
I/O-Efficient Algorithms for Computing
Contours on a Terrain

Bardia Sadri
Duke University

joint work with:

 Pankaj K. Agarwal Lars Arge Thomas Mølhave
Duke University MADALGO MADALGO

2

Terrains

x

y

z
A terrain is the graph of a continuous bivariate function.

2

Terrains

x

y

z

In GIS the surface of earth is often represented
as a terrain that interpolates collected data.

A terrain is the graph of a continuous bivariate function.

2

Terrains

x

y

z

LIDAR (Light Detection and Ranging)
• Massive (irregular) point sets (1-10m resolution)
• Becoming relatively cheap and easy to collect
• Appalachian mountains between 50GB to 5TB

In GIS the surface of earth is often represented
as a terrain that interpolates collected data.

A terrain is the graph of a continuous bivariate function.

one can linearly interpolate h in the interior of every face of M.

3

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,

v

one can linearly interpolate h in the interior of every face of M.

3

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,

v

one can linearly interpolate h in the interior of every face of M.

(v, h(v))

3

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,

one can linearly interpolate h in the interior of every face of M.

3

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,

one can linearly interpolate h in the interior of every face of M.

3

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,

one can linearly interpolate h in the interior of every face of M.

3

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,

one can linearly interpolate h in the interior of every face of M.

M = (M, h)

3

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,

4

Level Sets, Contours, and Contour Maps
The level-set M! at height ! is h−1(!).

4

Level Sets, Contours, and Contour Maps
The level-set M! at height ! is h−1(!).

z = !

Each connected component of a level set is called a contour.

4

Level Sets, Contours, and Contour Maps
The level-set M! at height ! is h−1(!).

z = !

Each connected component of a level set is called a contour.

4

Level Sets, Contours, and Contour Maps
The level-set M! at height ! is h−1(!).

Given levels L = {!1, . . . , !k}, the contour map is h−1(L).

Each connected component of a level set is called a contour.

4

Level Sets, Contours, and Contour Maps
The level-set M! at height ! is h−1(!).

Given levels L = {!1, . . . , !k}, the contour map is h−1(L).

x

y

Each connected component of a level set is called a contour.

4

Level Sets, Contours, and Contour Maps
The level-set M! at height ! is h−1(!).

Given levels L = {!1, . . . , !k}, the contour map is h−1(L).

Applications at least as early as the 18th century.

Pretty Old Stuff!

5

Applications at least as early as the 18th century.

Pretty Old Stuff!

Philosophical Transactions of
Royal Society of London, 1779

5

Applications at least as early as the 18th century.

Pretty Old Stuff!

Philosophical Transactions of
Royal Society of London, 1779

5

a1
a2

a3

b1

b2
b3

a35

b16

c1
c2

c3c21

Given a set of levels L = {!1, . . . , !k}, compute the contour map h−1(L)
such that each contour is reported separately and in sorted (circular) order.

6

Computing Contour Maps

a1
a2

a3

b1

b2
b3

a35

b16

c1
c2

c3c21

a1, a2, . . . , a35, b1, . . . , b16, c1, c2, . . . , c21 . . .

Given a set of levels L = {!1, . . . , !k}, compute the contour map h−1(L)
such that each contour is reported separately and in sorted (circular) order.

6

Computing Contour Maps

a1
a2

a3

b1

b2
b3

a35

b16

c1
c2

c3c21

a1, a2, . . . , a35, b1, . . . , b16, c1, c2, . . . , c21 . . .

Given a set of levels L = {!1, . . . , !k}, compute the contour map h−1(L)
such that each contour is reported separately and in sorted (circular) order.

6

Computing Contour Maps

a1
a2

a3

b1

b2
b3

a35

b16

c1
c2

c3c21

a1, a2, . . . , a35, b1, . . . , b16, c1, c2, . . . , c21 . . .

Given a set of levels L = {!1, . . . , !k}, compute the contour map h−1(L)
such that each contour is reported separately and in sorted (circular) order.

6

Computing Contour Maps

a1

a2 a3
b1b2

b3

b16

7

Answering Contour Queries

a13

Preprocess the terrain to answer contour queries efficiently:
Given a level ! ∈ R, return the level set h−1(!) such that each contour is
reported separately and in sorted (circular) order.

z = !

Output: a1, a2, . . . , a13, b1, . . . , b16

Classical Complexity: Number of basic operations as a function of N .

The I/O Model

8

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

The I/O Model

8

To amortize access delay, disks transfer large contiguous blocks of data.

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

The I/O Model

8

To amortize access delay, disks transfer large contiguous blocks of data.

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

N = number of items in the problem instance

B = number of items per disk block

M = number of items that fit main memory

T = number of items in output

The I/O Model

8

To amortize access delay, disks transfer large contiguous blocks of data.

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

N = number of items in the problem instance

B = number of items per disk block

M = number of items that fit main memory

T = number of items in output

I/O-Complexity: Number of I/Os as a function of N , B, M , and T .

The I/O Model

8

To amortize access delay, disks transfer large contiguous blocks of data.

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

N = number of items in the problem instance

B = number of items per disk block

M = number of items that fit main memory

T = number of items in output

Important to store/access data to take advantage of locality.

I/O-Complexity: Number of I/Os as a function of N , B, M , and T .

The I/O Model

8

To amortize access delay, disks transfer large contiguous blocks of data.

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

N = number of items in the problem instance

B = number of items per disk block

M = number of items that fit main memory

T = number of items in output

Important to store/access data to take advantage of locality.

I/O-Complexity: Number of I/Os as a function of N , B, M , and T .

The I/O Model

8

internal external

Scanning

Sorting

Permuting

Searching

N N/B

N log N N
B log M

B

N
B

N min
{

N, N
B log M

B

N
B

}

log2 N logB N

To amortize access delay, disks transfer large contiguous blocks of data.

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

N = number of items in the problem instance

B = number of items per disk block

M = number of items that fit main memory

T = number of items in output

Important to store/access data to take advantage of locality.

I/O-Complexity: Number of I/Os as a function of N , B, M , and T .

The I/O Model

8

internal external

Scanning

Sorting

Permuting

Searching

N N/B

N log N N
B log M

B

N
B

N min
{

N, N
B log M

B

N
B

}

log2 N logB N

Sort(N)

To amortize access delay, disks transfer large contiguous blocks of data.

Disk access is about 106 times slower than main memory access.

Classical Complexity: Number of basic operations as a function of N .

N = number of items in the problem instance

B = number of items per disk block

M = number of items that fit main memory

T = number of items in output

Important to store/access data to take advantage of locality.

I/O-Complexity: Number of I/Os as a function of N , B, M , and T .

The I/O Model

8

internal external

Scanning

Sorting

Permuting

Searching

N N/B

N log N N
B log M

B

N
B

N min
{

N, N
B log M

B

N
B

}

log2 N logB N

Sort(N) ! N

O(logB N + T/B)

O(logB N + T/B)

Preprocessing
I/Os

Structure Size Query I/Os

Chiang, Silva’97

Agarwal, Arge,
Murali,

Varadrarajan,
Vitter’98

Previous Work

9

O(N)

O(N)

O(N)

O(Sort(N))

Answering contour queries I/O-efficiently:

O(logB N + T/B)

O(logB N + T/B)

Preprocessing
I/Os

Structure Size Query I/Os

Chiang, Silva’97

Agarwal, Arge,
Murali,

Varadrarajan,
Vitter’98

Previous Work

9

O(N)

O(N)

O(N)

O(Sort(N))

Answering contour queries I/O-efficiently:

O(logB N + T/B)

O(logB N + T/B)

Preprocessing
I/Os

Structure Size Query I/Os

Chiang, Silva’97

Agarwal, Arge,
Murali,

Varadrarajan,
Vitter’98

Previous Work

9

O(N)

O(N)

O(N)

O(Sort(N))

Unsorted Contours!

Answering contour queries I/O-efficiently:

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

10

“Very naïve” Algorithm: Generate one contour at a time

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

10

“Very naïve” Algorithm: Generate one contour at a time

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

10

“Very naïve” Algorithm: Generate one contour at a time

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

10

“Very naïve” Algorithm: Generate one contour at a time

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

This is essentially the optimal algorithm for the RAM model.

10

“Very naïve” Algorithm: Generate one contour at a time

segments in the output

I/O Complexity:
O(N/B + T).

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

This is essentially the optimal algorithm for the RAM model.

10

“Very naïve” Algorithm: Generate one contour at a time

11

“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

11

“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

11

“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

11

“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

For segment s at level !i store
pair (!i, s) plus the segments
before and after s
on contour containing s.

11

“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

For segment s at level !i store
pair (!i, s) plus the segments
before and after s
on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

11

“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

For segment s at level !i store
pair (!i, s) plus the segments
before and after s
on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

I/O Complexity:
O(N/B + Sort(T)).

11

“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

For segment s at level !i store
pair (!i, s) plus the segments
before and after s
on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

I/O Complexity:
O(N/B + Sort(T)).

This talk: O(Sort(N) + T/B).

12

Idea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

12

Idea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

12

Idea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

12

Idea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

12

Idea: Grow Contours Contiguously

≺: such an ordering

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

12

Idea: Grow Contours Contiguously

∆!: triangles that intersect level !

≺: such an ordering

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

12

Idea: Grow Contours Contiguously

∆!: triangles that intersect level !

≺: such an ordering

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

12

Idea: Grow Contours Contiguously

∆!: triangles that intersect level !
1719

24
25

29

36
38
4145

48

11

≺: such an ordering

The restriction of ≺ to ∆! traverses each contour of M in circular order.

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺.

3. When passing target level !i ∈ L, dump contents of tree to disk.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction. Sort(N)
2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺.

3. When passing target level !i ∈ L, dump contents of tree to disk.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

Buffer Tree [Arge’95]

Sort(N)
2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺.

3. When passing target level !i ∈ L, dump contents of tree to disk.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

Buffer Tree [Arge’95]

Sort(N)
2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺. Amortized Sort(N)

3. When passing target level !i ∈ L, dump contents of tree to disk.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

Buffer Tree [Arge’95]

Sort(N)

T/B

2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺. Amortized Sort(N)

3. When passing target level !i ∈ L, dump contents of tree to disk.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

Buffer Tree [Arge’95]

Sort(N)

T/B

2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺. Amortized Sort(N)

3. When passing target level !i ∈ L, dump contents of tree to disk.

Using a persistent search tree, we can answer
contour queries in O(logB N + T/B) I/Os.

The Algorithm

13

1. Sweep the terrain by a horizontal plane in the +z direction.

Buffer Tree [Arge’95]

Sort(N)

T/B

2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺. Amortized Sort(N)

3. When passing target level !i ∈ L, dump contents of tree to disk.

Using a persistent search tree, we can answer
contour queries in O(logB N + T/B) I/Os.

Preprocessing needs O(Sort(N)) I/Os and O(N) space.

Level Ordering Theorem

14

Theorem. One can find in O(Sort(N)) I/Os a
total ordering “≺” of triangles of M, s.t. for any !:

1. Triangles in ∆! are ≺-sorted in cw or ccw order.

Level Ordering Theorem

14

t1
t2

t3 t4

Theorem. One can find in O(Sort(N)) I/Os a
total ordering “≺” of triangles of M, s.t. for any !:

1. Triangles in ∆! are ≺-sorted in cw or ccw order.

t1 ≺ t3 ≺ t2 =⇒ t1 ≺ t4 ≺ t2

2. Subsets of ∆! intersecting distinct contours C1 and C2 don’t “interleave”:

Level Ordering Theorem

14

We call ≺ a “level-ordering” of triangles in M.

t1
t2

t3 t4

Theorem. One can find in O(Sort(N)) I/Os a
total ordering “≺” of triangles of M, s.t. for any !:

1. Triangles in ∆! are ≺-sorted in cw or ccw order.

t1 ≺ t3 ≺ t2 =⇒ t1 ≺ t4 ≺ t2

2. Subsets of ∆! intersecting distinct contours C1 and C2 don’t “interleave”:

Level Ordering Theorem

14

We call ≺ a “level-ordering” of triangles in M.

t1
t2

t3 t4

Theorem. One can find in O(Sort(N)) I/Os a
total ordering “≺” of triangles of M, s.t. for any !:

1. Triangles in ∆! are ≺-sorted in cw or ccw order.

t1 ≺ t3 ≺ t2 =⇒ t1 ≺ t4 ≺ t2

2. Subsets of ∆! intersecting distinct contours C1 and C2 don’t “interleave”:

a1a2b1c1c2c3b2b3d1d2b4a3a4a5

Level Ordering Theorem

14

We call ≺ a “level-ordering” of triangles in M.

t1
t2

t3 t4

Theorem. One can find in O(Sort(N)) I/Os a
total ordering “≺” of triangles of M, s.t. for any !:

1. Triangles in ∆! are ≺-sorted in cw or ccw order.

t1 ≺ t3 ≺ t2 =⇒ t1 ≺ t4 ≺ t2

2. Subsets of ∆! intersecting distinct contours C1 and C2 don’t “interleave”:

a1a2b1c1c2c3b2b3d1d2b4a3a4a5

a1a2a3a4a5b1b2b3b4c1c2c3d1d2

Can separate contours using a stack
in O(T/B) I/Os.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

saddles

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

saddles regular

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

saddles regular

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

saddles regular

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

saddles regular

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

saddles regular

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

maxima minima

saddles regular

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Take a monotone min (bd) to max path P and delete its dual from M∗.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Take a monotone min (bd) to max path P and delete its dual from M∗.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Take a monotone min (bd) to max path P and delete its dual from M∗.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Lemma. Every cycle of M∗ loses precisely one edge.

Take a monotone min (bd) to max path P and delete its dual from M∗.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Lemma. The resulting dual graph is acyclic and the induced relation “≺” a
partial order. Thus we can topologically sort it into a total order.

Lemma. Every cycle of M∗ loses precisely one edge.

Take a monotone min (bd) to max path P and delete its dual from M∗.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Lemma. The resulting dual graph is acyclic and the induced relation “≺” a
partial order. Thus we can topologically sort it into a total order.

Lemma. Every cycle of M∗ loses precisely one edge.

Take a monotone min (bd) to max path P and delete its dual from M∗.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

[Arge, Toma, Zeh’03]

A saddle is negative if it joins two disjoint connected components of its
sublevel-set and positive otherwise.

What about non-elementary terrains?

16

A saddle is negative if it joins two disjoint connected components of its
sublevel-set and positive otherwise.

What about non-elementary terrains?

16

If we replace h with −h, the two types switch roles.

A saddle is negative if it joins two disjoint connected components of its
sublevel-set and positive otherwise.

What about non-elementary terrains?

16

If we replace h with −h, the two types switch roles.

A saddle is negative if it joins two disjoint connected components of its
sublevel-set and positive otherwise.

What about non-elementary terrains?

16

[Agarwal, Arge, Yi ’06] Positive and negative saddle points can be found in
O(Sort(N)) I/Os.

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees

17

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees

17

Turning a terrain into an elementary one by surgery

18

Turning a terrain into an elementary one by surgery

18

Turning a terrain into an elementary one by surgery

18

Turning a terrain into an elementary one by surgery

18

Turning a terrain into an elementary one by surgery

18

new max

Turning a terrain into an elementary one by surgery

18

new max

Turning a terrain into an elementary one by surgery

18

new max

Turning a terrain into an elementary one by surgery

18

new max

Turning a terrain into an elementary one by surgery

18

new max

Lemma. Doing this removes all
positive saddles and maxima and adds
a new maximum.

Turning a terrain into an elementary one by surgery

18

What surgery does to contours?

19

The elementary terrain M′ has all the triangles of M plus some of “new”
triangles.

What surgery does to contours?

19

The elementary terrain M′ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M′

What surgery does to contours?

19

The elementary terrain M′ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M′

Theorem. In a contour of M′, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.

a1a2 ∗ ∗b1 ∗ ∗ ∗ c1c2c3 ∗ ∗ ∗ ∗b2b3 ∗ d1d2 ∗ ∗b4 ∗ ∗a3a4a5

[][] [][]

What surgery does to contours?

19

The elementary terrain M′ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M′

Theorem. In a contour of M′, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.

a1a2 ∗ ∗b1 ∗ ∗ ∗ c1c2c3 ∗ ∗ ∗ ∗b2b3 ∗ d1d2 ∗ ∗b4 ∗ ∗a3a4a5

Where is nesting coming from?

20

Where is nesting coming from?

20

Where is nesting coming from?

20

Where is nesting coming from?

20

Where is nesting coming from?

20

Where is nesting coming from?

20

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Red and Blue Contours

21

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Red and Blue Contours

21

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Red and Blue Contours

21

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Red and Blue Contours

21

Theorem. Only the red tree connects a blue
contour and its red children.

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Theorem. If we contract each contour to
a point, the result is a tree.

Red and Blue Contours

21

Theorem. Only the red tree connects a blue
contour and its red children.

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Theorem. If we contract each contour to
a point, the result is a tree.

Red and Blue Contours

21

Theorem. Only the red tree connects a blue
contour and its red children.

Remarks and Open Problems

22

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

Remarks and Open Problems

22

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus ≥ 1? (Orientable or not)

Remarks and Open Problems

22

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus ≥ 1? (Orientable or not)

Can a topological sphere M embedded in R3 be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Remarks and Open Problems

22

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus ≥ 1? (Orientable or not)

Can a topological sphere M embedded in R3 be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Remarks and Open Problems

22

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus ≥ 1? (Orientable or not)

Can a topological sphere M embedded in R3 be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Remarks and Open Problems

22
Thank You!

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus ≥ 1? (Orientable or not)

Can a topological sphere M embedded in R3 be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

