Manifold Homotopy via the Flow Complex

Bardia Sadri
Duke University
The Surface Reconstruction Problem

Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.
The Surface Reconstruction Problem

Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.
The Surface Reconstruction Problem

Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

co-dimension 1 submanifold of \mathbb{R}^n
The Surface Reconstruction Problem

Given a point cloud sampled from a surface \(\Sigma \), we want to compute a surface \(\hat{\Sigma} \) that has the same topology as \(\Sigma \) and closely approximates it geometrically.

- Homeomorphic
- Ambient-isotopic
- \(\text{co-dimension 1 submanifold of } \mathbb{R}^n \)
- Hausdorff distance relative to lfs
The Surface Reconstruction Problem

Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically. We consider any submanifold of \mathbb{R}^n co-dimension 1 submanifold of \mathbb{R}^n.

- Homeomorphic
- Ambient-isotopic
- Hausdorff distance relative to Lfs
The Surface Reconstruction Problem

Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the \textit{same topology} as Σ and closely approximates it \textit{geometrically}.

- \textit{homeomorphic}
- \textit{ambient-isotopic}
- \textit{homotopy equivalent}

\textit{Hausdorff distance relative to lfs}
Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

- homeomorphic
- ambient-isotopic
- homotopy equivalent
Unlike homeomorphism, homotopy equivalence does not preserve dimension.
Chapter 0 Some Underlying Geometric Notions

Naturally we would like \(f_t(x) \) to depend continuously on both \(t \) and \(x \), and this will be true if we have each \(x \in X \setminus X \) move along its line segment at constant speed so as to reach its image point in \(X \) at time \(t = 1 \), while points \(x \in X \) are stationary, as remarked earlier.

Examples of this sort lead to the following general definition. A deformation retraction of a space \(X \) onto a subspace \(A \) is a family of maps \(f_t: X \to X \), \(t \in I \), such that \(f_0 = 1 \) (the identity map), \(f_1(X) = A \), and \(f_t|_A = 1 \) for all \(t \). The family \(f_t \) should be continuous in the sense that the associated map \(X \times I \to X \), \((x, t) \mapsto f_t(x)\), is continuous.

It is easy to produce many more examples similar to the letter examples, with the deformation retraction \(f_t \) obtained by sliding along line segments. The figure on the left below shows such a deformation retraction of a M"obius band onto its core circle. The three figures on the right show deformation retractions in which a disk with two smaller open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction can be described by means of the following definition. For a map \(f: X \to Y \), the mapping cylinder \(Mf \) is the quotient space of the disjoint union \((X \times I) \sqcup Y\) obtained by identifying each \((x, 1) \in X \times I\) with \(f(x) \in Y\). In the letter examples, the space \(X \) is the outer boundary of the thick letter, \(Y \) is the thin letter, and \(f: X \to Y \) sends the outer endpoint of each line segment to its inner endpoint. A similar description applies to the other examples. Then it is a general fact that a mapping cylinder \(Mf \) deformation retracts to the subspace \(Y \) by sliding each point \((x, t)\) along the segment \(\{x\} \times I \subset Mf \) to the endpoint \(f(x) \in Y\).

Not all deformation retractions arise in this way from mapping cylinders, however. For example, the thick \(X \) deformation retracts to the thin \(X \), which in turn deformation retracts to the point of intersection of its two crossbars. The net result is a deformation retraction of \(X \) onto a point, during which certain pairs of points follow paths that merge before reaching their final destination. Later in this section we will describe a considerably more complicated example, the so-called 'house with two rooms,' where a deformation retraction to a point can be constructed abstractly, but seeing the deformation with the naked eye is a real challenge.

Unlike homeomorphism, homotopy equivalence does not preserve dimension.

All these knots have the same homotopy type, but not their complements.
Homotopy Equivalence

Unlike homeomorphism, homotopy equivalence does not preserve dimension.

All these knots have the same homotopy type, but not their complements.
What if we don’t know the submanifold’s dimension?

Naturally occurring data may be generated by structured systems with much fewer degrees of freedom than the ambient dimension.
What if we don’t know the submanifold’s dimension?

Naturally occurring data may be generated by structured systems with much fewer degrees of freedom than the ambient dimension.
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.

The local feature size of $x \in \Sigma$ is

$$\text{lfs}(x) := \text{dist}(x, M).$$
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.

The local feature size of $x \in \Sigma$ is

$$\text{lfs}(x) := \text{dist}(x, M).$$

The reach of Σ is

$$\text{reach}(\Sigma) := \text{dist}(\Sigma, M) = \min_{x \in \Sigma} \text{lfs}(x).$$
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.

The local feature size of $x \in \Sigma$ is

$$\text{lfs}(x) := \text{dist}(x, M).$$

The reach of Σ is

$$\text{reach}(\Sigma) := \text{dist}(\Sigma, M) = \min_{x \in \Sigma} \text{lfs}(x).$$

An adaptive ε-sample of Σ has a point within $\varepsilon \cdot \text{lfs}(x)$ of every $x \in \Sigma$.
The medial axis (MA) of Σ is the set of points \(M \subset \mathbb{R}^n \) that have \(\geq 2 \) closest points in Σ.

The local feature size of \(x \in \Sigma \) is

\[
lfs(x) := \text{dist}(x, M).
\]

The reach of Σ is

\[
\text{reach}(\Sigma) := \text{dist}(\Sigma, M) = \min_{x \in \Sigma} lfs(x).
\]

An adaptive \(\varepsilon \)-sample of Σ has a point within \(\varepsilon \cdot lfs(x) \) of every \(x \in \Sigma \).

A uniform \(\varepsilon \)-sample of Σ has a point within \(\varepsilon \cdot \text{reach}(\Sigma) \) of every \(x \in \Sigma \).
The squared distance function induced by P is

\[h(x) := \min_{p \in P} \| x - p \|^2 \]

P is a discrete set of points.
Generalized Gradient
Generalized Gradient
Generalized Gradient
$V(x)$: lowest-dimensional Voronoi face containing x.
$V(x)$: lowest-dimensional Voronoi face containing x.
$V(x)$: lowest-dimensional Voronoi face containing x.

$D(x)$: Delaunay dual to $V(x)$.
\(V(x) \): lowest-dimensional Voronoi face containing \(x \).
\(D(x) \): Delaunay dual to \(V(x) \).
\(V(x) \): lowest-dimensional Voronoi face containing \(x \).
\(D(x) \): Delaunay dual to \(V(x) \).

The **driver** of \(x \) is the **closest point** to \(x \) in \(D(x) \).

\[v(x) = 2(x - d(x)) \]
$v(x) = \nabla h(x)$

$V(x)$: lowest-dimensional Voronoi face containing x.

$D(x)$: Delaunay dual to $V(x)$.

The **driver** of x is the closest point to x in $D(x)$.

\[v(x) = 2(x - d(x)) \]
Generalized Gradient

\[\nabla v(x) = \nabla h(x) \]

\[v(x) \]

\[V(x) : \text{lowest-dimensional Voronoi face containing } x. \]

\[D(x) : \text{Delaunay dual to } V(x). \]

The **driver** of \(x \) is the closest point to \(x \) in \(D(x) \).

\[v(x) = 2(x - d(x)) \]
Moving at point x with speed $v(x)$ results in a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$.
Moving at point \(x \) with speed \(v(x) \) results a flow map \(\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \).
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

\[
\begin{align*}
x(0) &= x_0 \\
x'(t) &= v(x(t))
\end{align*}
\]
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

\[
x(0) = x_0 \\
x'(t) = v(x(t))
\]
Moving at point x with speed $v(x)$ results in a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.\[\begin{align*}
x(0) &= x_0 \\
x'(t) &= v(x(t)) \end{align*}\]
Moving at point \(x \) with speed \(v(x) \) results a flow map \(\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \).
Moving at point \(x \) with speed \(v(x) \) results a flow map \(\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n \).
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y”.

\[
\begin{align*}
x(0) &= x_0 \\
x'(t) &= v(x(t))
\end{align*}
\]
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y”.

$$\phi(x) = \{ \phi(t, x) : t \geq 0 \}$$
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y”.

$$
\phi(x) = \{ \phi(t, x) : t \geq 0 \} \quad \quad \phi(X) = \bigcup_{x \in X} \phi(x)
$$
A point c with $v(c) = 0$ is called critical.
A point c with $v(c) = 0$ is called critical.

A point c is critical iff $\{c\} = V(c) \cap D(c)$.
A point c with $v(c) = 0$ is called critical.

A point c is critical iff $\{c\} = V(c) \cap D(c)$.
A point c with $v(c) = 0$ is called critical.

A point c is critical iff $\{c\} = V(c) \cap D(c)$.

Critical Points of Distance Function
A point c with $v(c) = 0$ is called critical.
A point c is critical iff \(\{c\} = V(c) \cap D(c) \).

The index of c is the dimension of $D(c)$.
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}.$$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$

alpha shape $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$

flow shape $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- **union of balls** $B^r(P) := \bigcup_{p \in P} B(p, r)$
- **alpha shape** $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- **flow shape** $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$
For a point set \(P \subset \mathbb{R}^n \) and \(r \in \mathbb{R} \):

- union of balls \(B^r(P) := \bigcup_{p \in P} B(p, r) \)
- alpha shape \(K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p) \)
- flow shape \(F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c) \)
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \operatorname{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \operatorname{Sm}(c)$
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \text{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \text{Sm}(c)$

Theorem [Edel’95] $B^r(P)$ and $K^r(P)$ are homotopy equivalent.
For a point set $P \subset \mathbb{R}^n$ and $r \in \mathbb{R}$:

- union of balls $B^r(P) := \bigcup_{p \in P} B(p, r)$
- alpha shape $K^r(P) := \mathrm{Nrv} \bigcup_{p \in P} (B(p, r) \cap V_p)$
- flow shape $F^r(P) := \bigcup_{h(c) \leq r} \mathrm{Sm}(c)$

Theorem [Edel’95] $B^r(P)$ and $K^r(P)$ are homotopy equivalent.

Theorem [DGJ’03, BG’05] $F^r(P)$ and $K^r(P)$ are homotopy equivalent.
Theorem [DGRS’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \text{reach}(\Sigma)$.
Separation of Critical Points

Theorem [DGRS’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2) \tau$, where $\tau = \text{reach}(\Sigma)$.
Theorem [DGRS’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \text{reach}(\Sigma)$.
Theorem [DGRS’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \text{reach}(\Sigma)$.
Theorem [DGRS’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \text{reach}(\Sigma)$.
Theorem. If P is a uniform ε-sample, then for a shallow c, $\text{dist}(c, P) < \sqrt{5/3}\varepsilon\tau$ and for a deep c, $\text{dist}(c, P) > (1 - 2\varepsilon^2)\tau$.
Theorem. If \(P \) is a uniform \(\varepsilon \)-sample, then for a shallow \(c \), \(\text{dist}(c, P) < \sqrt{\frac{5}{3}\varepsilon \tau} \) and for a deep \(c \), \(\text{dist}(c, P) > (1 - 2\varepsilon^2)\tau \).
Theorem. If \(P \) is a uniform \(\varepsilon \)-sample, then for a shallow \(c \), \(\text{dist}(c, P) < \sqrt{5/3\varepsilon} \tau \) and for a deep \(c \), \(\text{dist}(c, P) > (1 - 2\varepsilon^2)\tau \).
Theorem. If P is a uniform ε-sample, then for a shallow c, $\text{dist}(c, P) < \sqrt{5/3\varepsilon\tau}$ and for a deep c, $\text{dist}(c, P) > (1 - 2\varepsilon^2)\tau$.

\[\bigcup_{c: \text{shallow}} \text{Sm}(c) = F^r(P) \text{ for } r = \sqrt{5/3\varepsilon\tau}. \]
Theorem. If P is a uniform ε-sample, then for a shallow c, $\text{dist}(c, P) < \sqrt{5/3} \varepsilon \tau$ and for a deep c, $\text{dist}(c, P) > (1 - 2\varepsilon^2) \tau$.

Theorem. [NSW'06] If P is a uniform ε-sample of Σ then $B^{(r)}(P)$ is homotopy equivalent to Σ (when r and ε are in the right range).
Unstable manifold of \(c \) is intersection of flows all neighborhoods of \(c \).

\[
Um(c) = \bigcap_{\epsilon > 0} \phi(B(x, \epsilon)) = \phi(V(c)).
\]
Unstable manifold of \(c \) is intersection of flows all neighborhoods of \(c \).

\[
\text{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).
\]
Unstable manifold of \(c \) is intersection of flows all neighborhoods of \(c \).

\[
\text{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).
\]
Unstable manifold of c is intersection of flows all neighborhoods of c.

$$U_m(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).$$
Unstable manifold of \(c \) is intersection of flows all neighborhoods of \(c \).

\[
\text{Um}(c) = \bigcap_{\varepsilon > 0} \phi(B(x, \varepsilon)) = \phi(V(c)).
\]
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and

2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If \(Y \subseteq X \) are bounded and

1. \(\phi(X) = X \) and \(\phi(Y) = Y \), and

2. \(\|v(x)\| \geq c > 0 \) for \(x \in X \setminus Y \),

then \(X \) and \(Y \) are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

So, we “push X into Y” at speed > 0.
If $V(x) \cap D(x) = \emptyset$ then

$$
\|v(x)\| = 2 \cdot \|x - d(x)\| \\
\geq 2 \cdot \text{dist}(V(x), D(x)).
$$
If $V(x) \cap D(x) = \emptyset$ then

$$
\|v(x)\| = 2 \cdot \|x - d(x)\|
\geq 2 \cdot \text{dist}(V(x), D(x)).
$$

If $V(x) \cap D(x) = \{c\}$ then $x \in \text{Um}(c)$.
Idea to Lower Bound the Speed

If $V(x) \cap D(x) = \emptyset$ then

$$
\|v(x)\| = 2 \cdot \|x - d(x)\| \\
\geq 2 \cdot \text{dist}(V(x), D(x)).
$$

If $V(x) \cap D(x) = \{c\}$ then $x \in \text{Um}(c)$.

So, if $\text{Um}(c) \subset Y$ we are fine!
Theorem. \(U := \bigcup_{c: \text{deep}} \text{Sm}(c) \) is homotopy equivalent to \(\Sigma^c \).
Theorem. $U := \bigcup_{c:\text{deep}}\text{Sm}(c)$ is homotopy equivalent to Σ^c.
Theorem. $U := \bigcup_{c: \text{deep}} \text{Sm}(c)$ is homotopy equivalent to Σ^c.

Idea: Push U into a “reduced” Σ^c.
Homotopy Type of the Complement

Theorem. $U := \bigcup_{c:\text{deep}} \text{Sm}(c)$ is homotopy equivalent to Σ^c.

Idea: Push U into a “reduced” Σ^c.
Theorem. $U := \bigcup_{c: \text{deep}} \text{Sm}(c)$ is homotopy equivalent to Σ^c.

Idea: Push U into a “reduced” Σ^c.
Theorem. \(U := \bigcup_{c:\text{deep}} \text{Sm}(c) \) is homotopy equivalent to \(\Sigma^c \).

Idea: Push \(U \) into a “reduced” \(\Sigma^c \).
Theorem. \(U := \bigcup_{c: \text{deep}} \text{Sm}(c) \) is homotopy equivalent to \(\Sigma^c \).

Idea: Push \(U \) into a “reduced” \(\Sigma^c \).
Theorem. $U := \bigcup_{c: \text{deep}} \text{Sm}(c)$ is homotopy equivalent to Σ^c.

Idea: Push U into a “reduced” Σ^c.
Homotopy Type of the Complement

Theorem. $U := \bigcup_{c \text{ deep}} \text{Sm}(c)$ is homotopy equivalent to Σ^c.

Idea: Push U into a “reduced” Σ^c.
Theorem. $U := \bigcup_{c:\text{deep}} \text{Sm}(c)$ is homotopy equivalent to Σ^c.

Idea: Push U into a “reduced” Σ^c.
Theorem. \(U := \bigcup_{c:\text{deep}} \text{Sm}(c) \) is homotopy equivalent to \(\Sigma^c \).

Idea: Push \(U \) into a “reduced” \(\Sigma^c \).
Theorem. $U := \bigcup_{c: \text{deep}} \text{Sm}(c)$ is homotopy equivalent to Σ^c.

Idea: Push U into a “reduced” Σ^c.
Theorem.
Let $P \subset \mathbb{R}^n$ and h be the induced distance function. If $h(c_1) < \cdots < h(c_k)$ are critical points of h, then for any submanifold Σ of \mathbb{R}^n densely sampled by P, there is a $1 < j < k$, such that:

$$\bigcup_{i=1}^{j} \text{Sm}(c_i) \simeq \Sigma$$

and

$$\bigcup_{i=j+1}^{k} \text{Sm}(c_i) \simeq \Sigma^c$$
Theorem.
Let $P \subset \mathbb{R}^n$ and h be the induced distance function. If $h(c_1) < \cdots < h(c_k)$ are critical points of h, then for any submanifold Σ of \mathbb{R}^n densely sampled by P, there is a $1 < j < k$, such that:

\[
\bigcup_{i=1}^{j} \text{Sm}(c_i) \simeq \Sigma \\
\text{and} \\
\bigcup_{i=j+1}^{k} \text{Sm}(c_i) \simeq \Sigma^c
\]