
version of the B-tree B and scanning the leafs for the
extraction of the contour K containing f . Fragments
of K are shown in grey. At the end of a fragment,
one locates the subsequent fragment by searching the
tree for the rank of the neighbor g′ of the last triangle
g of the previous fragment.

Level-set queries. Let v1, . . . , vN be the vertices
of M in the order of height, i.e., h(v1) < · · · <

h(vN). For simplicity we assume that all queries are
performed at heights ` 6∈ h(V). A level-set query
at height ` returns F̄ [K] for every contour K in
M`. The resulting collection of lists is exactly the
same for two level-set queries at levels `1, `2 with
h(vi) < `1, `2 < h(vi+1). It is therefore sufficient
for our algorithm to generate M [K] for each contour
K of Mh(vi)+ε for i = 1, . . . , N ; here ε is a sufficiently
small constant as in the definition of up- and down-
contours.

The overall data structure is a persistent B-tree
B that holds N versions, each corresponding to one
vertex of M . The version Bi associated with vi is a
B-tree that stores the sequence Fρ(Mh(vi)+ε). The
search key for a triangle f in any version of B is its
rank ρ(f) as determined by the Agarwal et al. [2]
level-ordering ρ. To construct B, we scan the list
v1, . . . , vN . On arriving at vi, we first delete from B
all triangles for which vi is the highest vertex and then
insert all those for which vi is the lowest vertex. The
resulting version of B is time-stamped h(vi). B can
be constructed in O(Sort(N)) I/Os and uses O(N)
space.

For any `, let B(`) be the version Bi of B
corresponding to the highest vertex vi with h(vi) < `.
B(`) can be computed in O(logB N) I/Os and its
entire content, i.e., Fρ(M`), can be reported, ordered
by ρ, in O(T/B) I/Os, where T = |F (M`)|. Property
C2 of level-ordering allows us to separate the various
contours in this sequence using an I/O-efficient stack
in O(T/B) extra I/Os [2].

Contour queries. B can be adapted to answer
contour queries, albeit with possible compromise on
the I/O complexity by retrieving various fragments
of a contour from the relevant version: Given a query
triangle f an a level `, to extract the contour K
in M` that intersects f , as before one first locates
B(`) in O(logB N) I/Os. Assuming B(`) stores T`
elements, the leaf of B(`) that stores f is found in
O(logB T`/B) I/Os by searching in B(`) using ρ(f)
as the search key. The leaves of B(`) are then
scanned sequentially from f to the left and right to
find the remaining triangles in K. Since K may be
fragmented in B(`), one may reach the end of the
fragment that includes f at a triangles g without
having found all of F̄ [K] (See Figure 17). If one
stores at each triangle of M the rank of its three
neighboring triangles, the fragment of F̄ [K] that
starts with the neighbor g′ of g can be located by
searching B(`) using ρ(g′) as the search key; this step

takes in O
(

logM/B T`/B
)

I/Os. Continuing this way,

a contour K of length T broken into J fragments

is reported in O
(

logB N + J logM/B T`/B + T/B
)

I/Os.
If contour queries are issued on the stretched

terrain obtained using the algorithm of Section 4, the
number J of fragments is constant (Corollary 4.3).
Therefore, we obtain the main result of the paper:

Theorem 5.1. A terrain M of size N can be pre-
processed, in O(Sort(N)) I/Os, into a data structure
of size O(N) so that a contour query (f, `) on M can
be answered in O(logB N+T/B) I/Os, where T is the
size of the query output.

References

[1] P. K. Agarwal, L. Arge, T. M. Murali, K. Varadara-
jan, and J. S. Vitter. I/O-Efficient Algorithms for
Contour Line Extraction and Planar Graph Block-
ing. In Proc. ACM-SIAM Sympos. Discrete Algo-
rithms, pages 117–126, 1998.

[2] Pankaj K. Agarwal, Lars Arge, Thomas Mølhave,
and Bardia Sadri. I/O-Efficient Algorithms for
Computing Contours on a Terrain. In SCG ’08:
Proceedings of the twenty-fourth annual symposium
on Computational geometry, pages 129–138, New
York, NY, USA, 2008. ACM.

[3] Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-
Efficient Batched Union-Find and its Applications
to Terrain Analysis. In SCG ’06: Proceedings of the
twenty-second annual symposium on Computational
geometry, pages 167–176, New York, NY, USA,
2006. ACM.

[4] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems. Com-
mun. ACM, 31:1116–1127, 1988.

[5] L. Arge. External memory data structures. In
J. Abello, P. M. Pardalos, and M. G. C. Resende,
editors, Handbook of Massive Data Sets, pages 313–
358. Kluwer Academic Publishers, 2002.

[6] L. Arge, A. Danner, and S-H. Teh. I/O-efficient
point location using persistent B-trees. In Proc.
Workshop on Algorithm Engineering and Experi-
mentation, 2003.

[7] Surender Baswana and Sandeep Sen. Planar graph
blocking for external searching. Algorithmica,
34(3):298–308, 2002.

[8] Hamish Carr, Jack Snoeyink, and Ulrike Axen.
Computing contour trees in all dimensions. Comput.
Geom., 24(2):75–94, 2003.

[9] Y.-J. Chiang and C. T. Silva. I/O-Optimal Isosur-
face Extraction. In Proc. IEEE Visualization, pages
293–300, 1997.

[10] Yi-Jen Chiang, Michael T. Goodrich, Edward F.
Grove, Roberto Tamassia, Darren Erik Vengroff,
and Jeffrey Scott Vitter. External-memory graph
algorithms. In SODA ’95: Proceedings of the

sixth annual ACM-SIAM symposium on Discrete
algorithms, pages 139–149, 1995.

[11] Kree Cole-McLaughlin, Herbert Edelsbrunner, John
Harer, Vijay Natarajan, and Valerio Pascucci.
Loops in Reeb graphs of 2-manifolds. Discrete &
Computational Geometry, 32(2):231–244, 2004.

[12] A. Danner, T. Mølhave, K. Yi, P. K. Agarwal,
L. Arge, and H. Mitásová. Terrastream: From ele-
vation data to watershed hierarchies. In Proc. ACM
Symposium on Advances in Geographic Information
Systems, page 28, 2007.

[13] Herbert Edelsbrunner, John Harer, and Afra
Zomorodian. Hierarchical morse - smale complexes
for piecewise linear 2-manifolds. Discrete & Com-
putational Geometry, 30(1):87–107, 2003.

[14] C. Hutton. An account of the calculations made
from the survey and measures taken at schehallien,
in order to ascertain the mean density of the earth.
Philosophical Transactions of the Royal Society of
London, 68:689–845, 1779.

[15] M. H. Nodine, M. T. Goodrich, and J. S. Vitter.
Blocking for external graph searching. Algorithmica,
16(2):181–214, 1996.

[16] P. J. Varman and R. M. Verma. An efficient
multiversion access structure. IEEE Transactions
on Knowledge and Data Engineering, 9(3):391–409,
1997.

[17] J. S. Vitter. External memory algorithms and data
structures. In External memory algorithms, pages
1–38. American Mathematical Society, Boston, MA,
USA, 1999.

[18] Norbert Zeh. I/O-efficient graph algorithms. In
EEF Summer School on Massive Data Sets, to
appear.

