Medial Axis Approximation and Unstable Flow Complex

Bardia Sadri

joint work with Joachim Giesen and Edgar Ramos

Medial Axis of Shapes and Surfaces

The medial axis (MA) of an open set S is the set of points with ≥ 2 closest points in ∂S .

S

Medial Axis of Shapes and Surfaces

Medial Axis ^{of} Shapes and Surfaces

Medial Axis ^{of} Shapes and Surfaces

Medial Axis ^{of} Shapes and Surfaces

Medial Axis of Shapes and Surfaces

The medial axis (MA) of an open set S is the set of points with ≥ 2 closest points in ∂S .

The medial axis of a surface Σ is the union of medial axes of all components of $\mathbb{R}^n \setminus \Sigma$.

Problem of Medial Axis Approximation

Given a sample of the surface enclosing a shape, we want to approxiamate the MA of shape geometrically and capture its topology.

Theorem. [Lieutier'03] Any bounded open subset of \mathbb{R}^n has the same homotopy type as its medial axis.

◇ Applications: shape analysis, motion planning, mesh partitioning,

Problem of Medial Axis Approximation

Given a sample of the surface enclosing a shape, we want to approxiamate the MA of shape geometrically and capture its topology.

Theorem. [Lieutier'03] Any bounded open subset of \mathbb{R}^n has the same homotopy type as its medial axis.

◇ Applications: shape analysis, motion planning, mesh partitioning,

A small change in S can keep a sample valid but change M(S) dramatically.

A small change in S can keep a sample valid but change M(S) dramatically.

A small change in S can keep a sample valid but change M(S) dramatically.

A small change in S can keep a sample valid but change M(S) dramatically.

In practice, a filtered medial axis can be more interesting.

Some History on Medial Axis Approximation

- ♦ Exact Methods: for limited classes of shapes
- [Culver, Keyser, Manocha '04] for Polytopes
- ♦ Voronoi Filtering:
- [Amenta, Bern '99] 2d
- [Amenta, Choi, Kolluri '01] Power-Crust
- [Boissonnat, Cazals '02]
- [Dey, Zhao '04]
- [Lieutier, Chazal '05] λ -medial axis
- \diamond Other:
- Thinning Methods
- Grid Methods
- PDE Methods

. . .

Some History on Medial Axis Approximation

Exact Methods: for limited classes of shapes
[Culver, Keyser, Manocha '04] for Polytopes

Our Contributions

 Separating geometry and topology: We introduce the MA core that captures the topology and can be used to topologically repair other geometric approximation methods.

• We use the (unstable) flow complex to do this for the first time.

- Grid Methods

 \diamond

- - -

 \diamond

 \cap

PDE Methods

The key is to look at the distance function h induced by Σ :

 $\tilde{h}(x) = \min_{p \in P} \|x - p\|$

$$\tilde{h}(x) = \min_{p \in P} \|x - p\|$$

$$\tilde{h}(x) = \min_{p \in P} \|x - p\|$$

$$\tilde{h}(x) = \min_{p \in P} \|x - p\|$$

The key is to look at the distance function h induced by Σ :

 $h(x) := \inf_{y \in \Sigma} \|x - y\|$

• P

 $\begin{array}{l} \diamond \quad \Sigma = h^{-1}(0) \\ \diamond \quad M(\Sigma) \cup \Sigma = \{ \text{points where } h \text{ is not differentiable} \} \end{array}$

$$\tilde{h}(x) = \min_{p \in P} \|x - p\|$$

The key is to look at the distance function h induced by Σ :

 $h(x) := \inf_{y \in \Sigma} \|x - y\|$

• P

 $\begin{array}{l} \diamond \quad \Sigma = h^{-1}(0) \\ \diamond \quad M(\Sigma) \cup \Sigma = \{ \text{points where } h \text{ is not differentiable} \} \end{array}$

$$\tilde{h}(x) = \min_{p \in P} \|x - p\|$$

The key is to look at the distance function h induced by Σ :

 $h(x) := \inf_{y \in \Sigma} ||x - y|| \qquad \text{continuous}$

 $\begin{array}{l} \diamond \quad \Sigma = h^{-1}(0) \\ \diamond \quad M(\Sigma) \cup \Sigma = \big\{ \text{points where } h \text{ is not differentiable} \big\} \end{array}$

$$h(x) = \min_{p \in P} ||x - p||$$
 discrete

6

A steepest ascent vector field v (or \tilde{v}) is defined everywhere that extends the gradient.

5

A steepest ascent vector field v (or \tilde{v}) is defined everywhere that extends the gradient.

 x_{\bullet}

 \sum

A steepest ascent vector field v (or \tilde{v}) is defined everywhere that extends the gradient.

x.

d(x)

Σ

A steepest ascent vector field v (or \tilde{v}) is defined everywhere that extends the gradient.

v(x)

X

d(x)

Σ

Point x is a critical point of h iff v(x) = 0 or equivalently if x = d(x).

5

Point x is a critical point of h iff v(x) = 0 or equivalently if x = d(x).

 x_{\bullet}

5

[Lieutier '04]

Although vector field v is not continuous, Euler schemes on v converge uniformly to a continuous flow map

 $\phi: [0, +\infty) \times \mathbb{R}^n \to \mathbb{R}^n.$

[Lieutier '04]

Although vector field v is not continuous, Euler schemes on v converge uniformly to a continuous flow map

[Lieutier '04]

Although vector field v is not continuous, Euler schemes on v converge uniformly to a continuous flow map

[Lieutier '04]

Although vector field v is not continuous, Euler schemes on v converge uniformly to a continuous flow map

[Lieutier '04]

Although vector field v is not continuous, Euler schemes on v converge uniformly to a continuous flow map

 $\begin{aligned} \phi &: [0,+\infty) \times \mathbb{R}^n \to \mathbb{R}^n. \\ & \text{time start end} \end{aligned}$

 \diamond Critical points are fixed points of ϕ .

[Lieutier '04]

Although vector field v is not continuous, Euler schemes on v converge uniformly to a continuous flow map

 $\begin{aligned} \phi &: [0,+\infty) \times \mathbb{R}^n \to \mathbb{R}^n. \\ & \text{time start end} \end{aligned}$

[Lieutier '04] Although vector field \tilde{v} is not continuous, Euler schemes on \tilde{v} converge uniformly to a continuous flow map

$$b: [0, +\infty) \times \mathbb{R}^n \to \mathbb{R}^n.$$
time start end

Lemma. [Lieutier'04] if $h(t) = h(\phi(t, x))$ and $v(t) = v(\phi(t, x))$, then

$$h(t) = h(x) + \int_0^t \|v(t)\|^2 dt$$

Lemma. [Lieutier'04] if $h(t) = h(\tilde{\phi}(t, x))$ and $v(t) = \tilde{v}(\tilde{\phi}(t, x))$, then $h(t) = h(x) + \int_0^t \|\tilde{v}(t)\|^2 dt.$

Unstable manifold of a critical point c is the set of all points that "flow out of" c.

 $U(c) = \bigcap_{\varepsilon > 0} \phi(N_{\varepsilon}(c))$

10

Unstable manifold of a critical point c is the set of all points that "flow out of" c.

 $U(c) = \bigcap_{\varepsilon > 0} \phi(N_{\varepsilon}(c))$

10

Unstable manifold of a critical point c is the set of all points that "flow out of" c.

Unstable manifold of a critical point c is the set of all points that "flow out of" c.

Unstable manifold of a critical point c is the set of all points that "flow out of" c.

Unstable manifold of a critical point c is the set of all points that "flow out of" c.

 $U(c) = \bigcap_{\varepsilon > 0} \phi(N_{\varepsilon}(c))$

10

Unstable manifold of a critical point c is the set of all points that "flow out of" c.

In general when dealing with discrete sets

 $U(c) = \tilde{\phi}(V(c)).$

In general when dealing with discrete sets

 $U(c) = \tilde{\phi}(V(c)).$

Sampling Assumption

For a point $x \in \Sigma$, the local feature size of x is

 $\mathsf{lfs}(x) := d(x, M).$

 $P \subset \Sigma$ is an ε -sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \operatorname{lfs}(x)$.

Sampling Assumption

For a point $x \in \Sigma$, the local feature size of x is

 $\mathsf{lfs}(x) := d(x, M).$

 $P \subset \Sigma$ is an ε -sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \operatorname{lfs}(x)$.

Sampling Assumption

For a point $x \in \Sigma$, the local feature size of x is

 $\mathsf{lfs}(x) := d(x, M).$

 $P \subset \Sigma$ is an ε -sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \operatorname{lfs}(x)$.

 \diamond The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

◊ The δ-tubular neighborhood of M(Σ): $M_{\delta} := M \cup \{x \in \mathbb{R}^n \setminus M \mid ||x - \check{x}|| < \delta ||\hat{x} - \check{x}||\}$

 \diamond The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

♦ The δ-tubular neighborhood of M(Σ): $M_{\delta} := M \cup \{x \in \mathbb{R}^n \setminus M \mid ||x - \check{x}|| < \delta ||\hat{x} - \check{x}||\}$

 \diamond The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

13

♦ The δ-tubular neighborhood of $M(\Sigma)$: $M_{\delta} := M \cup \{x \in \mathbb{R}^n \setminus M \mid ||x - \check{x}|| < \delta ||\hat{x} - \check{x}||\}$

 \diamond The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

 \diamond The δ -tubular neighborhood of $M(\Sigma)$:

 $M_{\delta} := M \cup \left\{ x \in \mathbb{R}^n \setminus M \mid \|x - \check{x}\| < \delta \|\hat{x} - \check{x}\| \right\}$

 \diamond The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

♦ The δ -tubular neighborhood of $M(\Sigma)$:

 $M_{\delta} := M \cup \left\{ x \in \mathbb{R}^n \setminus M \mid \|x - \check{x}\| < \delta \|\hat{x} - \check{x}\| \right\}$

 \diamond The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

 \diamond The δ -tubular neighborhood of $M(\Sigma)$:

 $M_{\delta} := M \cup \left\{ x \in \mathbb{R}^n \setminus M \mid \|x - \check{x}\| < \delta \|\hat{x} - \check{x}\| \right\}$

 \diamond The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

 \diamond The δ -tubular neighborhood of $M(\Sigma)$:

 $M_{\delta} := M \cup \left\{ x \in \mathbb{R}^n \setminus M \mid \|x - \check{x}\| < \delta \|\hat{x} - \check{x}\| \right\}$

♦ The δ -tubular neighborhood of Σ :

 $\Sigma_{\delta} := \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\}$

 \diamond The δ -tubular neighborhood of $M(\Sigma)$:

 $M_{\delta} := M \cup \left\{ x \in \mathbb{R}^n \setminus M \mid \|x - \check{x}\| < \delta \|\hat{x} - \check{x}\| \right\}$

Theorem [Dey, Giesen, Ramos, S '05] For an ε -sample of Σ with $\varepsilon < 1/3$, all critical points of \tilde{h} are contained in either Σ_{ε^2} or $M_{2\varepsilon}$.

Theorem [Dey, Giesen, Ramos, S '05] For an ε -sample of Σ with $\varepsilon < 1/3$, all critical points of \tilde{h} are contained in either Σ_{ε^2} or $M_{2\varepsilon}$.

Computing the MA Core (Capturing the Topology)

Definition. Let N be the set of all medial axis critical points of \tilde{h} inside S. The core for approximating M(S) is

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $H:[0,1]\times X\to X$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3.
$$\forall x \in X : H(1,x) \in Y$$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H: \begin{bmatrix} 0, 1 \end{bmatrix} \times X \to X$$
 time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3.
$$\forall x \in X : H(1, x) \in Y$$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H: \begin{bmatrix} 0, 1 \end{bmatrix} \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

Identity at time 0

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3.
$$\forall x \in X : H(1,x) \in Y$$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H: \begin{bmatrix} 0, 1 \end{bmatrix} \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$

3.
$$\forall x \in X : H(1, x) \in Y$$

Then X and Y have the same homotopy type.

15

Identity at time 0

Nothing leaves Y

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H: \begin{bmatrix} 0, 1 \end{bmatrix} \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$

3.
$$\forall x \in X : H(1, x) \in Y$$

Identity at time 0

Nothing leaves Y

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H: \begin{bmatrix} 0, 1 \end{bmatrix} \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$

$$\exists. \ \forall x \in X : H(1, x) \in Y$$

Identity at time 0

Nothing leaves Y

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H: [0, \mathbf{\Gamma}] \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2. $\forall y \in Y, \forall t \in [0, T] : H(t, y) \in Y$

3. $\forall x \in X : H(\mathbf{T}, x) \in Y$

Identity at time 0

Nothing leaves Y

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0, \mathbf{7}] \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : \phi(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, \mathbf{T}] : \phi(t, y) \in Y$$

3.
$$\forall x \in X : \phi(\mathbf{T}, x) \in Y$$

1977-1979-1979-1972-1972-1972-

Identity at time 0

Nothing leaves Y

Everything in Y by time 1

A Criterion for Homotopy Equivalence **Proposition.** Let X and $Y \subseteq X$ be arbitrary sets and $\phi: [0, T] \times X \to X$ time be a continuous function (on both variables) satisfying Always true 1. $\forall x \in X : \phi(0, x) = x$ 2. $\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y$ Nothing leaves Y3. $\forall x \in X : \phi(T, x) \in Y$ Everything in Y by time 1

A Criterion for Homotopy Equivalence **Proposition.** Let X and $Y \subseteq X$ be arbitrary sets and $\phi: [0, T] \times X \to X$ time be a continuous function (on both variables) satisfying Always true 1. $\forall x \in X : \phi(0, x) = x$ 2. $\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y$ $\phi(Y) = Y$ 3. $\forall x \in X : \phi(T, x) \in Y$ Everything in Y by time 1

Reduced Shapes are Closed under Discrete and Continuous Flows

Lemma. If $\varepsilon < 0.14$ and let $\varepsilon^2 \le \delta < 10\varepsilon^2$. Then S_{δ} is closed under both ϕ and $\tilde{\phi}$.

 $\phi(S_{\delta}) = S_{\delta}$

Shape and Reduced Shape are Homotopy Equivalent

Shape and Reduced Shape are Homotopy Equivalent

Shape and Reduced Shape are Homotopy Equivalent

Step 1. $S \simeq S_{\delta}$ Proof. Using ϕ : $\diamond \phi(S_{\delta}) = S_{\delta}$ $\diamond ||v(x)|| = ||\nabla h(x)|| = 1$ for all $x \in S \setminus M$.

Step 2. $S_{\delta} \simeq \mathbb{C}$ Proof. Using $\tilde{\phi}$: $\diamond \quad \tilde{\phi}(\mathbb{C}) = \mathbb{C}$

 S_{δ}

Thus core and shape (and MA) are homotopy equivalent.

Improving Geometric Quality or Fattening the Core

Corollary. For any $T \subset S_{\delta}$,

 $\phi(T) \cup \mathfrak{C}$

is homotopy equivalent to M(S).

Improving Geometric Quality or Fattening the Core

Corollary. For any $T \subset S_{\delta}$,

 $\phi(T) \cup \mathfrak{C}$

is homotopy equivalent to M(S).

Improving Geometric Quality or Fattening the Core

Corollary. For any $T \subset S_{\delta}$,

 $\phi(T) \cup \mathfrak{C}$

is homotopy equivalent to M(S).

Can we diverge too far away from MA when taking flow closure?

X

Theorem. If $\tilde{h}(x) = 1$ and x has a medial axis point within distance $O(\sqrt{\varepsilon})$, then for any $t \ge 0$, $y = \tilde{\phi}(t, x)$ has a medial axis point within distance

y

 $\widetilde{h}(y)$

Conclusions and Open Problems

- 1. Core is defined as the union of unstable manifolds of (inner) medial axis critical points.
- 2. Core has the same homotopy type as MA.
- 3. Core plus the flow closure of any approximation has the right homotopy.

Some Open Questions:

- Understanding the properties of the core in the limit.
- Can the core be thinned down further to a sub-complex of Vor(P)?
- Can flow closure of Voronoi facets be approximated safely with whole Voronoi facets?
- Improving the degradation bound.

Conclusions and Open Problems

- 1. Core is defined as the union of unstable manifolds of (inner) medial axis critical points.
- 2. Core has the same homotopy type as MA.
- 3. Core plus the flow closure of any approximation has the right homotopy.

Some Open Questions:

- Understanding the properties of the core in the limit.
- Can the core be thinned down further to a sub-complex of Vor(P)?
- Can flow closure of Voronoi facets be approximated safely with whole Voronoi facets?
- Improving the degradation bound.

Thank You!