


The Surface Reconstruction Problem

Given a point cloud sampled from a surface >, we want to compute a surface
Y. that has the same topology as X and closely approximates it geometrically.



A shape is an open set S that has a “smooth” surface X for boundary.
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Shapes, Surfaces, and their Medial Axes

A shape is an open set S that has a “smooth” surface X for boundary.

The medial axis (MA) of a shape S is the set of points in S that have > 2
closest points in ..

S*

The medial axis of a surface XJ is the union of medial axes of all components
of R™ \ X.



Samples of Surfaces

We use the (relative) e-sampling framework of [Amenta-Bern’99].

For a point € X, the local feature size of x is

st = dliz: M)

[

or

P C ¥ is an e-sample if every x € 3 has a sample within distance ¢ Ifs(x).

[Amenta-Bern'99] N. Amenta, M. Bern, Surface reconstruction by Voronoi filtering. Discrete & Computational Geometry, 1999.
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There are many surface reconstruction methods!

e As O-set of an approximate signed distance function: [Hoppe et al’92,
Curless et al'96]

e As other iso-surfaces:
NN Interpolation [Boissonnat-Cazals'02]
MLS [Levin’98, Alexa et al'01, Amenta-Kil'04, Kolluri’05, Dey et al'05]
SVM [Scholkopf et al’04] e

e Delaunay Methods:
[Boissonnat'84,
Amenta-Bern’'99,
Amenta et al'91,
Amenta-Choi-Kolluri'01]

e Using distance functions:
[Edelsbrunner’04, Chaine’03, Giesen-John'03, Dey et al'05]
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A Sketch of the WRAP Algorithm

The WRAP Algorithm [Edelsbrunner’04]
For every 7 € Del P, if 7 is reachable from no “centered” simplex other than
w, then remove 7.

[Edelsbrunner'04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.



The WRAP Algorlthm [Edelsbrunner 04]
For every 7 € Del P, if 7 is reachable from no “centered” simplex other than
w, then remove 7.

[Edelsbrunner'04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004. 6
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peP

(Squared) Distance to Discrete Point Sets

The squared distance function induced by P is

P is a discrete set of points

h(x)

Observation. h is smooth at points with a unique closest point in P.
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Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".
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Integrating v

S

Moving at point z in with speed v(x) results a flow map ¢ : RT™ x R® — R".

¢(t,x) = y means “starting at = and going for time t we reach y".

¢(r) = 1o(t,z) : t = 0} A(X) = Uzex ¢()
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Continuity of the Induced Flow

Theorem. The flow map ¢ : R x R™ — R" is continuous on both variables.
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Critical Points of Distance Function
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Separation of Critical Points

The o-tubular neighborhoods of > and M:

s = {zeR"\M:|z—-2|| <df(@)}
Ms = {zeR*"\X:|z—-2|| <df(2)}
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Separation of Critical Points

The o-tubular neighborhoods of > and M:

Ys = {z€R"\M:|z-2| <df(2)}
Ms = {zeR*"\X:|z—-2|| <df(2)}
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Separation of Critical Points

Theorem
If h is induced by an e-sample of X with € < 1/\/§ the all critical
points of A are contained in either or




Stable Manifold of a Critical Point

Stable manifold of a critical point c is everything that flows into c.
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A Criterion for Homotopy Equivalence

Proposition. Let X and Y C X be arbitrary sets and
H:[0,1]xX —>X
be a continuous function (on both variables) satisfying
Eype X2 Hi0 vy — =
2. VyeY,vie|0,1]: H(t,y) €Y
3. Ve X : H(l,z) €Y

Then X and Y have the same homotopy type.
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A Criterion for Homotopy Equivalence

Proposition. Let X and Y C X be arbitrary sets and

Q: 0 x— X 40)=X
Ime

be a continuous function (on both variables) satisfying

1. Ve e X :[§(0,2) == . p— Always true |

2. VyeY,vte [0 [t y)eY L oY) =Y |

3. VzeX [l z) Y Everything in Y by time 1

Then X and Y have the same homotopy type.

This is the idea Lieutier used in [Lieuteir'04] to show M (S) ~ S.
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~_InOther Words ...

Key Theorem. If Y C X are bounded and
i olXi=X and oY =Y and
2l = e > Tor s XY

then X and Y are homotopy equivalent.

17



In Other Words ...

Key Theorem. If Y C X are bounded and
X and Y are

i olXi=X and oY =Y and
2l = e > Tor s XY

then X and Y are homotopy equivalent.

17



In Other Words ...

Key Theorem. If Y C X are bounded and
X and Y are

i olXi=X and oY =Y and
2l = e > Tor s XY

then X and Y are homotopy equivalent.

17



In Other Words ...

Key Theorem. If Y C X are bounded and
X and Y are

i olXi=X and oY =Y and
2l = e > Tor s XY

then X and Y are homotopy equivalent.

17



In Other Words ...

Key Theorem. If Y C X are bounded and
L 6(X) = X and (¥ = ¥, anc
2l = e > Tor s XY f

then X and Y are homotopy equivalent.

Proof. If ¢(t,x) €Y, then i
hb(t2) = h(z)+ / lo((r, ) 2dr

> h(a:)+/ cdr
0

— Bl ot
< dH(X, P)2
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A Handy Lower Bound for Speed

If V(z) N D(x) =0 then

lo()] 2-||lz —d(z)]]

2 - dist(V(x), D(x)).

Vel

-
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If V() N D(z) = {c} then x € Um(c).
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A Handy Lower Bound for Speed

If V(z) N D(z) = 0 then

lo()] 2 |l — d(x)
2 - dist(V ()
If V() N D(z) = {c} then x € Um(c). \\

hviesll
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P : =

Flow Induced by Weighted Points

Squared distance to p with weight w,, is ||z — p[|* — w,.

19

min ||z — p||* — wp.

peEP

The squared distance to a set P of weighted points is
h(z)






For every set P of weighted points there is a set () of weighted points such
that
Vor P =Del @) and Del P =Vor @)
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Voronoi Vertices as Weighted Points

e

h*

For unweighted P, () is the Voronoi vertices of P and for q € Q:

= distly, P)°.
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Critical Points of h*

Observation. critical points of A* and h are the same.

RPN

A simplex 7 € Del P that contains a critical point is called a centered simplex.
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Critical Points of A*

Observation. critical points of A* and h are the same.

FIPN

A simplex 7 € Del P that contains a critical point is called a centered simplex.

We treat R" \ conv P as an abstract critical simplex w.

23



A Partial Order on Delaunay Simplices

7 < o: some flow line of ¢* visits relative interiors of ¢ and 7 consecutively.

T <* 0: thereisasequence T =79 <+ < T = 0.
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The WRAP Algorithm
The WRAP Algorithm [Edelsbrunner’04]

1. For every 7 € Del P, if the onlylcritical simplex that precedes 7 is
the abstract critical simplex w |, then remove 7.

2. Return what is left as WRAP.

[Edelsbrunner'04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.
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Analysis of WRAP

Theorem. WRAP and cl S are homotopy equivalent.
Lemma. ¢*(X5) = 3s.




Theorem. WRAP and cl S are homotopy equivalent.
Lemma. gb*(25) = 25.
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Analysis of WRAP

Theorem. WRAP and cl S are homotopy equivalent. (in 3D)
Lemma. ¢*(X5) = 3s.

cl S is a deformation-retract of S U X5

cl S ~ EXACT |

WRAP ~ EXACT




Some Open Questions

e Can the geometric guarantee (and therefore the topological one) be
extended to higher dimensions?

e Can WRAP be generalized for reconstruction of shapes with non-smooth
boundaries? How should the sampling condition be defined? (some
work done in [Lieutier-Chazal'06])
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Thank You!



