


Geometric Modeling of Objects

Engineering: simulation, visualization, CAD, ...
Entertainment: animation, games, virtual reality, ...
Sciences: medicine, biology, . ..



The Surface Reconstruction Problem

Given a point cloud sampled from a surface ¥,
we want to compute a surface 3} that has the

same topology as X and closely approximates

it geometrically.
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There are many surface reconstruction methods!

¢ As a 0-set of an approximate signed distance function:
- [Hoppe et al. '92, Curless et al.’96, .. .]

¢ As other iso-surfaces:

- NN Interpolation [Boissonnat-Cazals '02]

- MLS [Levin'98, Alexa et al. '01, Amenta-Kil '04, Bremer-Hart '05,
- Kolluri '05, Dey et al. '05, ...]

- SVM [Scholkopf et al. '04, ...]

¢ Delaunay Methods: \\w )
- [Boissonnat '84, Amenta-Bern '99, Amenta et al. '91, Amenta-Choi-
Kolluri '01, ...]

¢ Using distance functions:
- [Edelsbrunner '04, Chaine '03, Giesen-John '03, ...]
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A shape is an open set S that has a “smooth” surface X for boundary.
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Shapes, Surfaces, and their Medial Axes

A shape is an open set S that has a “smooth” surface X for boundary.

The medial axis (MA) of a shape S is the set of points in S that have > 2
closest points in ..

S*

The medial axis of a surface XJ is the union of medial axes of all components
of R™ \ X.



Problem of Medial Axis Approximation

Given a sample of the smooth surface enclosing a shape, we want to approx-
lamate the MA of shape geometrically and capture its topology.

Applications: shape analysis, motion planning, mesh partitioning, medical
Imaging, ....

Theorem. [Lieutier'04] Any bounded open subset of R™ has the same ho-
motopy type as its medial axis.

[Lieutier'04] A. Lieutier, Any bounded open subset of R™ has the same homotopy type as its medial axis. Computer-Aided Design, 2004.
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Medial Axis and Embedding of Surface

Theorem. [Lieutier'04] Any bounded open subset of R™ has the same ho-
motopy type as its medial axis.
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Medial Axis and Embedding of Surface

The outer shapes of torus and knotted
torus have different homotopy types.

Theorem. [Lieutier'04] Any bounded open subset of R™ has the same ho-
motopy type as its medial axis.

[Lieutier'04] A. Lieutier, Any bounded open subset of R™ has the same homotopy type as its medial axis. Computer-Aided Design, 2004.



Challenge in Geometric Approximation of MA

A small change in S can keep a sample valid but change M (S) dramatically.
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Some History on Medial Axis Approximation

¢ Exact Methods: for limited classes of shapes
- [Manocha et al. '04] for polytopes
- [Zerroug et al. '94] for Generalized Cylinders

& Voronoi Filtering:

- [Amenta & Bern '99] 2d

- [Amenta & Choi & Kolluri '01] Power-Crust
- [Boissonnat & Cazals '02]

- [Dey & Zhao '04]

- [Lieutier & Chazal '05] A\-medial axis

¢ Other:

Thinning Methods
Grid Methods
PDA Methods
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Samples of Surfaces

We use the e-sampling framework of [Amenta-Ben'99].

For a point € ., the local feature size of x is

st = dliz: M)

o

P C ¥ is an e-sample if every x € 3 has a sample within distance ¢ Ifs(x).

[Amenta-Bern'99] N. Amenta, M. Bern, Surface reconstruction by Voronoi filtering. Discrete & Computational Geometry, 1999.
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Our Approach:
A Lot is Encoded in Distance Functions

The distance function induced by > in S is

s: S —R, :L‘r—>mi£1Haf—yH

(0)

CEN s
o M(S) = {points in S where s is not differentiable }.
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Our Approach:
A Lot is Encoded in Distance Functions

The distance function induced by > in S is

&
&

s: S —R, xr—>mi£1H:U—yH

>

Can these information be “read” similarly
from a discrete sample of 7

> == (1) e = ,
M (S) = {points in S where s is not differentiable}.
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Shape Reconstruction.

4. Analysis of WRAP.
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(Squared) Distance to Discrete Point Sets

min ||z — pl|*

peP

The squared distance function induced by P is

P is a discrete set of points

h(z)
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min ||z — pl|*

peP

(Squared) Distance to Discrete Point Sets

The squared distance function induced by P is

P is a discrete set of points

h(x)

Observation. h is smooth at points with a unique closest point in P.
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[Giesen-John’03] J. Giesen, M. John, Flow complex: A data structure for geometric modeling. SODA, 2003.
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Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".

¢(z) = {o(t,z) : t 2 0}

16



Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".

¢(z) = {o(t,z) : t 2 0}

16



Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".

¢(z) = {o(t,z) : t 2 0}

16



Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".

¢(z) = {o(t,z) : t 2 0}

16



Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".

¢(z) = {o(t,z) : t 2 0}

16



Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".

¢(z) = {o(t,z) : t 2 0}

16



Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".

¢(z) = {o(t,z) : t 2 0}

16



=

i
ﬁﬂu,,u,Li,
P F

,‘

IR
//N\

N

ﬁ,‘\

,

==l

e

s
N

Moving at point z in with speed v(x) results a flow map ¢ : R™ x R" — R".
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Moving at point z in with speed v(x) results a flow map ¢ : RT™ x R® — R".

¢(t,x) =y means “starting at x and going for time ¢ we reach y".

e 01

{o(t, )
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Moving at point z in with speed v(x) results a flow map ¢ : RT™ x R® — R".

¢(t,x) =y means “starting at x and going for time ¢ we reach y".

¢(x) ={o(t,z) - t > 0} A(X) = Uzex ¢(2)
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Continuity of the Induced Flow

Theorem. The flow map ¢ : R x R™ — R" is continuous on both variables.
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Critical Points of Distance Function

A point ¢ with v(c) = 0 is called critical.

The index of a critical point c is the dimension of D(c).
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Separation of Critical Points

The o-tubular neighborhoods of > and M:

s = {zeR"\M:|z—-2|| <df(@)}
Ms = {zeR*"\X:|z—-2|| <df(2)}

19



Separation of Critical Points

The o-tubular neighborhoods of > and M:

s = {zeR"\M:|z—-2|| <df(@)}
Ms = {zeR*"\X:|z—-2|| <df(2)}

19



Separation of Critical Points

The o-tubular neighborhoods of > and M:

s = {zeR"\M:|z—-2|| <df(@)}
Ms = {zeR*"\X:|z—-2|| <df(2)}

19



Separation of Critical Points

The o-tubular neighborhoods of > and M:

s = {zeR"\M:|z—-2|| <df(@)}
Ms = {zeR*"\X:|z—-2|| <df(2)}

19



Separation of Critical Points

The o-tubular neighborhoods of > and M:

s = {zeR"\M:|z—-2|| <df(@)}
Ms = {zeR*"\X:|z—-2|| <df(2)}

19



Separation of Critical Points

The o-tubular neighborhoods of > and M:

s = {zeR"\M:|z—-2|| <df(@)}
Ms = {zeR*"\X:|z—-2|| <df(2)}

19



Separation of Critical Points

The o-tubular neighborhoods of > and M:

Ys = {z€R"\M:|z-2| <df(2)}
Ms = {zeR*"\X:|z—-2|| <df(2)}
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Separation of Critical Points

Theorem
If h is induced by an e-sample of X with € < 1/\/§ the all critical
points of A are contained in either or




Stable Manifold of a Critical Point

Stable manifold of a critical point c is everything that flows into c.
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Unstable Manifold of a Critical Point

Unstable manifold of a critical point c is everything that flows “out of” c.
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A Criterion for Homotopy Equivalence

Proposition. Let X and Y C X be arbitrary sets and
H:[0,1]xX —>X
be a continuous function (on both variables) satisfying
Eype X2 Hi0 vy — =
2. VyeY,vie|0,1]: H(t,y) €Y
3. Ve X : H(l,z) €Y

Then X and Y have the same homotopy type.
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Proposition. Let X and Y C X be arbitrary sets and
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A Criterion for Homotopy Equivalence

Proposition. Let X and Y C X be arbitrary sets and

Q: 0 x— X 40)=X
Ime

be a continuous function (on both variables) satisfying

1. Ve e X :[§(0,2) == P— Always true |
2. VyeY,vte [0 [t y)eY L oY) =Y |

3. VzeX [l z) Y Everything in Y by time 1

Then X and Y have the same homotopy type.

This is the idea Lieutier used in [Lieuteir'04] to show M (S) ~ S. s



~_InOther Words ...

Key Theorem. If Y C X are bounded and
i olXi=X and oY =Y and
2l = e > Tor s XY

then X and Y are homotopy equivalent.
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In Other Words ...

Key Theorem. If Y C X are bounded and
i olXi=X and oY =Y and
2l = e > Tor s XY

then X and Y are homotopy equivalent.

Proof. If ¢(t,z) € Y, then

hg(t,z)) =



A Handy Lower Bound for Speed
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lo()] 2-||lz —d(z)]]
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A Handy Lower Bound for Speed

If V(z) N D(z) = 0 then

lo()] 2 |l — d(x)
2 - dist(V ()
If V() N D(z) = {c} then x € Um(c). \\

hviesll
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Homotopy Type of CORE

Theorem. CORE and shape are homotopy equivalent (for small €).

Lemma. ¢(55.2) = S5.2 (for small €).

g>

il

'\\.\
So.2 is a deformation-retract of S |
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Homotopy Type of CORE

Theorem. CORE and shape are homotopy equivalent (for small €).

Lemma. ¢(55.2) = S5.2 (for small €).

g>

il

Surface critical points are in X2 |
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Extending the CORE




Geometric Quality and Flow Closure

Can we diverge too far away from MA when taking flow closure?

Theorem. |If p(x) = y/h(x) = 1 and x has a medial axis point within
distance O(+/¢), then for any t > 0, y = ¢(¢,x) has a medial axis point

within distance
O(v/e)p(y) TOWe.
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Reconstruction as a Union of Stable Manifolds

Definition. Let IV be the set of all inner medial axis critical points of h.

d,
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Reconstruction as a Union of Stable Manifolds

Definition. Let IV be the set of all inner medial axis critical points of h.
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Theorem. REC and shape are homotopy equivalent (for small €).

Lemma. ¢(S.2) = S.2 (for small ¢).

(N
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Homotopy Type of REC
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[Edelsbrunner'04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.



P : =

Flow Induced by Weighted Points

Squared distance to p with weight w,, is ||z — p[|* — w,.

34

min ||z — p||* — wp.

peEP

The squared distance to a set P of weighted points is
h(z)



For every set P of weighted points there is a set () of weighted points such
that
Vor P =Del @) and Del P =Vor @)
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For every set P of weighted points there is a set () of weighted points such
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Voronoi Vertices as Weighted Points

LS

h*

For unweighted P, () is the Voronoi vertices of P and for q € Q:

= distly, P)°.
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Voronoi Vertices as Weighted Points

LINE

For unweighted P, () is the Voronoi vertices of P and for q € Q:

= distly, P)°.
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Critical Points of A*

Observation. critical points of A* and h are the same.

R B K
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Critical Points of h*

Observation. critical points of A* and h are the same.

RPN

A simplex 7 € Del P that contains a critical point is called a critical simplex.
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Critical Points of A*

Observation. critical points of A* and h are the same.

FIPN

A simplex 7 € Del P that contains a critical point is called a critical simplex.

We treat R" \ conv P as an abstract critical simplex w.
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A Partial Order on Delaunay Simplices

7 < o: some flow line of ¢* visits relative interiors of ¢ and 7 consecutively.

T <* 0: thereisasequence T =79 <+ < T = 0.
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7 < o: some flow line of ¢* visits relative interiors of ¢ and 7 consecutively.

T <* 0: thereisasequence T =79 <+ < T = 0.
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The WRAP Algorithm
The WRAP Algorithm [Edelsbrunner’04]

1. For every 7 € Del P, if the onlylcritical simplex that precedes 7 is
the abstract critical simplex w |, then remove 7.

2. Return what is left as WRAP.

[Edelsbrunner'04] H. Edelsbrunner, Surface reconstruction by wrapping finite point-sets in space. Discrete & Computational Geometry, 2004.
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Analysis of WRAP

Theorem. WRAP and closure of shape are homotopy equivalent.

Lemma. ¢*(X5) = 3s.




Theorem. WRAP and closure of shape are homotopy equivalent.

Lemma. gb*(25) = 25.
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Analysis of WRAP

Theorem. WRAP and closure of shape are homotopy equivalent. (in 3D)
Lemma. ¢*(X5) = 3s.

cl S is a deformation-retract of S U X5

cl S ~ EXACT |

WRAP ~ EXACT




Summary of Results

Using the distance flow maps induced by samples,

e \We showed that the critical points of the distance function induced by
an e-sample of a surface are concentrated close to the surface or to the
medial axis and these two types can be distinguished algorithmically.

e We gave an algorithm that reconstructs the shape homotopically (and
its boundary homeomorphically in 3D) and approximates these closely
In geometric terms.

e We introduced the notion of the CORE for medial axis approximation
and established its homotopy equivalence with the medial axis. We also
showed how the core can be extended by any other MA-approximation
algorithm. We also bounded the rate of degradation of geometric ap-
proximation of MA in taking flow closures.

e \We modified Edelsbrunner’'s WRAP reconstruction algorithm and proved
that this modified version captures the topology of the sampled shape
(for e-samples in 3D and for uniform samples in any dimension).



Some Open Questions

In RECONSTRUCTION, is the union of stable manifolds of surface
critical points also homotopy equivalent to surface?

The “primal” analog of WRAP corresponds to an approximation of
CORE by a subcomplex of Vor P. A geometric analysis showing this
approximation is close to MA is enough to prove the same topological
guarantee for the approximation.

Can these ideas (especially WRAP) be generalized for reconstruction of
shapes with non-smooth surfaces? How should the sampling condition
be defined? (some work done in [Lieutier-Chazal’06])

In general when (and in what sense) can stable and unstable manifolds
of critical points be approximated by sub-complexes of Vor P or Del P.

Can the proof of existence of a continuous flow map be generalized to
non-discrete sets of weighted points (generalization of Lieutier's result)?
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Thank You!



