Geometric and Topological Guarantees for the WRAP Reconstruction Algorithm

Bardia Sadri

Joint Work Edgar Ramos
Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.
A shape is an open set S that has a “smooth” surface Σ for boundary.
A shape is an open set S that has a “smooth” surface Σ for boundary.
A shape is an open set S that has a “smooth” surface Σ for boundary.

The medial axis (MA) of a shape S is the set of points in S that have ≥ 2 closest points in Σ.
A shape is an open set S that has a “smooth” surface Σ for boundary.

The medial axis (MA) of a shape S is the set of points in S that have ≥ 2 closest points in Σ.

\[\Sigma \]

\[S \]
A shape is an open set S that has a “smooth” surface Σ for boundary. The medial axis (MA) of a shape S is the set of points in S that have ≥ 2 closest points in Σ.
A shape is an open set S that has a “smooth” surface Σ for boundary.

The medial axis (MA) of a shape S is the set of points in S that have ≥ 2 closest points in Σ.

\begin{center}
\begin{tikzpicture}
\draw[thick,black] (-3,0) .. controls (-1,1) and (1,-1) .. (3,0);
\draw[thick,black] (-3,-2) .. controls (-1,-1) and (1,-1) .. (3,-2);
\draw[thick,red] (-2,0) .. controls (-1.5,1) and (1.5,-1) .. (2,0);
\draw[thick,red] (-2,-2) .. controls (-1.5,-1) and (1.5,-1) .. (2,-2);
\node at (0,0) {S};
\node at (0,-2) {S^*};
\node at (-1,1) {M};
\node at (1,1) {M^*};
\node at (0,0.5) {Σ};
\end{tikzpicture}
\end{center}
A shape is an open set S that has a “smooth” surface Σ for boundary.

The medial axis (MA) of a shape S is the set of points in S that have ≥ 2 closest points in Σ.

The medial axis of a surface Σ is the union of medial axes of all components of $\mathbb{R}^n \setminus \Sigma$.
We use the (relative) \(\varepsilon \)-sampling framework of [Amenta-Bern’99].

For a point \(x \in \Sigma \), the \textbf{local feature size} of \(x \) is

\[
\text{lfs}(x) := d(x, M).
\]

\(P \subset \Sigma \) is an \(\varepsilon \)-\textbf{sample} if every \(x \in \Sigma \) has a sample within distance \(\varepsilon \text{lfs}(x) \).

Samples of Surfaces

We use the (relative) ε-sampling framework of [Amenta-Bern’99].

For a point $x \in \Sigma$, the local feature size of x is

$$\text{lfs}(x) := d(x, M).$$

$P \subset \Sigma$ is an ε-sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \text{lfs}(x)$.

We use the (relative) ε-sampling framework of [Amenta-Bern’99].

For a point $x \in \Sigma$, the local feature size of x is

$$\text{lfs}(x) := d(x, M).$$

$P \subset \Sigma$ is an ε-sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \text{lfs}(x)$.

Samples of Surfaces

We use the (relative) ε-sampling framework of [Amenta-Bern’99].

For a point $x \in \Sigma$, the local feature size of x is

$$\text{lfs}(x) := d(x, M).$$

$P \subset \Sigma$ is an ε-sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \text{lfs}(x)$.

There are many surface reconstruction methods!

• As 0-set of an approximate signed distance function: [Hoppe et al’92, Curless et al’96]

• As other iso-surfaces:
 - NN Interpolation [Boissonnat-Cazals’02]
 - MLS [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05, Dey et al’05]
 - SVM [Schölkopf et al’04]

• Delaunay Methods:
 - [Boissonnat’84, Amenta-Bern’99, Amenta et al’91, Amenta-Choi-Kolluri’01]

• Using distance functions:
 - [Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey et al’05]
There are many surface reconstruction methods!

- As 0-set of an approximate signed distance function: [Hoppe et al’92, Curless et al’96]

- As other iso-surfaces:
 - NN Interpolation [Boissonnat-Cazals’02]
 - MLS [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05, Dey et al’05]
 - SVM [Schölkopf et al’04]

- Delaunay Methods:
 - [Boissonnat’84, Amenta-Bern’99, Amenta et al’91, Amenta-Choi-Kolluri’01]

- Using distance functions:
 - [Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey et al’05]
A Sketch of the WRAP Algorithm
A Sketch of the WRAP Algorithm
A Sketch of the WRAP Algorithm

The WRAP Algorithm [Edelsbrunner'04]
For every $\tau \in \text{Del } P$, if τ is reachable from no “centered” simplex other than ω, then remove τ.

The WRAP Algorithm [Edelsbrunner’04]
For every $\tau \in \text{Del } P$, if τ is reachable from no “centered” simplex other than ω, then remove τ.

The Machinery
A discrete set of points P induces a squared distance function

$$h(x) = \min_{p \in P} \|x - p\|^2$$
(Squared) Distance to Discrete Point Sets

\[h(x) = \min_{p \in P} \| x - p \|^2 \]

\(P \) is a discrete set of points

The squared distance function induced by \(P \) is

Observation. \(h \) is smooth at points with a unique closest point in \(P \).
Generalized Gradient

Generalized Gradient

Generalized Gradient

\[\mathbf{x} \]

\(V(x) \): lowest-dimensional Voronoi face containing \(x \).

$V(x)$: lowest-dimensional Voronoi face containing x.

$D(x)$: Delaunay dual to $V(x)$.

Generalized Gradient

$V(x)$: lowest-dimensional Voronoi face containing x.
$D(x)$: Delaunay dual to $V(x)$.
The driver of x is the closest point to x in $D(x)$.

Generalized Gradient

\[V(x): \text{lowest-dimensional Voronoi face containing } x. \]
\[D(x): \text{Delaunay dual to } V(x). \]

The driver of \(x \) is the closest point to \(x \) in \(D(x) \).

\[v(x) = 2(x - d(x)) \]

$V(x)$: lowest-dimensional Voronoi face containing x.

$D(x)$: Delaunay dual to $V(x)$.

The driver of x is the closest point to x in $D(x)$.

$$v(x) = 2(x - d(x))$$

\[V(x): \text{lowest-dimensional Voronoi face containing } x. \]
\[D(x): \text{Delaunay dual to } V(x). \]

The \textit{driver} of \(x \) is the closest point to \(x \) in \(D(x) \).

\[v(x) = 2(x - d(x)) \]

Moving at point x in with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

Integrating \mathcal{U}
Moving at point x in with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$.
Moving at point \(x \) in with speed \(v(x) \) results a \textbf{flow map} \(\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n \).
Moving at point x in with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$.

\[
\begin{align*}
x(0) &= x_0 \\
x'(t) &= v(x(t))
\end{align*}
\]
Moving at point x in with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.
Moving at point x in with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$.

$$
\begin{align*}
x(0) &= x_0 \\
x'(t) &= v(x(t))
\end{align*}
$$
Moving at point x in with speed $v(x)$ results in a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

\[
x(0) = x_0 \\
x'(t) = v(x(t))
\]
Moving at point x in with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y.”
Integrating \(\mathcal{V} \)

Moving at point \(x \) in with speed \(v(x) \) results a flow map \(\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \).

\(\phi(t, x) = y \) means “starting at \(x \) and going for time \(t \) we reach \(y \).

\[
\phi(x) = \{ \phi(t, x) : t \geq 0 \}
\]
Moving at point x in with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y”.

$$\phi(x) = \{ \phi(t, x) : t \geq 0 \}$$

$$\phi(X) = \bigcup_{x \in X} \phi(x)$$
Theorem. The flow map \(\phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \) is continuous on both variables.
Theorem. The flow map $\phi : \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ is continuous on both variables.

Theorem. For $y = \phi(t, x)$,

$$h(y) = h(x) + \int_0^t \|v(\phi(\tau, x))\|^2 d\tau.$$
A point c with $v(c) = 0$ is called \textit{critical}.
A point c with $v(c) = 0$ is called critical.

A point c is critical iff $\{c\} = V(c) \cap D(c)$.
A point c with $v(c) = 0$ is called critical.

A point c is critical iff $\{c\} = V(c) \cap D(c)$.
A point c with $v(c) = 0$ is called critical.

A point c is critical iff $\{c\} = V(c) \cap D(c)$.
The \(\delta \)-tubular neighborhoods of \(\Sigma \) and \(M \):

\[
\Sigma_\delta = \{ x \in \mathbb{R}^n \setminus M : \| x - \hat{x} \| < \delta f(\hat{x}) \}
\]
\[
M_\delta = \{ x \in \mathbb{R}^n \setminus \Sigma : \| x - \tilde{x} \| < \delta f(\tilde{x}) \}
\]
The δ-tubular neighborhoods of Σ and M:

\[\Sigma_\delta = \left\{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \right\} \]

\[M_\delta = \left\{ x \in \mathbb{R}^n \setminus \Sigma : \|x - \tilde{x}\| < \delta f(\tilde{x}) \right\} \]
The δ-tubular neighborhoods of Σ and M:

\[
\Sigma_\delta = \{ x \in \mathbb{R}^n \setminus M : \| x - \hat{x} \| < \delta f(\hat{x}) \}
\]

\[
M_\delta = \{ x \in \mathbb{R}^n \setminus \Sigma : \| x - \tilde{x} \| < \delta f(\hat{x}) \}
\]
The δ-tubular neighborhoods of Σ and M:

$$\Sigma_\delta = \{ x \in \mathbb{R}^n \setminus M : \| x - \hat{x} \| < \delta f(\hat{x}) \}$$

$$M_\delta = \{ x \in \mathbb{R}^n \setminus \Sigma : \| x - \check{x} \| < \delta f(\check{x}) \}$$
The δ-tubular neighborhoods of Σ and M:

$$\Sigma_\delta = \{ x \in \mathbb{R}^n \setminus M : \| x - \hat{x} \| < \delta f(\hat{x}) \}$$

$$M_\delta = \{ x \in \mathbb{R}^n \setminus \Sigma : \| x - \tilde{x} \| < \delta f(\tilde{x}) \}$$
The δ-tubular neighborhoods of Σ and M:

$$
\Sigma_\delta = \{ x \in \mathbb{R}^n \setminus M : \|x - \hat{x}\| < \delta f(\hat{x}) \} \\
M_\delta = \{ x \in \mathbb{R}^n \setminus \Sigma : \|x - \tilde{x}\| < \delta f(\tilde{x}) \}
$$
The δ-tubular neighborhoods of Σ and M:

$$\Sigma_\delta = \{ x \in \mathbb{R}^n \setminus M : \| x - \hat{x} \| < \delta f(\hat{x}) \}$$

$$M_\delta = \{ x \in \mathbb{R}^n \setminus \Sigma : \| x - \tilde{x} \| < \delta f(\tilde{x}) \}$$
The δ-tubular neighborhoods of Σ and M:

\[\Sigma_\delta = \{ x \in \mathbb{R}^n : M : \| x - \hat{x} \| < \delta f(\hat{x}) \} \]

\[M_\delta = \{ x \in \mathbb{R}^n : \Sigma : \| x - \tilde{x} \| < \delta f(\tilde{x}) \} \]

Theorem [DGRS’05]

If \(h \) is induced by an \(\varepsilon \)-sample of \(\Sigma \) with \(\varepsilon < 1/\sqrt{3} \), the all critical points of \(h \) are contained in either \(\Sigma_{\varepsilon^2} \) or \(M_{2\varepsilon^2} \).
Stable manifold of a critical point c is everything that flows into c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$
Stable manifold of a critical point c is everything that flows into c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$
Stable manifold of a critical point c is everything that flows into c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$
Stable manifold of a critical point c is everything that flows into c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$
Unstable manifold of a critical point c is everything that flows “out of” c.

$$\text{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).$$
Unstable manifold of a critical point c is everything that flows “out of” c.

$$\text{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).$$
Unstable manifold of a critical point c is everything that flows “out of” c.

$$\text{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).$$
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a \textit{continuous} function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and let $H : [0, 1] \times X \rightarrow X$ be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ \hspace{1cm} \text{Identity at time 0}$
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$
 Identity at time 0

2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
 Nothing leaves Y

3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
A Criterion for Homotopy Equivalence

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ \hspace{1cm} Identity at time 0
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$ \hspace{1cm} Nothing leaves Y
3. $\forall x \in X : H(1, x) \in Y$ \hspace{1cm} Everything in Y by time 1

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ \hspace{1cm} \text{Identity at time 0}$
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$ \hspace{1cm} \text{Nothing leaves } Y$
3. $\forall x \in X : H(1, x) \in Y$ \hspace{1cm} \text{Everything in } Y \text{ by time 1}$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, T] \times X \rightarrow X$$

be a **continuous** function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ \hspace{1cm} Identity at time 0
2. $\forall y \in Y, \forall t \in [0, T] : H(t, y) \in Y$ \hspace{1cm} Nothing leaves Y
3. $\forall x \in X : H(T, x) \in Y$ \hspace{1cm} Everything in Y by time 1

Then X and Y have the same homotopy type.
Proposition. Let \(X \) and \(Y \subseteq X \) be arbitrary sets and
\[
\phi : [0, T] \times X \to X
\]
be a continuous function (on both variables) satisfying

1. \(\forall x \in X : \phi(0, x) = x \) \hspace{1cm} \text{Identity at time 0}
2. \(\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y \) \hspace{1cm} \text{Nothing leaves } Y
3. \(\forall x \in X : \phi(T, x) \in Y \) \hspace{1cm} \text{Everything in } Y \text{ by time 1}

Then \(X \) and \(Y \) have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0,T] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : \phi(0,x) = x$
2. $\forall y \in Y, \forall t \in [0,T] : \phi(t,y) \in Y$
3. $\forall x \in X : \phi(T,x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0, T] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : \phi(0, x) = x$

2. $\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y$

3. $\forall x \in X : \phi(T, x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0,T] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : \phi(0,x) = x$
2. $\forall y \in Y, \forall t \in [0,T] : \phi(t,y) \in Y$
3. $\forall x \in X : \phi(T,x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0, T] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : \phi(0, x) = x$
2. $\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y$
3. $\forall x \in X : \phi(T, x) \in Y$

Then X and Y have the same homotopy type.

This is the idea Lieutier used in [Lieuteir'04] to show $M(S) \simeq S$.

Always true

$\phi(X) = X$

$\phi(Y) = Y$

Everything in Y by time 1
Key Theorem. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Key Theorem. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Key Theorem. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Key Theorem. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Key Theorem. If \(Y \subset X \) are bounded and

1. \(\phi(X) = X \) and \(\phi(Y) = Y \), and
2. \(\|v(x)\| \geq c > 0 \) for \(x \in X \setminus Y \),

then \(X \) and \(Y \) are homotopy equivalent.

Proof. If \(\phi(t, x) \notin Y \), then

\[
 h(\phi(t, x)) = h(x) + \int_0^t \|v(\phi(\tau, x))\|^2 d\tau \\
\geq h(x) + \int_0^t c^2 d\tau \\
= h(x) + tc^2 \\
< d_H(X, P)^2.
\]
If $V(x) \cap D(x) = \emptyset$ then

$$
\|v(x)\| = 2 \cdot \|x - d(x)\| \\
\geq 2 \cdot \text{dist}(V(x), D(x)).
$$
If $V(x) \cap D(x) = \emptyset$ then

$$\|v(x)\| = 2 \cdot \|x - d(x)\| \geq 2 \cdot \text{dist}(V(x), D(x)).$$

If $V(x) \cap D(x) = \{c\}$ then $x \in \text{Um}(c)$.
A Handy Lower Bound for Speed

If \(V(x) \cap D(x) = \emptyset \) then

\[
\|v(x)\| = 2 \cdot \|x - d(x)\| \geq 2 \cdot \text{dist}(V(x), D(x)).
\]

If \(V(x) \cap D(x) = \{c\} \) then \(x \in \text{Um}(c) \).

So, if \(\text{Um}(c) \subset Y \) we are fine!
Flow Induced by Weighted Points

Squared distance to p with weight w_p is $\|x - p\|^2 - w_p$.

The squared distance to a set P of weighted points is

$$h(x) = \min_{p \in P} \|x - p\|^2 - w_p.$$
For every set P of weighted points there is a set Q of weighted points such that

\[\text{Vor } P = \text{Del } Q \quad \text{and} \quad \text{Del } P = \text{Vor } Q \]
For every set P of weighted points there is a set Q of weighted points such that

\[\text{Vor } P = \text{Del } Q \quad \text{and} \quad \text{Del } P = \text{Vor } Q \]
For unweighted P, Q is the Voronoi vertices of P and for $q \in Q$:

$$w_q = \text{dist}(q, P)^2.$$
For unweighted P, Q is the Voronoi vertices of P and for $q \in Q$:

$$w_q = \text{dist}(q, P)^2.$$
Critical Points of h^*

Observation. critical points of h^* and h are the same.

A simplex $\tau \in \text{Del } P$ that contains a critical point is called a **centered simplex**.
Observation. critical points of h^* and h are the same.

A simplex $\tau \in \text{Del } P$ that contains a critical point is called a centered simplex. We treat $\mathbb{R}^n \setminus \text{conv } P$ as an abstract critical simplex ω.
A Partial Order on Delaunay Simplices

$\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

$\tau \prec^* \sigma$: there is a sequence $\tau = \tau_0 \prec \cdots \prec \tau_k = \sigma$.
A Partial Order on Delaunay Simplices

$\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

$\tau \prec^* \sigma$: there is a sequence $\tau = \tau_0 \prec \cdots \prec \tau_k = \sigma$.
A Partial Order on Delaunay Simplices

\(\tau \prec \sigma \): some flow line of \(\phi^* \) visits relative interiors of \(\sigma \) and \(\tau \) consecutively.

\(\tau \prec^* \sigma \): there is a sequence \(\tau = \tau_0 \prec \cdots \prec \tau_k = \sigma \).
A Partial Order on Delaunay Simplices

\[\tau \prec \sigma : \text{some flow line of } \phi^* \text{ visits relative interiors of } \sigma \text{ and } \tau \text{ consecutively.} \]

\[\tau \prec^* \sigma : \text{there is a sequence } \tau = \tau_0 \prec \cdots \prec \tau_k = \sigma. \]
\(\tau \prec \sigma \): some flow line of \(\phi^* \) visits relative interiors of \(\sigma \) and \(\tau \) consecutively.

\(\tau \prec^* \sigma \): there is a sequence \(\tau = \tau_0 \prec \cdots \prec \tau_k = \sigma \).
\(\tau \prec \sigma \): some flow line of \(\phi^* \) visits relative interiors of \(\sigma \) and \(\tau \) consecutively.

\(\tau \prec^* \sigma \): there is a sequence \(\tau = \tau_0 \prec \cdots \prec \tau_k = \sigma \).
A Partial Order on Delaunay Simplices

\(\tau \prec \sigma \): some flow line of \(\phi^* \) visits relative interiors of \(\sigma \) and \(\tau \) consecutively.

\(\tau \prec^* \sigma \): there is a sequence \(\tau = \tau_0 \prec \cdots \prec \tau_k = \sigma \).
$\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

$\tau \prec^* \sigma$: there is a sequence $\tau = \tau_0 \prec \cdots \prec \tau_k = \sigma$.
The WRAP Algorithm [Edelsbrunner’04]

1. For every \(\tau \in \text{Del } P \), if the only critical simplex that precedes \(\tau \) is the abstract critical simplex \(\omega \), then remove \(\tau \).

2. Return what is left as WRAP.
The WRAP Algorithm [Edelsbrunner’04]

1. For every $\tau \in \text{Del } P$, if “every” critical simplex that precedes τ is an outer medial axis critical simplex, then remove τ.

2. Return what is left as WRAP.

The WRAP Algorithm [Edelsbrunner’04]

1. For every $\tau \in \text{Del } P$, if “every” critical simplex that precedes τ is an outer medial axis critical simplex, then remove τ.

2. Return what is left as WRAP.

The Guarantees
Analysis of WRAP

Theorem. WRAP and cl S are homotopy equivalent.

Lemma. $\phi^*(\Sigma_\delta) = \Sigma_\delta$.
Theorem. WRAP and cl S are homotopy equivalent.

Lemma. $\phi^* (\Sigma_\delta) = \Sigma_\delta$.
Theorem. WRAP and $\text{cl } S$ are homotopy equivalent.

Lemma. $\phi^*(\Sigma_\delta) = \Sigma_\delta$.

cl S is a deformation-retract of $S \cup \Sigma_\delta$
Theorem. WRAP and cl S are homotopy equivalent.

Lemma. $\phi^* (\Sigma_\delta) = \Sigma_\delta$.

cl S is a deformation-retract of $S \cup \Sigma_\delta$
Theorem. WRAP and $\text{cl } S$ are homotopy equivalent.

Lemma. $\phi^*(\Sigma_\delta) = \Sigma_\delta$.

$\text{cl } S$ is a deformation-retract of $S \cup \Sigma_\delta$

EXACT = unstable manifolds of surface and inner MA cps.
Theorem. WRAP and cl \(S \) are homotopy equivalent.

Lemma. \(\phi^*(\Sigma_\delta) = \Sigma_\delta \).

\(\text{cl } S \) is a deformation-retract of \(S \cup \Sigma_\delta \)

EXACT = unstable manifolds of surface and inner MA cps.
Theorem. WRAP and $\text{cl } S$ are homotopy equivalent.

Lemma. $\phi^*(\Sigma_\delta) = \Sigma_\delta$.

$\text{cl } S$ is a deformation-retract of $S \cup \Sigma_\delta$

$\text{cl } S \simeq \text{EXACT}$

EXACT = unstable manifolds of surface and inner MA cps.
Analysis of WRAP

Theorem. WRAP and cl S are homotopy equivalent.

Lemma. $\phi^*(\Sigma_\delta) = \Sigma_\delta$.

$\text{cl } S$ is a deformation-retract of $S \cup \Sigma_\delta$

$\text{cl } S \cong \text{EXACT}$

EXACT = unstable manifolds of surface and inner MA cps.
Analysis of WRAP

Theorem. WRAP and $\text{cl } S$ are homotopy equivalent.

Lemma. $\phi^*(\Sigma_\delta) = \Sigma_\delta$.

$\text{cl } S$ is a deformation-retract of $S \cup \Sigma_\delta$

$\text{cl } S \simeq \text{EXACT}$

$\text{WRAP} \simeq \text{EXACT}$

EXACT = unstable manifolds of surface and inner MA cps.
Theorem. WRAP and $\text{cl } S$ are homotopy equivalent. (in 3D)

Lemma. $\phi^*(\Sigma_\delta) = \Sigma_\delta$.

$\text{cl } S$ is a deformation-retract of $S \cup \Sigma_\delta$

$\text{cl } S \simeq \text{EXACT}$

WRAP $\simeq \text{EXACT}$

$\text{EXACT} = \text{unstable manifolds of surface and inner MA cps.}$
Some Open Questions

- Can the geometric guarantee (and therefore the topological one) be extended to higher dimensions?
- Can WRAP be generalized for reconstruction of shapes with non-smooth boundaries? How should the sampling condition be defined? (some work done in [Lieutier-Chazal'06])
Some Open Questions

- Can the geometric guarantee (and therefore the topological one) be extended to higher dimensions?
- Can WRAP be generalized for reconstruction of shapes with non-smooth boundaries? How should the sampling condition be defined? (some work done in [Lieutier-Chazal'06])

Thank You!