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LIDAR (Light Detection and Ranging)
• Massive (irregular) point sets (1-10m resolution)
• Becoming relatively cheap and easy to collect
• Appalachian mountains between 50GB to 5TB

In GIS the surface of earth is often represented
as a terrain that interpolates collected data.

A terrain is the graph of a continuous bivariate function.
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Answering Contour Queries

a13

Preprocess the terrain to answer contour queries efficiently:
Given a level ! ∈ R, return the level set h−1(!) such that each contour is
reported separately and in sorted (circular) order.

z = !

Output: a1, a2, . . . , a13, b1, . . . , b16
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“Less naïve” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

For segment s at level !i store
pair (!i, s) plus the segments
before and after s
on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

I/O Complexity:
O(N/B + Sort(T )).

This talk: O(Sort(N) + T/B).
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Idea: Grow Contours Contiguously

∆!: triangles that intersect level !
1719
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36
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4145
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11

≺: such an ordering

The restriction of ≺ to ∆! traverses each contour of M in circular order.

If triangles were ordered on disk such that all partially generated contours
in “less näıve” algorithm stayed connected, no succ/pred sorting would be
needed.
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1. Sweep the terrain by a horizontal plane in the +z direction.

Buffer Tree [Arge’95]

Sort(N)

T/B

2. Keep triangles that intersect the sweep plane in a search tree ordered by
≺. Amortized Sort(N)

3. When passing target level !i ∈ L, dump contents of tree to disk.

Using a persistent search tree, we can answer
contour queries in O(logB N + T/B) I/Os.

Preprocessing needs O(Sort(N)) I/Os and O(N) space.
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We call ≺ a “level-ordering” of triangles in M.

t1
t2

t3 t4

Theorem. One can find in O(Sort(N)) I/Os a
total ordering “≺” of triangles of M, s.t. for any !:

1. Triangles in ∆! are ≺-sorted in cw or ccw order.

t1 ≺ t3 ≺ t2 =⇒ t1 ≺ t4 ≺ t2

2. Subsets of ∆! intersecting distinct contours C1 and C2 don’t “interleave”:

a1a2b1c1c2c3b2b3d1d2b4a3a4a5

a1a2a3a4a5b1b2b3b4c1c2c3d1d2

Can separate contours using a stack
in O(T/B) I/Os.
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partial order. Thus we can topologically sort it into a total order.

Lemma. Every cycle of M∗ loses precisely one edge.

Take a monotone min (bd) to max path P and delete its dual from M∗.

Level Ordering of Elementary Terrains

15

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

[Arge, Toma, Zeh’03]
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[Agarwal, Arge, Yi ’06] Positive and negative saddle points can be found in
O(Sort(N)) I/Os.
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new max

Lemma. Doing this removes all
positive saddles and maxima and adds
a new maximum.

Turning a terrain into an elementary one by surgery
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Theorem. In a contour of M′, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.
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contour and its red children.
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Thank You!

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus ≥ 1? (Orientable or not)

Can a topological sphere M embedded in R3 be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?


