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Geometric Modeling of Objects

2

Engineering: simulation, visualization, CAD, . . .
Entertainment: animation, games, virtual reality, . . .
Sciences: medicine, biology, . . .



The Surface Reconstruction Problem

3

Given a point cloud sampled from a surface Σ,
we want to compute a surface Σ̂ that has the
same topology as Σ and closely approximates
it geometrically.
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There are many surface reconstruction methods!

4

4 Cazals & Giesen

Figure 1: Left: a sampled curve. Right: Delaunay contains a piece-wise linear approximation
of the curve. Notice the Delaunay triangulation captures neighbors in all directions, no
matter how non-uniform the sampling.

The Delaunay triangulation is a cell complex that subdivides the convex hull of the
sampling. If the sampling fulfills certain non-degeneracy conditions then all faces in the
Delaunay triangulation are simplices and the Delaunay triangulation is unique. The combi-
natorial and algorithmic complexity of the Delaunay triangulation grow exponentially with
the dimension of the embedding space of the original surface. In R3 the combinatorial as well
as the algorithmic complexity of the Delaunay triangulation is Θ(n2), where n = |P | is the
size of the sampling. However, it has been shown [ABL03] that the Delaunay triangulation
of points that are well distributed on a smooth surface has complexity O(n log n). Robust
and efficient methods to compute the Delaunay triangulation in R3 exist [cga]. Also impor-
tant for the reconstruction problem is the Voronoi diagram which is dual to the Delaunay
triangulation. The Voronoi diagram subdivides the whole space into convex cells where each
cell is associated with exactly one sample point.

It seems that the Delaunay triangulation explores the neighborhood of a sample point
in all relevant directions in a way that even accommodates non-uniform samplings, see also
Figure 1 for a two dimensional example.

There also approaches toward the surface reconstruction problem that are not based on
the Delaunay triangulation, e.g., level set methods [HOF01], radial basis function based
methods [CBC+01] and moving least squares methods [ABCO+01]. That we do not cover
these approaches in this chapter does not mean that they are less suited or worse. On
the practical side, many of them are very successfully applied in daily practice. On the
theoretical side though, these algorithms often involve non-local constructions making a
theoretical analysis difficult. As opposed to these, algorithms elaborating upon Delaunay
are more prone to such an analysis, and one of the goals of this survey is to outline the key
geometric features involved in these analysis.

INRIA

! As a 0-set of an approximate signed distance function:
- [Hoppe et al. ’92, Curless et al.’96, . . . ]

! As other iso-surfaces:
- NN Interpolation [Boissonnat-Cazals ’02]
- MLS [Levin’98, Alexa et al. ’01, Amenta-Kil ’04, Bremer-Hart ’05,
- Kolluri ’05, Dey et al. ’05, . . . ]
- SVM [Schölkopf et al. ’04, . . . ]
- . . .

! Delaunay Methods:
- [Boissonnat ’84, Amenta-Bern ’99, Amenta et al. ’91, Amenta-Choi-
Kolluri ’01, . . . ]

! Using distance functions:
- [Edelsbrunner ’04, Chaine ’03, Giesen-John ’03, . . . ]
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Shapes, Surfaces, and their Medial Axes

The medial axis of a surface Σ is the union of medial axes of all components
of Rn \ Σ.

A shape is an open set S that has a “smooth” surface Σ for boundary.

The medial axis (MA) of a shape S is the set of points in S that have ≥ 2
closest points in Σ.

S S∗

Σ

M(S)

M(S∗)

5



Problem of Medial Axis Approximation

6

Applications: shape analysis, motion planning, mesh partitioning, medical
imaging, . . . .

Theorem. [Lieutier’04] Any bounded open subset of Rn has the same ho-
motopy type as its medial axis.
[Lieutier’04] A. Lieutier, Any bounded open subset of Rn has the same homotopy type as its medial axis. Computer-Aided Design, 2004.

Given a sample of the smooth surface enclosing a shape, we want to approx-
iamate the MA of shape geometrically and capture its topology.
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Medial Axis and Embedding of Surface
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Medial Axis and Embedding of Surface

The outer shapes of torus and knotted
torus have different homotopy types.

7[Lieutier’04] A. Lieutier, Any bounded open subset of Rn has the same homotopy type as its medial axis. Computer-Aided Design, 2004.

Theorem. [Lieutier’04] Any bounded open subset of Rn has the same ho-
motopy type as its medial axis.



A small change in S can keep a sample valid but change M(S) dramatically.

Challenge in Geometric Approximation of MA

16 Dominique Attali, Jean-Daniel Boissonnat, and Herbert Edelsbrunner

In practice, we rarely have enough knowledge about X to know what ε > 0
is sufficiently small, and even if we knew, we might not have the means to
obtain an ε-sampling of the boundary. In exceptional cases, the boundary
of X is defined mathematically, e.g. as the zero-set of an algebraic function
f : Rk → R, and we can determine sufficiently fine ε-samples and therefore
λ-Voronoi graphs that approximate the medial axis, as in Figure 11. This

Fig. 11: Two λ-medial axes of the same shape, with λ increasing from left to right,
constructed as a subset of the λ-Voronoi graph of a sample of the boundary.

approach to medial axes thus suffers from the same difficulties as the α-shape
approach to surface reconstruction: it is usually not clear which value of λ (or
α) is most appropriate, and in many cases there is no such most appropriate
value. This suggests we re-trace some of the developments aimed at fixing this
drawback for α-shapes, namely looking at the filtration (nested sequence) of
λ-Voronoi graphs and use topological persistence [30] to select and combine
pieces of λ-Voronoi graphs for different values of λ in different portions of X .

Acknowledgement. We thank Frédéric Chazal and André Lieutier for communica-
tions related to questions discussed in this paper. We thank David Cohen-Steiner
for fruitful discussions. The first two authors acknowledge the support of the EU
through the Network of Excellence AIM@SHAPE Contract IST 506766. The third
author acknowledges the support of the NSF through grant CCR-00-86013.
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natorial curve reconstruction. Graphical Models and Image Processing, 60:125–
135, 1998.
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Some History on Medial Axis Approximation
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! Exact Methods: for limited classes of shapes
- [Manocha et al. ’04] for polytopes
- [Zerroug et al. ’94] for Generalized Cylinders

! Voronoi Filtering:
- [Amenta & Bern ’99] 2d
- [Amenta & Choi & Kolluri ’01] Power-Crust
- [Boissonnat & Cazals ’02]
- [Dey & Zhao ’04]
- [Lieutier & Chazal ’05] λ-medial axis

! Other:
- Thinning Methods
- Grid Methods
- PDA Methods
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Samples of Surfaces

x

10

We use the ε-sampling framework of [Amenta-Ben’99].

For a point x ∈ Σ, the local feature size of x is

lfs(x) := d(x, M).

P ⊂ Σ is an ε-sample if every x ∈ Σ has a sample within distance ε lfs(x).
[Amenta-Bern’99] N. Amenta, M. Bern, Surface reconstruction by Voronoi filtering. Discrete & Computational Geometry, 1999.
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Our Approach:
A Lot is Encoded in Distance Functions

λ !

O ⊆ Rd

• O

• ∂O

⊆ ⊆

Σ

S

! Σ = s−1(0)
! M(S) =

{
points in S where s is not differentiable

}
.

The distance function induced by Σ in S is

s : S → R, x "→ min
y∈Σ

‖x− y‖
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Can these information be “read” similarly
from a discrete sample of Σ?
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Generalized Gradient
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Integrating the Flow Lines

Vor.nb 1
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Integrating the Flow Lines

Vor.nb 1

φ(t, x) = y means “starting at x and going for time t we reach y”.

Moving at point x in with speed v(x) results a flow map φ : R+ × Rn → Rn.

φ(X) =
⋃

x∈X φ(x)
16

φ(x) = {φ(t, x) : t ≥ 0}



Continuity of the Induced Flow

Theorem. The flow map φ : R×Rn → Rn is continuous on both variables.

δ

x
ε

y
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Continuity of the Induced Flow

Theorem. The flow map φ : R×Rn → Rn is continuous on both variables.

Theorem. For y = φ(t, x),

h(y) = h(x) +
∫ t

0
‖v(φ(τ, x))‖2dτ.

δ

x
ε

y
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Critical Points of Distance Function
A point c with v(c) = 0 is called critical.

18
The index of a critical point c is the dimension of D(c).



Critical Points of Distance Function

A point c is critical iff {c} = V (c) ∩D(c).

A point c with v(c) = 0 is called critical.

18
The index of a critical point c is the dimension of D(c).



Critical Points of Distance Function

A point c is critical iff {c} = V (c) ∩D(c).

A point c with v(c) = 0 is called critical.

18
The index of a critical point c is the dimension of D(c).



Critical Points of Distance Function

A point c is critical iff {c} = V (c) ∩D(c).

A point c with v(c) = 0 is called critical.

18
The index of a critical point c is the dimension of D(c).



Separation of Critical Points

x

The δ-tubular neighborhoods of Σ and M :

Σδ =
{
x ∈ Rn \ M : ‖x− x̂‖ < δf(x̂)

}

Mδ =
{
x ∈ Rn \ Σ : ‖x− x̌‖ < δf(x̂)

}
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Theorem [DGRS’05]
If h is induced by an ε-sample of Σ with ε < 1/

√
3, the all critical

points of h are contained in either Σε2 or M2ε2 .



Stable Manifold of a Critical Point

Stable manifold of a critical point c is everything that flows into c.

Sm(c) = {x : φ(∞, x) = c}.
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Unstable Manifold of a Critical Point

Unstable manifold of a critical point c is everything that flows “out of” c.

Um(c) =
⋂

ε>0

φ(B(x, ε)) = φ(V (c)).
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Proposition. Let X and Y ⊆ X be arbitrary sets and

H : [0 , 1]×X → X

be a continuous function (on both variables) satisfying

1. ∀x ∈ X : H(0 , x) = x

2. ∀y ∈ Y,∀t ∈ [0 , 1] : H(t, y) ∈ Y

3. ∀x ∈ X : H(1 , x) ∈ Y

Then X and Y have the same homotopy type.

A Criterion for Homotopy Equivalence

X Y

22



time

Proposition. Let X and Y ⊆ X be arbitrary sets and

H : [0 , 1]×X → X

be a continuous function (on both variables) satisfying

1. ∀x ∈ X : H(0 , x) = x

2. ∀y ∈ Y,∀t ∈ [0 , 1] : H(t, y) ∈ Y

3. ∀x ∈ X : H(1 , x) ∈ Y

Then X and Y have the same homotopy type.

A Criterion for Homotopy Equivalence

X Y

22



Identity at time 0

time

Proposition. Let X and Y ⊆ X be arbitrary sets and

H : [0 , 1]×X → X

be a continuous function (on both variables) satisfying

1. ∀x ∈ X : H(0 , x) = x

2. ∀y ∈ Y,∀t ∈ [0 , 1] : H(t, y) ∈ Y

3. ∀x ∈ X : H(1 , x) ∈ Y

Then X and Y have the same homotopy type.

A Criterion for Homotopy Equivalence

X Y

22



Nothing leaves Y
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This is the idea Lieutier used in [Lieuteir’04] to show M(S) ! S.



In Other Words ...

X

Y

Key Theorem. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.
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In Other Words ...

h(φ(t, x)) = h(x) +
∫ t

0
‖v(φ(τ, x))‖2dτ

≥ h(x) +
∫ t

0
c2dτ

= h(x) + tc2

< dH(X, P )2.

Proof. If φ(t, x) !∈ Y , then
X

Y

Key Theorem. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.
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A Handy Lower Bound for Speed

x

d

24

If V (x) ∩D(x) = ∅ then

‖v(x)‖ = 2 · ‖x− d(x)‖
≥ 2 · dist(V (x), D(x)).
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A Handy Lower Bound for Speed

x

d
If V (x) ∩D(x) = {c} then x ∈ Um(c).

x

c
So, if Um(c) ⊂ Y we are fine!

24

If V (x) ∩D(x) = ∅ then

‖v(x)‖ = 2 · ‖x− d(x)‖
≥ 2 · dist(V (x), D(x)).



2
Medial Axis Approximation



The Inner CORE

Definition. Let N be the set of all inner medial axis critical points of h.

CORE =
⋃

c∈N

Um(c)
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Homotopy Type of CORE

Theorem. CORE and shape are homotopy equivalent (for small ε).
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Homotopy Type of CORE

Theorem. CORE and shape are homotopy equivalent (for small ε).

Lemma. φ(S2ε2) = S2ε2 (for small ε).

S2ε2 is a deformation-retract of S

S2ε2

Surface critical points are in Σε2

27



Extending the CORE
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Geometric Quality and Flow Closure

29

x

1

Can we diverge too far away from MA when taking flow closure?

Theorem. If ρ(x) =
√

h(x) = 1 and x has a medial axis point within
distance O(

√
ε), then for any t ≥ 0, y = φ(t, x) has a medial axis point

within distance
O(
√

ε)ρ(y)1+O(
√

ε).
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3
Surface (Shape) Reconstruction



Reconstruction as a Union of Stable Manifolds

Definition. Let N be the set of all inner medial axis critical points of h.

REC =
⋃

c∈N

Sm(c)
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Homotopy Type of REC

Theorem. REC and shape are homotopy equivalent (for small ε).

Lemma. φ(Sε2) = Sε2 (for small ε).
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4
WRAP: 

Reconstruction Revisited

[Edelsbrunner’04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.



Flow Induced by Weighted Points
Vor.nb 1

Vor.nb 1

Squared distance to p with weight wp is ‖x− p‖2 − wp.

h(x) = min
p∈P

‖x− p‖2 − wp.

The squared distance to a set P of weighted points is

34



Polarity

For every set P of weighted points there is a set Q of weighted points such
that

Vor P =Del Q and Del P =Vor Q
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Voronoi Vertices as Weighted Points

For unweighted P , Q is the Voronoi vertices of P and for q ∈ Q:

wq = dist(q, P )2.

h

h∗
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Critical Points of 

Observation. critical points of h∗ and h are the same.
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Critical Points of 

Observation. critical points of h∗ and h are the same.

A simplex τ ∈ Del P that contains a critical point is called a critical simplex.

We treat Rn \ conv P as an abstract critical simplex ω.

ω

37
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A Partial Order on Delaunay Simplices

38

τ ≺ σ: some flow line of φ∗ visits relative interiors of σ and τ consecutively.

τ ≺∗ σ: there is a sequence τ = τ0 ≺ · · · ≺ τk = σ.
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The WRAP Algorithm [Edelsbrunner’04]

1. For every τ ∈ Del P , if “every” critical simplex that precedes τ is
an outer medial axis critical simplex, then remove τ .

2. Return what is left as WRAP.

The WRAP Algorithm

the abstract critical simplex ω

the only

39

ω

[Edelsbrunner’04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.
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Analysis of WRAP

Lemma. φ∗(Σδ) = Σδ.

Theorem. WRAP and closure of shape are homotopy equivalent.
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Summary of Results

41

Using the distance flow maps induced by samples,

• We showed that the critical points of the distance function induced by
an ε-sample of a surface are concentrated close to the surface or to the
medial axis and these two types can be distinguished algorithmically.

• We gave an algorithm that reconstructs the shape homotopically (and
its boundary homeomorphically in 3D) and approximates these closely
in geometric terms.

• We introduced the notion of the CORE for medial axis approximation
and established its homotopy equivalence with the medial axis. We also
showed how the core can be extended by any other MA-approximation
algorithm. We also bounded the rate of degradation of geometric ap-
proximation of MA in taking flow closures.

• We modified Edelsbrunner’s WRAP reconstruction algorithm and proved
that this modified version captures the topology of the sampled shape
(for ε-samples in 3D and for uniform samples in any dimension).



Some Open Questions

42

• In RECONSTRUCTION, is the union of stable manifolds of surface
critical points also homotopy equivalent to surface?

• The “primal” analog of WRAP corresponds to an approximation of
CORE by a subcomplex of Vor P . A geometric analysis showing this
approximation is close to MA is enough to prove the same topological
guarantee for the approximation.

• Can these ideas (especially WRAP) be generalized for reconstruction of
shapes with non-smooth surfaces? How should the sampling condition
be defined? (some work done in [Lieutier-Chazal’06])

• In general when (and in what sense) can stable and unstable manifolds
of critical points be approximated by sub-complexes of Vor P or Del P .

• Can the proof of existence of a continuous flow map be generalized to
non-discrete sets of weighted points (generalization of Lieutier’s result)?
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Thank You!


