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Terrains

A terrain is the graph of a continuous bivariate function.

In GIS the surface of earth is often represented
as a terrain that interpolates collected data.

LIDAR (Light Detection and Ranging) S
e Massive (irregular) point sets (1-10m resolution) =
e Becoming relatively cheap and easy to collect

e Appalachian mountains between 50GB to 5TB



Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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... Level Sets, ( ﬂ; and Contour Mm

The level-set M at height £ is h~*(£).
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The Ievel set Mg at helght E IS h (8)
Each connected component of a level set is called a contour.
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- Level Sets, Ccntqurs. md Contour Mm

The Ievel set Mg at helght Vish ()
Each connected component of a level set is called a contour.

Given levels L = {/1,...,£}, the contour map is h™!(L).
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The level-set Ml, at height £ is h=1().
Each connected component of a level set is called a contour.

Given levels L = {/1,..., 0y}, the contour map is h=(L).




Level Sets, Contours, and Contour Maps

The level-set Ml, at height £ is h=1().
Each connected component of a level set is called a contour.

Given levels L = {¢1,...,4}, the contour map is h=1(L).
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Pretty Old Stuff!

Applications at least as early as the 18" century.
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Applications at least as ez ~ S#wvey and Meafures taken at Schehallien, n order to
afcertain the mean Denfity of 1he L‘a) th. By Charles
Hutton, Efq. F. R. S. -

“This circumftance at firft gave me much trouble and di-
fatisfaction, till 1 fell upon the following method by
~which. the defect was in a great meafure f; upplied,
and by which I was enabled to Pproceed in the eftimation
of the altitudes both wrth much expedmon and a confic
deggble degree of accuracy Thls method was the con-»

7;‘%7,7_

nec‘lmg together by a famt line all the pomts which were

of the fame relative altitude : by fo doing, I obtained a
great number of “irregular polygons lying within, and/
at fome diftance from, one another, and bearing a confi-
derable degrec of refemblance to each other: thefe poly-
gons were the figurcs of {o many level or horizontal fec-
tions of the hills, the relative altitudes of all the parts of
them being known; and as cvery bafe or little fpace had

—

Philosophical Transactions of
Royal Society of London, 1779
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Computing Contour Maps

Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.
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Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.




__Answering Contour Queries

Preprocess the terrain to answer contour querles efficiently:
Given a level ¢ € R, return the level set h=1({) such that each contour is
reported separately and in sorted (circular) order.
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Output: ay,a9,...,a13,b1,...,b16
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Classical Complexity: Number of basic operations as a function of /V.

Disk access is about 10° times slower than main memory access.

To amortize access delay, disks transfer large contiguous blocks of data.

N = number of items in the problem instance
B = number of items per disk block

M = number of items that fit main memory
T" = number of items in output

| /O-Complexity: Number of 1/Os as a function of N, B, M, and T

Important to store/access data to take advantage of locality.



The 1/O Model
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Previous Work

Answering contour queries |/O-efficiently:

 eprotessing Structure Size | Query I/Os
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Chiang, Silva’97| O(Sort(N)) O(N) O(logz N +T/B)
Agarwal, Arge,
Murali, |
Varadrarajan, ) O(N) O(logg N +T'/B)
Vitter’'98
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Answering contour queries |/O-efficiently:

Preprocessing
1/Os

Structure Size | Query |/Os

Chiang, Silva’97

Unsorted Contours!
Agarwal, Arg

Murali
) N N |
Varadrarajan, e O(N) O(logg N + T/ B)

Vitter’98
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Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.
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- "Very naive” Algorithm: Generate one contour at a time
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Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

This is essentially the optimal algorithm for the RAM model.
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“Very naive” Algorithm: Generate one contour at a time

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

/O Complexity:

O(N/B +T).

‘# segments Iin the output l
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Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

11



d (] []

. ] n

-
- !
; § . - ¥

) > ’ S
o A B Il A e A B e IO Gl UL TS g il aih oL o o gl oane frdac oo o Lo Mt e o
2% :;,; :\.“ .'.‘.., v - e 7 y o i J.,- g * Nl - 1¢ / d?,,\_‘_ __.. ¥e A:{!. )’_' '-"r" . g "5
’ 5 ’ - : A sl b hoA r

—_ R o | fouy @
A R g

pieces, sort later

o ae B e :L(- - .”.:,:-""‘."- 2 )A "

& v,

s Ll D

Ead

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

11



d (] []

. ] n

-
- !
; § . - ¥

) > ’ S
o A B Il A e A B e IO Gl UL TS g il aih oL o o gl oane frdac oo o Lo Mt e o
2% :;,; :\.“ .'.‘.., v - e 7 y o i J.,- g * Nl - 1¢ / d?,,\_‘_ __.. ¥e A:{!. )’_' '-"r" . g "5
’ 5 ’ - : A sl b hoA r

—_ R o | fouy @
A R g

pieces, sort later

o ae B e :L(- - .”.:,:-""‘."- 2 )A "

& v,

s Ll D

Ead

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

11



“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.




“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store

pair (4;,s) plus the segments
oefore and after s

on contour containing s.

Sort pairs on first component to separates

level sets. Then use successor/predecessor-sorting
to put contours in order.



“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

/O Complexity:
O(N/B + Sort(T)).



“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

/O Complexity:
O(N/B + Sort(T)).

This talk: O(Sort(N) +T'/B).



Idea: Grow Cantom Contiguously
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If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.
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If triangles were ordered on disk such that all partially generated contours

in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering
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ldea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering
Ay: triangles that intersect level /¢
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If triangles were ordered on disk such that all partially generated contours
n “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering

Ay: triangles that intersect level / ‘V“ !}"""‘\
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ldea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering
Ay: triangles that intersect level /¢

The restriction of < to Ay traverses each contour of M in circular order.
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1. Sweep the terrain by a horizontal plane in the +z direction.
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1. Sweep the terrain by a horizontal plane in the +z direction.




WMM«twvwwl%bm&fM%l&Matww B PPN MO SR vl U 0 57 g PRIB T ANy O, W 53 RS G

1. Sweep the terrain by a horizontal plane in the +z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d
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1. Sweep the terrain by a horizontal plane in the +z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d

3. When passing target level ¢; € L, dump contents of tree to disk.
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1. Sweep the terrain by a horizontal plane in the +z direction. Sort( )

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d

3. When passing target level ¢; € L, dump contents of tree to disk.
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1. Sweep the terrain by a horizontal plane in the +z direction. Sort(NV)
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2. Keep triangles that intersect the sweep plane in a search tree ordered by

o I Buffer Tree [Arge'95] i

3. When passing target level /; € L, dump contents of tree to disk.
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1. Sweep the terrain by a horizontal plane in the +z direction. <Sort(NV)
2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]

3. When passing target level ¢; € L, dump co

Using a persistent search tree, we can answer
contour queries in O(loggz N +T/B) 1/0Os.
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i Algorision

1. Sweep the terrain by a horizontal plane in the +z direction. <Sort(NV)
2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]

3. When passing target level ¢; € L, dump co

Using a persistent search tree, we can answer
contour queries in O(loggz N +T/B) 1/0Os.

Preprocessing needs O(Sort(IN)) 1/Os and O(N) space. -
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Theorem. One can find in O(Sort(N)) 1/Os a
total ordering “<" of triangles of M, s.t. for any /:

1. Triangles in A, are <-sorted in cw or ccw order.
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Level Ordering Theorem

Theorem. One can find in O(Sort(/N)) 1/Os a
total ordering “<" of triangles of M, s.t. for any /:
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Level Ordering Theorem

Theorem. One can find in O(Sort(/NV)) I/Os a
total ordering “<" of triangles of M, s.t. for any /:

1. Triangles in A, are <-sorted in cw or ccw order.

2. Subsets of Ay intersecting distinct contours C'; and C5 don't “interleave”:
t1 <t3 <19 A e e R )

We call < a “level-ordering” of triangles in M.

Can separate contours using a stack

in O(T/B) 1/0s.
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An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

ake a monotone min (bd) to max path P and delete its dual from M*.

Lemma. Every cycle of M* loses precisely one edge.

Lemma. 1 he resulting dual graph is acyclic and the induced relation "<" a
partial order. Thus we can topologically sort it into a total order.

| [Arge, Toma, Zeh'03] |
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What about non-elementary terrains?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.

If we replace h with —A, the two types switch roles.

[Agarwal, Arge, Yi '06] Positive and negative saddle points can be found in
O(Sort(N)) 1/0Os.
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Turning a terrain into an elementary one by surgery
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Lemma. Doing this removes all
positive saddles and maxima and adds
a new maximum.
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The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M’

Theorem. In a contour of M, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.
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What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M’

Theorem. In a contour of M, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.

a1a9 * *[bl % % *[616263]* * % xhybg *[d1d2]>1< *b4]>1< kA3A405
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A contour is red (blue) if “locally” the sublevel set is in its out5|de (|nS|de)
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A contour is red (blue) if “locally” the sublevel set is in its outside (inside).
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Red and Blue Contours
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Theorem. Only the red tree connects a blue
contour and its red children.
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A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Theorem. Only the red tree connects a blue
contour and its red children.

Theorem. If we contract each contour to
a point, the result is a tree.
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A contour is red (blue) 4 “IocaI.Iy ' the sublevel set is in its out5|de (inside).

Theorem. Only the red tree connects a blue
contour and its red children.

Theorem. If we contract each contour to
a point, the result is a tree.
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Remarks and Open Problems

The embedding( of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus > 17 (Orientable or not)

Can a topological sphere M embedded in R? be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Thank You!
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