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Unlike homeomorphism, homotopy equivalence does not preserve dimension.
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What if we don’t know the submanifold’s dimension?

Naturally occurring data may be generated by structured systems with much
fewer degrees of freedom than the ambient dimension.
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Medial Axis & Sampling Assumption

The medial axis (MA) of X is the set of points M/ C R that have > 2 closest
points In 2.

The local feature size of £ € . Is

Ifs(x) := dist(xz, M).

The reach of X Is

reach(X) := dist(X, M) = min Ifs(x).

TrTE.

An adaptive e-sample of ¥ has a point within ¢ - Ifs(x) of every z € X,

A uniform e-sample of ¥ has a point within ¢ - reach(3) of every x € X..
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The squared distance function induced by P is

P is a discrete set of points
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Integrating v

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,

¢(t,x) =y means “starting at x and going for time ¢ we reach y".

p(x) = {o(t,z) : t > 0} P(X) = Urex o()




Critical Points of Distance Function

A point ¢ with v(c) = 0 is called critical.




Critical Points of Distance Function

A point ¢ with v(c) = 0 is called critical.
A point c is critical iff {c} = V(c) N D(c).




Critical Points of Distance Function

A point ¢ with v(c) = 0 is called critical.
A point c is critical iff {c} = V(c) N D(c).




Critical Points of Distance Function

A point ¢ with v(c) = 0 is called critical.
A point c is critical iff {c} = V(c) N D(c).




Critical Points of Distance Function

A point ¢ with v(c) = 0 is called critical.
A point c is critical iff {c} = V(c) N D(c).

The index of ¢ is the dimension of D(c).
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Flow Shapes, Union of Balls, Alpha Shapes

For a point set P C R"™ and r € R:
union of balls B"(P) := (J,cp B(p,7)

alpha shape K"(P) := NrvlJ, cp(B(p,7) N V)
flow shape F"(P) := Uy (o)<, SM(c)
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For a point set P C R"™ and r € R:

union of balls B"(P) := Upep B(p,r)
alpha shape K" (P) := Nrv|J, . p(B(p,7) N V})
flow shape F"(P) := Up o)<, SM(c)

Theorem [Edel'95] B"(P) and K" (P) are homotopy equivalent.
Theorem [DGJ'03, BG'05] F"(P) and K" (P) are homotopy equivalent.
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Separation of Critical Points (uniform)

Theorem. If P is a uniform e-sample, then for a shallow ¢, dist(c, P) <
\/5/3eT and for a deep c, dist(c, P) > (1 — 2&2)7.

Theorem. [NSW'06] If P is a uniform e-sample of ¥ then B(")(P) is ho-
motopy equivalent to ¥ (when r and ¢ are in the right range).
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Using Flow to Prove Homotopy Equivalence

Lemma [Lieutier'04]. If Y C X are bounded_ang
X and Y

1. ¢(X) = X and ¢(Y) = Y, and S
2wty > e = 0 for zee X N Y,

then X and Y are homotopy equivalent.

So, we “push X into YY" at speed > 0.
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ldea to Lower Bound the Speed

If V(z) N D(x) = 0 then

|lv(z)]] 2 ||z — d(z)
2 - dist(V (x)
If V(z) N D(x) ={c} then x € Um(c). \

we are finel




Homotopy Type of the Complement

Theorem. U :— Uc:deep is homotopy equivalent to >.¢.
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Putting Everything Together

Theorem.

Let P C R™ and h be the induced distance function. If A(c;) < -+ < h(cg)

are critical points of A, then for any submanifold > of R™ densely sampled
by P, thereisa 1l < j < k, such that:
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Thank You!



