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2 Chapter 0 Some Underlying Geometric Notions

Naturally we would like ft(x) to depend continuously on both t and x , and this will

be true if we have each x ∈ X − X move along its line segment at constant speed so

as to reach its image point in X at time t = 1, while points x ∈ X are stationary, as

remarked earlier.

Examples of this sort lead to the following general definition. A deformation

retraction of a space X onto a subspace A is a family of maps ft :X→X , t ∈ I , such

that f0 = 11 (the identity map), f1(X) = A , and ft ||A = 11 for all t . The family ft
should be continuous in the sense that the associated map X×I→X , (x, t)!ft(x) ,
is continuous.

It is easy to produce many more examples similar to the letter examples, with the

deformation retraction ft obtained by sliding along line segments. The figure on the

left below shows such a deformation retraction of a Möbius band onto its core circle.

The three figures on the right show deformation retractions in which a disk with two

smaller open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction can

be described by means of the following definition. For a map f :X→Y , the mapping

cylinder Mf is the quotient space of the disjoint union (X×I)%Y obtained by iden-

tifying each (x,1) ∈ X×I
with f(x) ∈ Y . In the let-

X × I
X

Y Y
Mff X( )

ter examples, the space X
is the outer boundary of the

thick letter, Y is the thin

letter, and f :X→Y sends

the outer endpoint of each line segment to its inner endpoint. A similar description

applies to the other examples. Then it is a general fact that a mapping cylinder Mf
deformation retracts to the subspace Y by sliding each point (x, t) along the segment

{x}×I ⊂ Mf to the endpoint f(x) ∈ Y .

Not all deformation retractions arise in this way from mapping cylinders, how-

ever. For example, the thick X deformation retracts to the thin X , which in turn

deformation retracts to the point of intersection of its two crossbars. The net result

is a deformation retraction of X onto a point, during which certain pairs of points

follow paths that merge before reaching their final destination. Later in this section

we will describe a considerably more complicated example, the so-called ‘house with

two rooms,’ where a deformation retraction to a point can be constructed abstractly,

but seeing the deformation with the naked eye is a real challenge.

Unlike homeomorphism, homotopy equivalence does not preserve dimension.
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All these knots have the same homotopy type, but not their complements.
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x∈Σ

lfs(x).
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The squared distance function induced by P is

6

P is a discrete set of points

h(x) := min
p∈P

‖x− p‖2
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A point c is critical iff {c} = V (c) ∩D(c).

9

A point c with v(c) = 0 is called critical.

The index of c is the dimension of D(c).
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Theorem [DGRS’05] If P is a uniform ε-sample of Σ with ε < 1/
√

3, then
any critical point c of h is either shallow, i.e. dist(c,Σ) ≤ ε2 · τ or is deep,
i.e. dist(c,Σ) ≥ (1− 2ε2)τ , where τ = reach(Σ).
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Theorem. [NSW’06] If P is a uniform ε-sample of Σ then B(r)(P ) is ho-
motopy equivalent to Σ (when r and ε are in the right range).
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Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.
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X and Y are
flow-tight

So, we “push X into Y ” at speed > 0.

Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.
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Idea to Lower Bound the Speed

x

d
If V (x) ∩D(x) = {c} then x ∈ Um(c).

x

c
So, if Um(c) ⊂ Y we are fine!
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If V (x) ∩D(x) = ∅ then

‖v(x)‖ = 2 · ‖x− d(x)‖
≥ 2 · dist(V (x), D(x)).
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Theorem.
Let P ⊂ Rn and h be the induced distance function. If h(c1) < · · · < h(ck)
are critical points of h, then for any submanifold Σ of Rn densely sampled
by P , there is a 1 < j < k, such that:

j⋃

i=1

Sm(ci) ! Σ
k⋃

i=j+1

Sm(ci) ! Σcand
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Thank You!


