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The Surface Reconstruction Problem

2

Given a point cloud sampled from a surface Σ, we want to compute a surface
Σ̂ that has the same topology as Σ and closely approximates it geometrically.
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Shapes, Surfaces, and their Medial Axes

The medial axis of a surface Σ is the union of medial axes of all components
of Rn \ Σ.

A shape is an open set S that has a “smooth” surface Σ for boundary.

The medial axis (MA) of a shape S is the set of points in S that have ≥ 2
closest points in Σ.
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Samples of Surfaces

x

4[Amenta-Bern’99] N. Amenta, M. Bern, Surface reconstruction by Voronoi filtering. Discrete & Computational Geometry, 1999.

We use the (relative) ε-sampling framework of [Amenta-Bern’99].

For a point x ∈ Σ, the local feature size of x is

lfs(x) := d(x, M).

P ⊂ Σ is an ε-sample if every x ∈ Σ has a sample within distance ε lfs(x).
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There are many surface reconstruction methods!
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• As 0-set of an approximate signed distance function: [Hoppe et al’92,
Curless et al’96]

• As other iso-surfaces:
NN Interpolation [Boissonnat-Cazals’02]
MLS [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05, Dey et al’05]
SVM [Schölkopf et al’04]

• Delaunay Methods:
[Boissonnat’84,
Amenta-Bern’99,
Amenta et al’91,
Amenta-Choi-Kolluri’01]

• Using distance functions:
[Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey et al’05]



There are many surface reconstruction methods!

5

• As 0-set of an approximate signed distance function: [Hoppe et al’92,
Curless et al’96]

• As other iso-surfaces:
NN Interpolation [Boissonnat-Cazals’02]
MLS [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05, Dey et al’05]
SVM [Schölkopf et al’04]

• Delaunay Methods:
[Boissonnat’84,
Amenta-Bern’99,
Amenta et al’91,
Amenta-Choi-Kolluri’01]

• Using distance functions:
[Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey et al’05]



A Sketch of the WRAP Algorithm

6



A Sketch of the WRAP Algorithm

6

ω



A Sketch of the WRAP Algorithm

6

ω



A Sketch of the WRAP Algorithm

6

ω

[Edelsbrunner’04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.

The WRAP Algorithm [Edelsbrunner’04]
For every τ ∈ Del P , if τ is reachable from no “centered” simplex other than
ω, then remove τ .
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The Machinery



(Squared) Distance to Discrete Point Sets

h(x) = min
p∈P

‖x− p‖2

Vor.nb 1

P is a discrete set of points

Vor.nb 1

The squared distance function induced by P is
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(Squared) Distance to Discrete Point Sets

h(x) = min
p∈P

‖x− p‖2

Observation. h is smooth at points with a unique closest point in P .

Vor.nb 1

P is a discrete set of points
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The squared distance function induced by P is
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Generalized Gradient

Vor.nb 1

9[Giesen-John’03] J. Giesen, M. John, Flow complex: A data structure for geometric modeling. SODA, 2003.
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Vor.nb 1
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v(x) = 2(x− d(x))

[Giesen-John’03] J. Giesen, M. John, Flow complex: A data structure for geometric modeling. SODA, 2003.
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Integrating 

Vor.nb 1

Moving at point x in with speed v(x) results a flow map φ : R+ × Rn → Rn.
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Integrating 

Vor.nb 1

φ(t, x) = y means “starting at x and going for time t we reach y”.

Moving at point x in with speed v(x) results a flow map φ : R+ × Rn → Rn.
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Integrating 

Vor.nb 1

φ(t, x) = y means “starting at x and going for time t we reach y”.

Moving at point x in with speed v(x) results a flow map φ : R+ × Rn → Rn.

φ(X) =
⋃

x∈X φ(x)
10

φ(x) = {φ(t, x) : t ≥ 0}

x(0) = x0

x′(t) = v(x(t))

v



Continuity of the Induced Flow

Theorem. The flow map φ : R×Rn → Rn is continuous on both variables.

δ

x
ε

y

11

y = φ(t, x)



Continuity of the Induced Flow

Theorem. The flow map φ : R×Rn → Rn is continuous on both variables.

Theorem. For y = φ(t, x),

h(y) = h(x) +
∫ t

0
‖v(φ(τ, x))‖2dτ.

δ

x
ε

y

11

x y

y = φ(t, x)



Critical Points of Distance Function
A point c with v(c) = 0 is called critical.

12



Critical Points of Distance Function

A point c is critical iff {c} = V (c) ∩D(c).

A point c with v(c) = 0 is called critical.

12



Critical Points of Distance Function

A point c is critical iff {c} = V (c) ∩D(c).

A point c with v(c) = 0 is called critical.

12



Critical Points of Distance Function

A point c is critical iff {c} = V (c) ∩D(c).

A point c with v(c) = 0 is called critical.

12



Separation of Critical Points

x

The δ-tubular neighborhoods of Σ and M :

Σδ =
{
x ∈ Rn \ M : ‖x− x̂‖ < δf(x̂)

}

Mδ =
{
x ∈ Rn \ Σ : ‖x− x̌‖ < δf(x̂)

}
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Theorem [DGRS’05]
If h is induced by an ε-sample of Σ with ε < 1/

√
3, the all critical

points of h are contained in either Σε2 or M2ε2 .



Stable Manifold of a Critical Point

Stable manifold of a critical point c is everything that flows into c.

Sm(c) = {x : φ(∞, x) = c}.
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Unstable Manifold of a Critical Point

Unstable manifold of a critical point c is everything that flows “out of” c.

Um(c) =
⋂

ε>0

φ(B(x, ε)) = φ(V (c)).
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Proposition. Let X and Y ⊆ X be arbitrary sets and

H : [0 , 1]×X → X

be a continuous function (on both variables) satisfying

1. ∀x ∈ X : H(0 , x) = x

2. ∀y ∈ Y,∀t ∈ [0 , 1] : H(t, y) ∈ Y

3. ∀x ∈ X : H(1 , x) ∈ Y

Then X and Y have the same homotopy type.

A Criterion for Homotopy Equivalence

X Y

16
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This is the idea Lieutier used in [Lieuteir’04] to show M(S) ! S.



In Other Words ...

X

Y

Key Theorem. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.
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In Other Words ...

h(φ(t, x)) = h(x) +
∫ t

0
‖v(φ(τ, x))‖2dτ

≥ h(x) +
∫ t

0
c2dτ

= h(x) + tc2

< dH(X, P )2.

Proof. If φ(t, x) !∈ Y , then
X

Y
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1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,
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A Handy Lower Bound for Speed
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If V (x) ∩D(x) = ∅ then

‖v(x)‖ = 2 · ‖x− d(x)‖
≥ 2 · dist(V (x), D(x)).
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A Handy Lower Bound for Speed

x

d
If V (x) ∩D(x) = {c} then x ∈ Um(c).

x

c
So, if Um(c) ⊂ Y we are fine!

18

If V (x) ∩D(x) = ∅ then

‖v(x)‖ = 2 · ‖x− d(x)‖
≥ 2 · dist(V (x), D(x)).



Flow Induced by Weighted Points
Vor.nb 1

Vor.nb 1

Squared distance to p with weight wp is ‖x− p‖2 − wp.

h(x) = min
p∈P

‖x− p‖2 − wp.

The squared distance to a set P of weighted points is

19



The

WRAP Algorithm



Polarity

For every set P of weighted points there is a set Q of weighted points such
that

Vor P =Del Q and Del P =Vor Q
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Voronoi Vertices as Weighted Points

For unweighted P , Q is the Voronoi vertices of P and for q ∈ Q:

wq = dist(q, P )2.

h

h∗
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Critical Points of 

Observation. critical points of h∗ and h are the same.

23

h∗

A simplex τ ∈ Del P that contains a critical point is called a centered simplex.



Critical Points of 

Observation. critical points of h∗ and h are the same.

We treat Rn \ conv P as an abstract critical simplex ω.

ω
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h∗

A simplex τ ∈ Del P that contains a critical point is called a centered simplex.
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The WRAP Algorithm [Edelsbrunner’04]

1. For every τ ∈ Del P , if “every” critical simplex that precedes τ is
an outer medial axis critical simplex, then remove τ .

2. Return what is left as WRAP.

The WRAP Algorithm

the abstract critical simplex ω

the only

25

ω

[Edelsbrunner’04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.
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Analysis of WRAP

Lemma. φ∗(Σδ) = Σδ.
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Lemma. φ∗(Σδ) = Σδ.

cl S is a deformation-retract of S ∪ Σδ

EXACT = unstable manifolds of surface and inner MA cps.

cl S ! EXACT

WRAP ! EXACT

27

(in 3D)Theorem. WRAP and cl S are homotopy equivalent.



Some Open Questions

28

• Can the geometric guarantee (and therefore the topological one) be
extended to higher dimensions?

• Can WRAP be generalized for reconstruction of shapes with non-smooth
boundaries? How should the sampling condition be defined? (some
work done in [Lieutier-Chazal’06])
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