Geometric and Topological Guarantees for the WRAP Reconstruction Algorithm

Bardia Sadri

Joint Work Edgar Ramos

The Surface Reconstruction Problem

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

A shape is an open set S that has a "smooth" surface Σ for boundary.

A shape is an open set S that has a "smooth" surface Σ for boundary.

A shape is an open set S that has a "smooth" surface Σ for boundary.

A shape is an open set S that has a "smooth" surface Σ for boundary.

A shape is an open set S that has a "smooth" surface Σ for boundary.

A shape is an open set S that has a "smooth" surface Σ for boundary.

A shape is an open set S that has a "smooth" surface Σ for boundary.

The medial axis (MA) of a shape S is the set of points in S that have ≥ 2 closest points in Σ .

The medial axis of a surface Σ is the union of medial axes of all components of $\mathbb{R}^n \setminus \Sigma$.

We use the (relative) ε -sampling framework of [Amenta-Bern'99].

For a point $x \in \Sigma$, the local feature size of x is

 $\mathsf{lfs}(x) := d(x, M).$

 $P \subset \Sigma$ is an ε -sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \operatorname{lfs}(x)$.

We use the (relative) ε -sampling framework of [Amenta-Bern'99].

For a point $x \in \Sigma$, the local feature size of x is

 $\mathsf{lfs}(x) := d(x, M).$

$P \subset \Sigma$ is an ε -sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \operatorname{lfs}(x)$.

We use the (relative) ε -sampling framework of [Amenta-Bern'99].

For a point $x \in \Sigma$, the local feature size of x is

 $\mathsf{lfs}(x) := d(x, M).$

 $P \subset \Sigma$ is an ε -sample if every $x \in \Sigma$ has a sample within distance $\varepsilon \operatorname{lfs}(x)$.

We use the (relative) ε -sampling framework of [Amenta-Bern'99].

For a point $x \in \Sigma$, the local feature size of x is

 $\mathsf{lfs}(x) := d(x, M).$

$P \subset \Sigma$ is an ε -sample if every $x \in \Sigma$ has a sample within distance ε lfs(x).

There are many surface reconstruction methods!

- As 0-set of an approximate signed distance function: [Hoppe et al'92, Curless et al'96]
- As other iso-surfaces: NN Interpolation [Boissonnat-Cazals'02] MLS [Levin'98, Alexa et al'01, Amenta-Kil'04, Kolluri'05, Dey et al'05] SVM [Schölkopf et al'04]
- Delaunay Methods: [Boissonnat'84, Amenta-Bern'99, Amenta et al'91, Amenta-Choi-Kolluri'01]
- Using distance functions: [Edelsbrunner'04, Chaine'03, Giesen-John'03, Dey et al'05]

There are many surface reconstruction methods!

- As 0-set of an approximate signed distance function: [Hoppe et al'92, Curless et al'96]
- As other iso-surfaces: NN Interpolation [Boissonnat-Cazals'02] MLS [Levin'98, Alexa et al'01, Amenta-Kil'04, Kolluri'05, Dey et al'05] SVM [Schölkopf et al'04]
- Delaunay Methods: [Boissonnat'84, Amenta-Bern'99, Amenta et al'91, Amenta-Choi-Kolluri'01]
- Using distance functions: [Edelsbrunner'04, Chaine'03, Giesen-John'03, Dey et al'05]

The WRAP Algorithm [Edelsbrunner'04]

For every $\tau \in \text{Del } P$, if τ is reachable from no "centered" simplex other than ω , then remove τ .

The WRAP Algorithm [Edelsbrunner'04]

For every $\tau \in \text{Del } P$, if τ is reachable from no "centered" simplex other than ω , then remove τ .

(Squared) Distance to Discrete Point Sets

P is a discrete set of points The squared distance function induced by P is

$$h(x) = \min_{p \in P} ||x - p||^2$$

(Squared) Distance to Discrete Point Sets 0 0 0

P is a discrete set of points The squared distance function induced by P is

$$h(x) = \min_{p \in P} ||x - p||^2$$

Observation. h is smooth at points with a unique closest point in P.

V(x): lowest-dimensional Voronoi face containing x.

V(x): lowest-dimensional Voronoi face containing x. D(x): Delaunay dual to V(x).

v(x) = 2(x - d(x))

v(x) = 2(x - d(x))

v(x) = 2(x - d(x))

Moving at point x in with speed v(x) results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$. $\phi(t, x) = y$ means "starting at x and going for time t we reach y".

Moving at point x in with speed v(x) results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$. $\phi(t, x) = y$ means "starting at x and going for time t we reach y". $\phi(x) = \{\phi(t, x) : t \ge 0\}$

 $\phi(x) = \{\phi(t, x) : t \ge 0\} \qquad \qquad \phi(X) = \bigcup_{x \in X} \phi(x)$

Continuity of the Induced Flow

Theorem. The flow map $\phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous on both variables.

Continuity of the Induced Flow

Theorem. The flow map $\phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous on both variables.

Theorem. For $y = \phi(t, x)$,

A point c with v(c) = 0 is called critical.

A point c with v(c) = 0 is called critical. A point c is critical iff $\{c\} = V(c) \cap D(c)$.

A point c with v(c) = 0 is called critical. A point c is critical iff $\{c\} = V(c) \cap D(c)$.

A point c with v(c) = 0 is called critical. A point c is critical iff $\{c\} = V(c) \cap D(c)$.

$$\Sigma_{\delta} = \{ x \in \mathbb{R}^n \setminus M : ||x - \hat{x}|| < \delta f(\hat{x}) \}$$

$$M_{\delta} = \{ x \in \mathbb{R}^n \setminus \Sigma : ||x - \check{x}|| < \delta f(\hat{x}) \}$$

$$\Sigma_{\delta} = \{ x \in \mathbb{R}^n \setminus M : ||x - \hat{x}|| < \delta f(\hat{x}) \}$$

$$M_{\delta} = \{ x \in \mathbb{R}^n \setminus \Sigma : ||x - \check{x}|| < \delta f(\hat{x}) \}$$

$$\Sigma_{\delta} = \{ x \in \mathbb{R}^n \setminus M : ||x - \hat{x}|| < \delta f(\hat{x}) \}$$

$$M_{\delta} = \{ x \in \mathbb{R}^n \setminus \Sigma : ||x - \check{x}|| < \delta f(\hat{x}) \}$$

$$\Sigma_{\delta} = \{ x \in \mathbb{R}^n \setminus M : ||x - \hat{x}|| < \delta f(\hat{x}) \}$$

$$M_{\delta} = \{ x \in \mathbb{R}^n \setminus \Sigma : ||x - \check{x}|| < \delta f(\hat{x}) \}$$

$$\Sigma_{\delta} = \{ x \in \mathbb{R}^n \setminus M : ||x - \hat{x}|| < \delta f(\hat{x}) \}$$

$$M_{\delta} = \{ x \in \mathbb{R}^n \setminus \Sigma : ||x - \check{x}|| < \delta f(\hat{x}) \}$$

$$\Sigma_{\delta} = \{ x \in \mathbb{R}^n \setminus M : ||x - \hat{x}|| < \delta f(\hat{x}) \}$$

$$M_{\delta} = \{ x \in \mathbb{R}^n \setminus \Sigma : ||x - \check{x}|| < \delta f(\hat{x}) \}$$

$$\Sigma_{\delta} = \{ x \in \mathbb{R}^n \setminus M : ||x - \hat{x}|| < \delta f(\hat{x}) \}$$

$$M_{\delta} = \{ x \in \mathbb{R}^n \setminus \Sigma : ||x - \check{x}|| < \delta f(\hat{x}) \}$$

Theorem [DGRS'05] If h is induced by an ε -sample of Σ with $\varepsilon < 1/\sqrt{3}$, the all critical points of h are contained in either Σ_{ε^2} or $M_{2\varepsilon^2}$.

Stable manifold of a critical point c is everything that flows into c.

 $\mathsf{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$

Stable manifold of a critical point c is everything that flows into c.

 $\mathsf{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$

Stable manifold of a critical point c is everything that flows into c.

$$\mathsf{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$

Stable manifold of a critical point c is everything that flows into c.

$$\mathsf{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$

Unstable manifold of a critical point c is everything that flows "out of" c.

$$\mathsf{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).$$

Unstable manifold of a critical point c is everything that flows "out of" c.

$$\mathsf{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).$$

Unstable manifold of a critical point c is everything that flows "out of" c.

$$\mathsf{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).$$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $H:[0,1]\times X\to X$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3.
$$\forall x \in X : H(1, x) \in Y$$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3.
$$\forall x \in X : H(1, x) \in Y$$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H: \begin{bmatrix} 0, 1 \end{bmatrix} \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

Identity at time 0

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3.
$$\forall x \in X : H(1, x) \in Y$$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$

3.
$$\forall x \in X : H(1, x) \in Y$$

Then X and Y have the same homotopy type.

Identity at time 0

Nothing leaves Y

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ Identity at time 0

- 2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
- 3. $\forall x \in X : H(1, x) \in Y$

Everything in Y by time 1

Nothing leaves Y

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ Identity at time 0

- 2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
- 3. $\forall x \in X : H(1, x) \in Y$

Everything in Y by time 1

Nothing leaves Y

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $H: [0, \mathbf{\Gamma}] \times X \to X$ time

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$

Identity at time 0

Nothing leaves Y

- 2. $\forall y \in Y, \forall t \in [0, T] : H(t, y) \in Y$
- 3. $\forall x \in X : H(\mathbf{T}, x) \in Y$

Everything in Y by time 1
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\phi: [0, \mathbf{T}] \times X \to X$ time

be a continuous function (on both variables) satisfying

1. $\forall x \in X : \phi(0, x) = x$ Ic

- 2. $\forall y \in Y, \forall t \in [0, \mathbf{T}] : \phi(t, y) \in Y$
- 3. $\forall x \in X : \phi(\mathbf{T}, x) \in Y$

Identity at time 0

Nothing leaves Y

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

Then X and Y have the same homotopy type.

This is the idea Lieutier used in [Lieuteir'04] to show $M(S) \simeq S$.

Key Theorem. If $Y \subset X$ are bounded and

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

X and Y are

flow-tight

Key Theorem. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and

2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

X

X and Y are

flow-tight

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

X and Y are

flow-tight

1. $\phi(X) = X$ and $\phi(Y) = Y$, and

2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

X and Y are

flow-tight

Key Theorem. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and

2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

Proof. If $\phi(t, x) \notin Y$, then

$$h(\phi(t,x)) = h(x) + \int_0^t ||v(\phi(\tau,x))||^2 d\tau$$

$$\geq h(x) + \int_0^t c^2 d\tau$$

$$= h(x) + tc^2$$

$$< d_H(X,P)^2.$$

X

A Handy Lower Bound for Speed

If $V(x) \cap D(x) = \emptyset$ then

$$\begin{aligned} \|v(x)\| &= 2 \cdot \|x - d(x)\| \\ &\geq 2 \cdot \mathsf{dist}(V(x), D(x)). \end{aligned}$$

 \dot{x}

d

A Handy Lower Bound for Speed

If $V(x) \cap D(x) = \emptyset$ then

$$\begin{aligned} \|v(x)\| &= 2 \cdot \|x - d(x)\| \\ &\geq 2 \cdot \mathsf{dist}(V(x), D(x)). \end{aligned}$$

 \dot{x}

С

If $V(x) \cap D(x) = \{c\}$ then $x \in Um(c)$.

 \dot{x}

A Handy Lower Bound for Speed

If $V(x) \cap D(x) = \emptyset$ then $||v(x)|| = 2 \cdot ||x - d(x)||$ \dot{x} $\geq 2 \cdot \operatorname{dist}(V(x), D(x)).$ If $V(x) \cap D(x) = \{c\}$ then $x \in Um(c)$. \dot{x} \mathcal{C} So, if $Um(c) \subset Y$ we are fine!

Flow Induced by Weighted Points

Squared distance to p with weight w_p is $||x - p||^2 - w_p$. The squared distance to a set P of weighted points is $h(x) = \min_{p \in P} ||x - p||^2 - w_p$.

Polarity

For every set ${\cal P}$ of weighted points there is a set ${\cal Q}$ of weighted points such that

Vor P = Del Q and Del P = Vor Q

Polarity

For every set P of weighted points there is a set Q of weighted points such that

Vor P = Del Q and Del P = Vor Q

Voronoi Vertices as Weighted Points

For unweighted P, Q is the Voronoi vertices of P and for $q \in Q$:

 $w_q = \operatorname{dist}(q, P)^2.$

Voronoi Vertices as Weighted Points

For unweighted P, Q is the Voronoi vertices of P and for $q \in Q$:

 $w_q = \operatorname{dist}(q, P)^2.$

Critical Points of h^*

Observation. critical points of h^* and h are the same.

A simplex $\tau \in \text{Del } P$ that contains a critical point is called a centered simplex.

Critical Points of h^*

Observation. critical points of h^* and h are the same.

A simplex $\tau \in \text{Del } P$ that contains a critical point is called a centered simplex. We treat $\mathbb{R}^n \setminus \text{conv } P$ as an abstract critical simplex ω .

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

 $\tau \prec \sigma$: some flow line of ϕ^* visits relative interiors of σ and τ consecutively.

The WRAP Algorithm

The WRAP Algorithm [Edelsbrunner'04]

- 1. For every $\tau \in \text{Del } P$, if the only critical simplex that precedes τ is the abstract critical simplex ω , then remove τ .
- 2. Return what is left as WRAP.

The WRAP Algorithm

The WRAP Algorithm [Edelsbrunner'04]

- 1. For every $\tau \in \text{Del } P$, if "every" critical simplex that precedes τ is an outer medial axis critical simplex, then remove τ .
- 2. Return what is left as WRAP.

[Edelsbrunner'04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.

The WRAP Algorithm

The WRAP Algorithm [Edelsbrunner'04]

- 1. For every $\tau \in \text{Del } P$, if "every" critical simplex that precedes τ is an outer medial axis critical simplex, then remove τ .
- 2. Return what is left as WRAP.

[Edelsbrunner'04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.

The Guarantees

Analysis of WRAP

Theorem. WRAP and cl S are homotopy equivalent.

Lemma. $\phi^*(\Sigma_{\delta}) = \Sigma_{\delta}$.

Analysis of WRAP

Theorem. WRAP and cl S are homotopy equivalent.

Lemma. $\phi^*(\Sigma_{\delta}) = \Sigma_{\delta}$.

Analysis of WRAP

Lemma. $\phi^*(\Sigma_{\delta}) = \Sigma_{\delta}$.

cl S is a deformation-retract of $S \cup \Sigma_{\delta}$

$\mathsf{cl}\ S\simeq\mathsf{EXACT}$

EXACT = unstable manifolds of surface and inner MA cps.

Lemma. $\phi^*(\Sigma_{\delta}) = \Sigma_{\delta}$.

Lemma. $\phi^*(\Sigma_{\delta}) = \Sigma_{\delta}$.

Theorem. WRAP and cl S are homotopy equivalent. (in 3D) Lemma. $\phi^*(\Sigma_{\delta}) = \Sigma_{\delta}$.

Some Open Questions

- Can the geometric guarantee (and therefore the topological one) be extended to higher dimensions?
- Can WRAP be generalized for reconstruction of shapes with non-smooth boundaries? How should the sampling condition be defined? (some work done in [Lieutier-Chazal'06])

Some Open Questions

- Can the geometric guarantee (and therefore the topological one) be extended to higher dimensions?
- Can WRAP be generalized for reconstruction of shapes with non-smooth boundaries? How should the sampling condition be defined? (some work done in [Lieutier-Chazal'06])

Thank You!