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any submanifold of R" _
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Given a point cloud sampled from a surface >., we want to compute a surface
>. that has the same topology as X2 and closely approximates it geometrically.
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Very rich area!

e Reconstruction as an iso-surfaces:
O-set of signed dist functs [Hoppe et al'92, Curless et al'96]
Nearest Neighbor Interpolation [Boissonnat-Cazals'02]
Mean Least Square [Levin'98, Alexa et al’'01, Amenta-Kil'04, Kolluri'05,
Dey et al'05]
SVM [Scholkopf et al’04]

Delaunay Methods:
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Medial axis & sampling assumption

The medial axis (MA) of X is the set of points M/ C R" that have > 2 closest
points In 2.

The local feature size of £ € . Is

Ifs(x) := dist(xz, M).

The reach of X Is

reach(X) := dist(X, M) = min Ifs(x).

TrTE.

An adaptive e-sample of ¥ has a point within ¢ - Ifs(x) of every z € X,

A uniform e-sample of ¥ has a point within ¢ - reach(3) of every x € X..
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P is a discrete set of points
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P is a discrete set of points
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Distance from arbitrary compact sets

Generalized gradients can be defined for distance to any compact set.

. or even for (geodesic) distances relative to a compact subset of a Reiman-
nian manifold. [Grove' 93]




Integrating ¥

» y- . 3 pe
g, uwd‘-m-/—"b’ . ‘*-f./ lx,a-c‘,-.h.x-/ ~“{. &y 4..’/4‘»"*- £y -ouv\o-' \-'-.a&* .-;q»-l..yw el a,dm«-.a‘r AL ,&/wdc' W-’ v&«dv»vﬂ"—"‘mw %.‘J"&,"Ju ‘.

Moving at point x with speed v(x) results a flow map ¢ :




Integrating ¥

» y- . 3 pe
g, uwd‘-m-/—"b’ . ‘*-f./ lx,a-c‘,-.h.x-/ ~“{. &y 4..’/4‘»"*- £y -ouv\o-' \-'-.a&* .-;q»-l..yw el a,dm«-.a‘r AL ,&/wdc' W-’ v&«dv»vﬂ"—"‘mw %.‘J"&,"Ju ‘.

Moving at point x with speed v(x) results a flow map ¢ :




Integrating U

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,




Integrating U

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,




Integrating U

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,




Integrating U

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,




Integrating U

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,




Integrating v

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,

¢(t,x) =y means “starting at x and going for time ¢ we reach y".




Integrating U

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,

¢(t,x) =y means “starting at x and going for time ¢ we reach y".

p(x) = 10(t,z) : t 2 0}




Integrating U

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,

¢(t,x) =y means “starting at x and going for time ¢ we reach y".

p(r) = {o(t,z) : t > 0} P(X) = Upex o)




Integrating v

Moving at point x with speed v(x) results a flow map ¢ : RT x R” — R™,
¢(t,x) =y means “starting at x and going for time ¢ we reach y".
o(z) ={o(t,z) : t > 0} A X) = U ex 0(@)

Theorem [Lieutier'04]. ¢ is continuous.
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Using flow for proving homotopy equivalence

Lemma [Lieutier'04]. If Y C X are bounded and
1. ¢(X) = X and (V) =V, and S RSEUUREEIC
2ty > e >0 forzee X VY, lower bound

then X and Y are homotopy equivalent.

So, we “push X into YY" at speed > 0.
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complements of tubular neighborhoods of the manifold, and union of balls
placed at samples are flow-tight, for the right range of parameters.

Finite unions and intersections of flow-tight sets are flow-tight.
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Critical Points of Distance Function

A point ¢ with v(c) = 0 is called critical.
A point c is critical iff {c} = V(c) N D(c).

The index of ¢ is the dimension of D(c).
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Stable Manifold of a Critical Point

Stable manifold of a critical point ¢ Is the set of all points that flow to c.

The flow complex is the collection {Sm(c) : ¢ is critical }.

Computation and properties [Giesen-John'03, Dey-Giesen-John'04, Buchin-
Dey-Giesen-John'08, Cazals-Parameswaran-Pion’08]
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Stable manifold of a critical point c is the set of all points that floy

The flow complex is the collection {Sm(c) : ¢ is critical }.

Computation and properties [Giesen-John'03, Dey-Giesen-J&
Dey-Giesen-John'08, Cazals-Parameswaran-Pion’08]

|Giesen-John'03] found out that a subcomplex of FC reconstructs manifold. 15







Separation of critical points

Theorem [Dey-Giesen-Ramos-S'05] If P is a uniform e-sample of 3 with ¢ <
1/+/3, then any critical point c of h is either shallow, i.e. dist(c,X) < &2 -7
or is deep, i.e. dist(c,X) > (1 — 2¢2)7, where 7 = reach(X).
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Theorem [Dey-Giesen-Ramos-S'05] If P is a uniform e-sample of ¥ with € <
1/+/3, then any critical point c of h is either shallow, i.e. dist(c,X) < &2 -7
or is deep, i.e. dist(c,X) > (1 — 2¢2)7, where 7 = reach(X).

e A related result was observed by [Niyogi-Smale-Weinberger'04].

e [Lieutier-Chazal'06] Generalized this to “noisy” samples.
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range centered at points of a uniform sample is homotopy eqiv to manifold.

2. [Lieutier-Chazal’06] Generalized
to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S'05] The boundary of union of Sm’s of deep crit pts
of a tight adaptive sample is homeomorphic to surface in R?.

4. [S'08] Under uniform sampling, union of Sm's of shallow crit pts is homo-
topy equiv to the sampled manifold and that of deep ones is homotopy equiv
to the complement of manifold.




Filtering the flow complex

Theorem.

Let P C R™ and h be the induced distance function. If A(c;) < -+ < h(cg)

are critical points of A, then for any submanifold > of R™ densely sampled
by P, thereisa 1l < j < k, such that:

k
and U Sl e )T ds

]




Other results using distance induced flows

[Lieutier'04] The medial axis of any bounded open subset of R™ is homotopy
equivalent to it.

[Giesen-Ramos-S'06] Union of unstable manifolds of deep critical points cap-
tures the homotopy type of the medial axis and can be used to approximate
It

[Ramos-S'07] Edelsbrunner's WRAP algorithm can be modified using the
separation of critical points to guarantee topology.

|[Cohen-Steiner-Lieutier-Chazal’'06] Sampling criteria for guaranteed recon-
struction of compact sets from a large family of non-smooth objects.
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Thank You!




