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Medial Axis Approximation

3

Given a sample of the surface enclosing a shape, we want to approxiamate
the MA of shape geometrically and capture its topology.

Theorem. [Lieutier’03] Any bounded open subset of Rn has the same
homotopy type as its medial axis.

! Applications: shape analysis, motion planning, mesh partitioning, . . . .
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In practice, we rarely have enough knowledge about X to know what ε > 0
is sufficiently small, and even if we knew, we might not have the means to
obtain an ε-sampling of the boundary. In exceptional cases, the boundary
of X is defined mathematically, e.g. as the zero-set of an algebraic function
f : Rk → R, and we can determine sufficiently fine ε-samples and therefore
λ-Voronoi graphs that approximate the medial axis, as in Figure 11. This

Fig. 11: Two λ-medial axes of the same shape, with λ increasing from left to right,
constructed as a subset of the λ-Voronoi graph of a sample of the boundary.

approach to medial axes thus suffers from the same difficulties as the α-shape
approach to surface reconstruction: it is usually not clear which value of λ (or
α) is most appropriate, and in many cases there is no such most appropriate
value. This suggests we re-trace some of the developments aimed at fixing this
drawback for α-shapes, namely looking at the filtration (nested sequence) of
λ-Voronoi graphs and use topological persistence [30] to select and combine
pieces of λ-Voronoi graphs for different values of λ in different portions of X .
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! Exact Methods: for limited classes of shapes
- [Culver, Keyser, Manocha ’04] for Polytopes

! Voronoi Filtering:
- [Amenta, Bern ’99] 2d
- [Amenta, Choi, Kolluri ’01] Power-Crust
- [Boissonnat, Cazals ’02]
- [Dey, Zhao ’04]
- [Lieutier, Chazal ’05] λ-medial axis

! Other:
- Thinning Methods
- Grid Methods
- PDE Methods
- . . .
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Our Contributions

• Separating geometry and topology:
We introduce the MA core that captures the topology
and can be used to topologically repair other geometric
approximation methods.

• We use the (unstable) flow complex to do this for the
first time.
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Unstable manifold of a critical point c is the set of all points that “flow out
of” c.

U(c) =
⋂

ε>0

φ(Nε(c))
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Unstable manifold of a critical point c is the set of all points that “flow out
of” c.

U(c) =
⋂

ε>0

φ(Nε(c))
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Unstable manifold of a critical point c is the set of all points that “flow out
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⋂
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Σδ :=
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Figure 2: An example of the core in 2D. The sam-
ple consists of the gray points. There are three inner
medial axis critical points: 2 maxima (in solid black)
whose unstable manifolds are singletons made of
themselves alone, and a saddle point (hollow) whose
unstable manifold is shown in red.

the function hP : R3 → R, x "→ minp∈P ‖x− p‖, that assigns
to each point its distance to the sample P of ∂S. The finite
set P is the boundary of the open set P c = R3\P and we can
define the distance function and the flow vector for P c as
we did for S. Since hP c = hP , in a slight abuse of notation
we will denote both of these distance function with hP and
let AP (x) = {y ∈ P | ‖x − y‖ = hP (x)}. We shall also
denote the center of the smallest ball containing AP (x) as
dP (x) and the associated flow vector field as vP . Note that
dP (x) is the closest point on the Delaunay face dual to the
lowest dimensional Voronoi face that contains x. Sometimes
dP (x) is referred to as the driver of x. Technically speaking,
since P c is unbounded, hP has a critical point at infinity.
The other critical points of hP can be characterized as the
intersection points of Delaunay faces with their dual Voronoi
faces [10].

Separation of Critical Points. Dey, et al. [8] observed that
if P is an ε-sample of the smooth boundary Σ of a shape
S, then the critical points of the discrete distance function
hP cannot reside everywhere in S. Rather they have to be
either very close to Σ or very close to M .

Theorem 1. [8] Let P be an ε-sample of a smooth surface
Σ. Then for every critical point c of hP , either (i) ‖c− ĉ‖ ≤
ε2f(ĉ), or (ii) ‖c− č‖ ≤ 2εµ(c).

Thus the critical points of hP can be classified based on
whether they are close to Σ or close to M . We refer to the
first class of critical points as surface critical points and to
the second class as medial axis critical points. We further
subdivide the medial axis critical points hP into two sub-
groups: inner medial axis critical points are those that are
close to M(S) and outer medial axis critical points are those
close to M(S∗).

Core. The union of the unstable manifolds of the inner me-
dial axis critical points of hP will play an important role in
the present paper we refer to this union as the core of the
medial axis approximation (See Figure 2). We will show that
for a sufficiently dense sample P of Σ this core is homotopy
equivalent to the medial axis M(S) of S.

Unstable Flow Complex. In general, unstable manifolds
of many critical points may intersect. However, in dis-
crete settings, since there are only a finite number of critical

points, we can achieve a cell complex decomposition of space
by grouping together, as cells, the points of the space that
are flowed into from the exactly same “set” of critical points.
We define a relation “∼” on the pairs of points in R3 under
which x ∼ y if and only if the set of critical points that
flow into x coincides with the set of those that flow into
y, or equivalently, if x is in the unstable manifolds of the
same set of critical points as y. It is clear that “∼” is an
equivalence relation. The unstable flow complex induced by
a point set P , denoted U(P ) (or just U when P is under-
stood) is the cell complex whose cells are connected com-
ponents of the subdivision of space into equivalence classes
of the “∼” relation. In the full-version of the paper, we
study the structure of this complex more closely in three
dimensions. It turns out that the full-dimensional cells of
this complex coincide with full-dimensional cells of Vor(P ).
The lower dimensional cells of U introduce a subdivision
of the 2-skeleton of Vor(P ). We will see that the core is
a sub-complex of U. The importance of these observations
is primarily in practice where we desire the output of our
algorithms to have a geometric cell-complex structure with
no redundancies. Nevertheless, the unstable flow complex
of a given set of points can be of independent interest theo-
retically.

3. HOMOTOPY EQUIVALENCES
As in the previous section, we always assume that Σ is

a smooth manifold with associated inner and outer com-
ponents S and S∗. Furthermore, we assume that P is ε-
sampling of Σ. Let C be the core of the approximation as
defined in Section 2, i.e. C is the union of unstable mani-
folds of the inner medial axis critical points of the distance
function hP contained in S. Here we want to show that C
and the medial axis M(S) of S are homotopy equivalent.

Following Lieutier [13] the following criterion is used through-
out this paper to prove homotopy equivalence between topo-
logical spaces. For the classical definition of homotopy equiv-
alence refer, for example, to [12].

Proposition 1. Let X and Y ⊆ X be arbitrary sets and
let H : [0, 1] × X → X be a continuous function on both
variables satisfying the following three conditions. (1) ∀x ∈
X, H(0, x) = x, (2) ∀x ∈ X, H(1, x) ∈ Y , and (3) ∀y ∈
Y, ∀t ∈ [0, 1], H(t, y) ∈ Y . Then X and Y have the same
homotopy type.

Intuitively, we may interpret the first argument of the map
H as time. Using a simple re-parametrization in the first ar-
gument, we can replace the interval [0, 1] with any interval
[0, T ] where T > 0 is a real number. It is important that
the time interval considered has finite length. The above
criterion for homotopy equivalence between X and Y con-
tinuously maps points in X to those in Y during the time
interval [0, T ]. At time 0, all points in X are mapped to
themselves and at time T , they have all arrived in Y . No-
tice, the important property that the points in Y stay in Y
all the time.

In the following we want to plug in φS and φP (the flow re-
sulted from integrating vP after circumventing the technical
difficulty of unboundedness of P c) for the map H mentioned
above. When distance flow maps are used for H, the first
condition of Proposition 1 is automatically satisfied since
φS(0, x) = x for all x (the same holds for φP ). Satisfying

Definition. Let N be the set of all medial axis critical points of h̃ inside S.
The core for approximating M(S) is

C =
⋃

c∈N

U(c)
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Tφ

φ

φ

φ

Always true

φ(Y ) = Y

since

Enough if ‖v(x)‖ > c,∀x ∈ X \ Y

h(t) = h(0) +
∫ t

0
‖v(τ)‖2dτ

< diam X



Reduced Shapes are Closed
under Discrete and Continuous Flows

Sδ
Σx
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Lemma. If ε < 0.14 and let ε2 ≤ δ < 10ε2. Then Sδ is closed under both
φ and φ̃.

v(x)

ṽ(x)

φ(Sδ) = Sδ
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φ

φ

! φ(Sδ) = Sδ

! ‖v(x)‖ = ‖∇h(x)‖ = 1 for all x ∈ S \ M .

Sδ

Step 1. S ! Sδ

Proof. Using φ:
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Step 2. Sδ ! C

Proof. Using φ̃:

! φ̃(C) = C

φ̃
φ̃

x

d̃

x

d̃

! ‖ṽ(x)‖ > c for all x ∈ Sδ \ C.

ṽ(x) = x−d̃(x)

h̃(x)

Thus core and shape (and MA) are homotopy equivalent.

Sδ

C
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Corollary. For any T ⊂ Sδ,

φ(T ) ∪ C

is homotopy equivalent to M(S).
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φ̃

Corollary. For any T ⊂ Sδ,

φ(T ) ∪ C

is homotopy equivalent to M(S).
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Theorem. If h̃(x) = 1 and x has a medial axis point within distance O(
√

ε),
then for any t ≥ 0, y = φ̃(t, x) has a medial axis point within distance

O(
√

ε)h̃(y)1+O(
√

ε).

x

1

y

Can we diverge too far away from MA when taking flow closure?
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1. Core is defined as the union of unstable manifolds of (inner) medial
axis critical points.

2. Core has the same homotopy type as MA.

3. Core plus the flow closure of any approximation has the right homotopy.

Some Open Questions:

• Understanding the properties of the core in the limit.

• Can the core be thinned down further to a sub-complex of Vor(P )?

• Can flow closure of Voronoi facets be approximated safely with whole
Voronoi facets?

• Improving the degradation bound.
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