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Reconstructing the complement
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2 Chapter 0 Some Underlying Geometric Notions

Naturally we would like ft(x) to depend continuously on both t and x , and this will

be true if we have each x ∈ X − X move along its line segment at constant speed so

as to reach its image point in X at time t = 1, while points x ∈ X are stationary, as

remarked earlier.

Examples of this sort lead to the following general definition. A deformation

retraction of a space X onto a subspace A is a family of maps ft :X→X , t ∈ I , such

that f0 = 11 (the identity map), f1(X) = A , and ft ||A = 11 for all t . The family ft
should be continuous in the sense that the associated map X×I→X , (x, t)!ft(x) ,
is continuous.

It is easy to produce many more examples similar to the letter examples, with the

deformation retraction ft obtained by sliding along line segments. The figure on the

left below shows such a deformation retraction of a Möbius band onto its core circle.

The three figures on the right show deformation retractions in which a disk with two

smaller open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction can

be described by means of the following definition. For a map f :X→Y , the mapping

cylinder Mf is the quotient space of the disjoint union (X×I)%Y obtained by iden-

tifying each (x,1) ∈ X×I
with f(x) ∈ Y . In the let-

X × I
X

Y Y
Mff X( )

ter examples, the space X
is the outer boundary of the

thick letter, Y is the thin

letter, and f :X→Y sends

the outer endpoint of each line segment to its inner endpoint. A similar description

applies to the other examples. Then it is a general fact that a mapping cylinder Mf
deformation retracts to the subspace Y by sliding each point (x, t) along the segment

{x}×I ⊂ Mf to the endpoint f(x) ∈ Y .

Not all deformation retractions arise in this way from mapping cylinders, how-

ever. For example, the thick X deformation retracts to the thin X , which in turn

deformation retracts to the point of intersection of its two crossbars. The net result

is a deformation retraction of X onto a point, during which certain pairs of points

follow paths that merge before reaching their final destination. Later in this section

we will describe a considerably more complicated example, the so-called ‘house with

two rooms,’ where a deformation retraction to a point can be constructed abstractly,

but seeing the deformation with the naked eye is a real challenge.

Unlike homeomorphism, homotopy equivalence does not preserve dimension.
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Very rich area!
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• Reconstruction as an iso-surfaces:
0-set of signed dist functs [Hoppe et al’92, Curless et al’96]
Nearest Neighbor Interpolation [Boissonnat-Cazals’02]
Mean Least Square [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05,
Dey et al’05]
SVM [Schölkopf et al’04]

• Delaunay Methods:
[Boissonnat’84,
Amenta-Bern’99,
Amenta et al’91,
Amenta-Choi-Kolluri’01]

• Using distance functions:
[Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey-Giesen-Ramos-S’05]
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The local feature size of x ∈ Σ is

lfs(x) := dist(x, M).

The reach of Σ is

reach(Σ) := dist(Σ, M) = min
x∈Σ

lfs(x).

An adaptive ε-sample of Σ has a point within ε · lfs(x) of every x ∈ Σ.

A uniform ε-sample of Σ has a point within ε · reach(Σ) of every x ∈ Σ.

re
ac

h(
Σ)
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d(x)
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x

Generalized gradients can be defined for distance to any compact set.

... or even for (geodesic) distances relative to a compact subset of a Reiman-
nian manifold. [Grove’ 93]
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φ(x) = {φ(t, x) : t ≥ 0}

x(0) = x0
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v

Moving at point x with speed v(x) results a flow map φ : R+ × Rn → Rn.

Theorem [Lieutier’04]. φ is continuous.



Proposition. Let X and Y ⊆ X be arbitrary sets and

H : [0 , 1]×X → X

be a continuous function (on both variables) satisfying

1. ∀x ∈ X : H(0 , x) = x

2. ∀y ∈ Y,∀t ∈ [0 , 1] : H(t, y) ∈ Y

3. ∀x ∈ X : H(1 , x) ∈ Y

Then X and Y have the same homotopy type.

A criterion for homotopy equivalence

X Y
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Using flow for proving homotopy equivalence

X

Y

13

Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.



Using flow for proving homotopy equivalence

X

Y

13

Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.



Using flow for proving homotopy equivalence

X

Y

13

Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.



Using flow for proving homotopy equivalence

X

Y

13

Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.

X and Y are flow-tight



Using flow for proving homotopy equivalence

X

Y

13

Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.

X and Y are flow-tight

“speed” lower bound



Using flow for proving homotopy equivalence

X
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So, we “push X into Y ” at speed > 0.

Lemma [Lieutier’04]. If Y ⊂ X are bounded and

1. φ(X) = X and φ(Y ) = Y , and

2. ‖v(x)‖ ≥ c > 0 for x ∈ X \ Y ,

then X and Y are homotopy equivalent.

X and Y are flow-tight

“speed” lower bound
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Important flow-tight sets

14

x̌

x̂

x

complements of tubular neighborhoods of the manifold, and union of balls
placed at samples are flow-tight, for the right range of parameters.

Finite unions and intersections of flow-tight sets are flow-tight.
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Critical Points of Distance Function

A point c is critical iff {c} = V (c) ∩D(c).

15

A point c with v(c) = 0 is called critical.

The index of c is the dimension of D(c).
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Stable Manifold of a Critical Point

16

Stable manifold of a critical point c is the set of all points that flow to c.

Sm(c) = {x : φ(∞, x) = c}.

[Giesen-John’03] found out that a subcomplex of FC reconstructs manifold.

The flow complex is the collection {Sm(c) : c is critical}.
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Theorem [Dey-Giesen-Ramos-S’05] If P is a uniform ε-sample of Σ with ε <
1/
√

3, then any critical point c of h is either shallow, i.e. dist(c,Σ) ≤ ε2 · τ
or is deep, i.e. dist(c,Σ) ≥ (1− 2ε2)τ , where τ = reach(Σ).

• A related result was observed by [Niyogi-Smale-Weinberger’04].

• [Lieutier-Chazal’06] Generalized this to “noisy” samples.
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Reconstruction Results

18

1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr.
range centered at points of a uniform sample is homotopy eqiv to manifold.

2. [Lieutier-Chazal’06] Generalized
to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S’05] The boundary of union of Sm’s of deep crit pts
of a tight adaptive sample is homeomorphic to surface in R3.

4. [S’08] Under uniform sampling, union of Sm’s of shallow crit pts is homo-
topy equiv to the sampled manifold and that of deep ones is homotopy equiv
to the complement of manifold.



Filtering the flow complex
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Theorem.
Let P ⊂ Rn and h be the induced distance function. If h(c1) < · · · < h(ck)
are critical points of h, then for any submanifold Σ of Rn densely sampled
by P , there is a 1 < j < k, such that:

j⋃

i=1

Sm(ci) ! Σ
k⋃

i=j+1

Sm(ci) ! Σcand
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[Lieutier’04] The medial axis of any bounded open subset of Rn is homotopy
equivalent to it.

[Giesen-Ramos-S’06] Union of unstable manifolds of deep critical points cap-
tures the homotopy type of the medial axis and can be used to approximate
it.

[Ramos-S’07] Edelsbrunner’s WRAP algorithm can be modified using the
separation of critical points to guarantee topology.

[Cohen-Steiner-Lieutier-Chazal’06] Sampling criteria for guaranteed recon-
struction of compact sets from a large family of non-smooth objects.
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[Lieutier’04] The medial axis of any bounded open subset of Rn is homotopy
equivalent to it.

[Giesen-Ramos-S’06] Union of unstable manifolds of deep critical points cap-
tures the homotopy type of the medial axis and can be used to approximate
it.

[Ramos-S’07] Edelsbrunner’s WRAP algorithm can be modified using the
separation of critical points to guarantee topology.

[Cohen-Steiner-Lieutier-Chazal’06] Sampling criteria for guaranteed recon-
struction of compact sets from a large family of non-smooth objects.

Thank You!


