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Medial Axis
Shapes and Surfaces

The medial axis (MA) of an open set S is the set of points with > 2 closest
points in 0S.
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Shapes and Surfaces

The medial axis (MA) of an open set S is the set of points with > 2 closest
points in 0S.

The medial axis of a surface X is the union of medial axes of all components
of R™ \ 3.



Problem of
Medial Axis Approximation

Given a sample of the surface enclosing a shape, we want to approxiamate
the MA of shape geometrically and capture its topology.

Theorem. [Lieutier'03] Any bounded open subset of R™ has the same
homotopy type as its medial axis.

¢ Applications: shape analysis, motion planning, mesh partitioning, .. ..
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Geometric Approximation

A small change in S can keep a sample valid but change M (S) dramatically.

In practice, a filtered medial axis can be more interesting.



natically.

Jsuunigsjep3 7 ‘jeuuossiog ‘I|e11y Jo Ase1inod ainioid

4=
O
QY
| .
o
(e




natically.

Jsuunigsjep3 7 ‘jeuuossiog ‘I|e11y Jo Ase1inod ainioid

In pract



Some History on
Medial Axis Approximation

¢ Exact Methods: for limited classes of shapes
- [Culver, Keyser, Manocha '04] for Polytopes

¢ Voronoi Filtering:

- [Amenta, Bern '99] 2d

= [Amenta, Choi, Kolluri '01] Power-Crust
- [Boissonnat, Cazals '02]

- [Dey, Zhao '04]

- [Lieutier, Chazal '05] A-medial axis

¢ Other:

- Thinning Methods
Grid Methods
PDE Methods



Our Contributions

e Separating geometry and topology:
We introduce the MA core that captures the topology
and can be used to topologically repair other geometric
approximation methods.

e We use the (unstable) flow complex to do this for the
first time.
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Distance Functions

The key is to look at the distance function h induced by >::

h(x) := inf || — y|| continuous
y

h(-??) = gg__} HC’? 7 pH discrete
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Critical Points of
Distance Functions

Point x is a critical point of h iff v(x) = 0 or equivalently if z = d(x).

r € conv A(x) Vi)t Do
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formly to a continuous flow map
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[Lieutier '04]
Although vector field ¥ is not continuous, Euler schemes on v converge uni-
formly to a continuous flow map
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Lemma. [Lieutier'04] if A(t) = h(¢(t,z)) and v(t) = v(¢(t, x)), then

/ v (t)||?dt.

o Critical pomts are fixed points of gb

Notation:

oy = U ¢(z) Flow Closure of T

o <



Integrating the
Steepest Ascent Vector Field

=

Lemma. [Lieutier'04] if h(t) = h(¢(t,z)) and v(t) = v(¢(t, x)), then
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For a point € X, the local feature size of x is
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Computing the MA Core
(Capturing the Topology)

Definition. Let N be the set of all medial axis critical points of h inside S.
The core for approximating M (S) is




A Criterion for Homotopy Equivalence

Proposition. Let X and Y C X be arbitrary sets and
H:[0,1]xX - X
be a continuous function (on both variables) satisfying
L oYe e X B0 2=z
2. VyeY,Vte[0,1]: H(t,y) €Y
3. Ve e X:H(l,z) €Y

Then X and Y have the same homotopy type.
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A Criterion for Homotopy Equivalence

Proposition. Let X and Y C X be arbitrary sets and

[0 x X - X
time
be a continuous function (on both variables) satisfying

1. Ve e X :[(0,2) == < Always true
2. VyeY,vie [0 : [ty €Y ~ dpY)=Y |

3. Va:EX:,x)EY ~ — Enough if ||[v(x)]| > ¢c,Vx € X\ Y

Then X and Y have the same homotoy since

A(t) = h(0)+ / o (r)2dr

< diam X

e ———
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Lemma. If € < 0.14 and let €2 < § < 102. Then Ss is closed under both

¢ and q~5

OS5y =55

16



o v i i i a e o =
. R i 3 oy ro ey o T g - 2 &

e i e 2 B P AP, o G T < T e g A St o B i e b b R A P i SR A e e e
| G RN S N M VARl e gt R g T O IO = . O g S MR IO Bl N ek G i (e L A W S e S,

Step'1.-5 =55

Proof. Using ¢:

17



. TR g g i o e Fr gt T WP S e Y T P e G T O i g R R . e B e e iy b P it i -

(S R g P S RN e M OB P e A R RS T ARSIl N A e e M O M T G | e _ORE Y T o WL RS b A L G

Stepil. 5>~ 55

0

Proof. Using ¢:

R

17



B e o N T N e o G S SR 8 e T e T K G S e e gl A b i B i el e b i e i o e e S e e
P B R g N S N s M Pl T A g T L A Ol S T e M [ T O e R (G RO R LA o WL R R A

0

Stepil. 5>~ 55

Proof. Using ¢:

R
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Step'1.-5 =55
Proof. Using ¢:

o ¢(Ss5) =
o ||lv(x)|| = ||Vh(z)||=1for all z € S\ M.
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Step 2. S5~ €

Proof. Using ¢:
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Wdiﬁuucﬂm

Step 2. S5~ €
Proof. Using ¢:

o $(€) =
o ||o(x)|| > ¢ for all z € S5\ C.

Thus core and shape (and MA) are homotopy equivalent.
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Corollary. For any T' C S,

p(T)uCe

is homotopy equivalent to M(S).
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Geometric Quality and Flow Closure

Can we diverge too far away from MA when taking flow closure?

Theorem. If h(z) = 1 and = has a medial axis point within distance O(,/2),

~

then for any t > 0, y = ¢(t,x) has a medial axis point within distance




Conclusions and Open Problems

1. Core is defined as the union of unstable manifolds of (inner) medial
axis critical points.

2. Core has the same homotopy type as MA.
3. Core plus the flow closure of any approximation has the right homotopy.
Some Open Questions:

e Understanding the properties of the core in the limit.

e Can the core be thinned down further to a sub-complex of Vor(P)?

e Can flow closure of Voronoi facets be approximated safely with whole
Voronoi facets?

e Improving the degradation bound.
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2. Core has the same homotopy type as MA.
3. Core plus the flow closure of any approximation has the right homotopy.
Some Open Questions:

e Understanding the properties of the core in the limit.

e Can the core be thinned down further to a sub-complex of Vor(P)?

e Can flow closure of Voronoi facets be approximated safely with whole
Voronoi facets?

e Improving the degradation bound.

Thank You!



