Flow-Based Methods in Manifold Reconstruction

Bardia Sadri Duke University

We have "all" worked on this problem!

We have "all" worked on this problem!

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

co-dimension 1 submanifold of \mathbb{R}^n

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

co-dimension 1 submanifold of \mathbb{R}^n

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

homeomorphic ambient-isotopic

co-dimension 1 submanifold of \mathbb{R}^n

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

homeomorphic ambient-isotopic

any submanifold of \mathbb{R}^n co-dimension 1 submanifold of \mathbb{R}^n

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

homeomorphic ambient-isotopic

any submanifold of \mathbb{R}^n co-dimension 1 submanifold of \mathbb{R}^n

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

homeomorphic ambient-isotopic homotopy equivalent homology equivalent

any submanifold of \mathbb{R}^n co-dimension 1 submanifold of \mathbb{R}^n

topological space

Given a point cloud sampled from a surface Σ , we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

homeomorphic ambient-isotopic homotopy equivalent homology equivalent

Reconstructing the complement

Unlike homeomorphism, homotopy equivalence does not preserve dimension.

Reconstructing the complement

Unlike homeomorphism, homotopy equivalence does not preserve dimension.

All these knots have the same homotopy type, but not their complements.

Reconstructing the complement

Unlike homeomorphism, homotopy equivalence does not preserve dimension.

All these knots have the same homotopy type, but not their complements.

What if we don't know the submanifold's dimension?

Naturally occurring data may be generated by structured systems with much fewer degrees of freedom than the ambient dimension.

What if we don't know the submanifold's dimension?

Naturally occurring data may be generated by structured systems with much fewer degrees of freedom than the ambient dimension.

- Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al'92, Curless et al'96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals'02]
 Mean Least Square [Levin'98, Alexa et al'01, Amenta-Kil'04, Kolluri'05, Dey et al'05]
 SVM [Schölkopf et al'04]
- Delaunay Methods:
 [Boissonnat'84, Amenta-Bern'99, Amenta et al'91, Amenta-Choi-Kolluri'01]

- Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al'92, Curless et al'96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals'02]
 Mean Least Square [Levin'98, Alexa et al'01, Amenta-Kil'04, Kolluri'05, Dey et al'05]
 SVM [Schölkopf et al'04]
- Delaunay Methods:
 [Boissonnat'84, Amenta-Bern'99, Amenta et al'91, Amenta-Choi-Kolluri'01]

- Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al'92, Curless et al'96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals'02]
 Mean Least Square [Levin'98, Alexa et al'01, Amenta-Kil'04, Kolluri'05, Dey et al'05]
 SVM [Schölkopf et al'04]
- Delaunay Methods:
 [Boissonnat'84, Amenta-Bern'99, Amenta et al'91, Amenta-Choi-Kolluri'01]

- Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al'92, Curless et al'96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals'02]
 Mean Least Square [Levin'98, Alexa et al'01, Amenta-Kil'04, Kolluri'05, Dey et al'05]
 SVM [Schölkopf et al'04]
- Delaunay Methods:
 [Boissonnat'84, Amenta-Bern'99, Amenta et al'91, Amenta-Choi-Kolluri'01]

The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ .

The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ .

The local feature size of $x \in \Sigma$ is

 $\mathsf{lfs}(x) := \mathsf{dist}(x, M).$

The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ .

The local feature size of $x \in \Sigma$ is

 $\mathsf{lfs}(x) := \mathsf{dist}(x, M).$

The reach of Σ is

 $\mathsf{reach}(\Sigma) := \mathsf{dist}(\Sigma, M) = \min_{x \in \Sigma} \mathsf{lfs}(x).$

reach

M

 \sum

155.3.)

The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ .

The local feature size of $x \in \Sigma$ is

 $\mathsf{lfs}(x) := \mathsf{dist}(x, M).$

The reach of Σ is

 $\operatorname{\mathsf{reach}}(\Sigma):=\operatorname{\mathsf{dist}}(\Sigma,M)=\min_{x\in\Sigma}\operatorname{\mathsf{lfs}}(x).$

An adaptive ε -sample of Σ has a point within $\varepsilon \cdot \mathsf{lfs}(x)$ of every $x \in \Sigma$.

reach

M

Σ

155.3

The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ .

The local feature size of $x \in \Sigma$ is

 $\mathsf{lfs}(x) := \mathsf{dist}(x, M).$

The reach of Σ is

 $\operatorname{\mathsf{reach}}(\Sigma):=\operatorname{\mathsf{dist}}(\Sigma,M)=\min_{x\in\Sigma}\operatorname{\mathsf{lfs}}(x).$

An adaptive ε -sample of Σ has a point within $\varepsilon \cdot \operatorname{lfs}(x)$ of every $x \in \Sigma$. A uniform ε -sample of Σ has a point within $\varepsilon \cdot \operatorname{reach}(\Sigma)$ of every $x \in \Sigma$.

reach

1553

M

Σ

(Squared) distance function

P is a discrete set of points The squared distance function induced by P is $h(x) := \min_{p \in P} \|x - p\|^2$

(Squared) distance function

P is a discrete set of points The squared distance function induced by P is $h(x) := \min_{p \in P} \|x - p\|^2$

V(x): lowest-dimensional Voronoi face containing x.

V(x): lowest-dimensional Voronoi face containing x.

V(x): lowest-dimensional Voronoi face containing x. D(x): Delaunay dual to V(x).

V(x): lowest-dimensional Voronoi face containing x. D(x): Delaunay dual to V(x).

V(x): lowest-dimensional Voronoi face containing x. D(x): Delaunay dual to V(x). The driver of x is the closest point to x in D(x). v(x) = 2(x - d(x))

V(x): lowest-dimensional Voronoi face containing x. D(x): Delaunay dual to V(x). The driver of x is the closest point to x in D(x). v(x) = 2(x - d(x))

V(x): lowest-dimensional Voronoi face containing x. D(x): Delaunay dual to V(x). The driver of x is the closest point to x in D(x). v(x) = 2(x - d(x))

Generalized gradients can be defined for distance to any compact set.

... or even for (geodesic) distances relative to a compact subset of a Reimannian manifold. [Grove' 93]

 $\phi(t,x) = y$ means "starting at x and going for time t we reach y".

Moving at point x with speed v(x) results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$ $\phi(t, x) = y$ means "starting at x and going for time t we reach y". $\phi(x) = \{\phi(t, x) : t \ge 0\}$

 $\begin{array}{l} \text{Moving at point } x \text{ with speed } v(x) \text{ results a flow map } \phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n.\\ \phi(t,x) = y \text{ means "starting at } x \text{ and going for time } t \text{ we reach } y".\\ \phi(x) = \{\phi(t,x) : t \ge 0\} \qquad \qquad \phi(X) = \bigcup_{x \in X} \phi(x) \end{array}$

Moving at point x with speed v(x) results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$. $\phi(t, x) = y$ means "starting at x and going for time t we reach y". $\phi(x) = \{\phi(t, x) : t \ge 0\}$ $\phi(X) = \bigcup_{x \in X} \phi(x)$ Theorem [Lieutier'04]. ϕ is continuous.

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $H:[0,1]\times X\to X$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

- 2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
- 3. $\forall x \in X : H(1, x) \in Y$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3. $\forall x \in X : H(1, x) \in Y$

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$$

3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.

Identity at time 0

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

- 2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
- 3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.

Identity at time 0

Nothing leaves Y

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

- 2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
- 3. $\forall x \in X : H(1, x) \in Y$

Identity at time 0

Nothing leaves Y

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0,1] \times X \to X \\ \mathsf{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$
 Identity at time 0

- 2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
- 3. $\forall x \in X : H(1, x) \in Y$

Nothing leaves Y

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

 $\begin{array}{c} H: [0, \ensuremath{\text{1}}, \ensuremath{\text{1}}] \times X \to X \\ \text{time} \end{array}$

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : H(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, \mathbb{Z}] : H(t, y) \in Y$$

3. $\forall x \in X : H(\mathbf{I}, x) \in Y$

Identity at time 0

Nothing leaves Y

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0, \mathbf{7}] \times X \to X$$
time

be a continuous function (on both variables) satisfying

1.
$$\forall x \in X : \phi(0, x) = x$$

2.
$$\forall y \in Y, \forall t \in [0, \mathbf{\Pi}] : \phi(t, y) \in Y$$

3. $\forall x \in X : \phi(\mathbf{I}, x) \in Y$

Nothing leaves Y

Identity at time 0

Everything in Y by time 1

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\begin{split} & \phi(X) = X \\ & 1. \ \forall x \in X : \ \phi(0, x) = x \\ & 2. \ \forall y \in Y, \forall t \in [0, T] : \ \phi(t, y) \in Y \\ & 3. \ \forall x \in X : \ \phi(T, x) \in Y \\ & & \text{Everything in } Y \text{ by time } 1 \\ \end{split}$$

Lemma [Lieutier'04]. If $Y \subset X$ are bounded and

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

Lemma [Lieutier'04]. If $Y \subset X$ are bounded and

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

Lemma [Lieutier'04]. If $Y \subset X$ are bounded and

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

Lemma [Lieutier'04]. If $Y \subset X$ are bounded and

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and \checkmark
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

X and Y are flow-tight

Lemma [Lieutier'04]. If $Y \subset X$ are bounded and

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

Using flow for proving homotopy equivalence

Lemma [Lieutier'04]. If $Y \subset X$ are bounded and

- 1. $\phi(X) = X$ and $\phi(Y) = Y$, and
- 2. $||v(x)|| \ge c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

So, we "push X into Y" at speed > 0.

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.

Finite unions and intersections of flow-tight sets are flow-tight.

A point c with v(c) = 0 is called critical.

A point c with v(c) = 0 is called critical. A point c is critical iff $\{c\} = V(c) \cap D(c)$.

A point c with v(c) = 0 is called critical. A point c is critical iff $\{c\} = V(c) \cap D(c)$.

A point c with v(c) = 0 is called critical. A point c is critical iff $\{c\} = V(c) \cap D(c)$.

A point c with v(c) = 0 is called critical. A point c is critical iff $\{c\} = V(c) \cap D(c)$.

The index of c is the dimension of D(c).

Stable manifold of a critical point c is the set of all points that flow to c.

The flow complex is the collection $\{Sm(c) : c \text{ is critical}\}$.

Stable manifold of a critical point c is the set of all points that flow to c.

$\mathsf{Sm}(c) = \{x : \phi(\infty, x) = c\}.$

The flow complex is the collection ${Sm(c) : c \text{ is critical}}.$

Stable manifold of a critical point c is the set of all points that flow to c.

$\mathsf{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$

The flow complex is the collection $\{Sm(c) : c \text{ is critical}\}$. Computation and properties [Giesen-John'03, Dey-Giesen-John'04, Buchin-Dey-Giesen-John'08, Cazals-Parameswaran-Pion'08]

Stable manifold of a critical point c is the set of all points that flow to c

 $\mathsf{Sm}(c) = \{x : \phi(\infty, x) = c\}.$

The flow complex is the collection $\{Sm(c) : c \text{ is critical}\}$. Computation and properties [Giesen-John'03, Dey-Giesen-John'08, Cazals-Parameswaran-Pion'08] [Giesen-John'03] found out that a subcomplex of FC reconstructs manifold. 16

Theorem [Dey-Giesen-Ramos-S'05] If P is a uniform ε -sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\operatorname{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\operatorname{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \operatorname{reach}(\Sigma)$.

Theorem [Dey-Giesen-Ramos-S'05] If P is a uniform ε -sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\operatorname{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\operatorname{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \operatorname{reach}(\Sigma)$.

• A related result was observed by [Niyogi-Smale-Weinberger'04].

Theorem [Dey-Giesen-Ramos-S'05] If P is a uniform ε -sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\operatorname{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\operatorname{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \operatorname{reach}(\Sigma)$.

- A related result was observed by [Niyogi-Smale-Weinberger'04].
- [Lieutier-Chazal'06] Generalized this to "noisy" samples.

1. [Niyogi, Smale, Weinberger'04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy eqiv to manifold.

1. [Niyogi, Smale, Weinberger'04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy eqiv to manifold.

1. [Niyogi, Smale, Weinberger'04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy eqiv to manifold.

2. [Lieutier-Chazal'06] Generalized to noisy and adaptive samples.

1. [Niyogi, Smale, Weinberger'04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy eqiv to manifold.

2. [Lieutier-Chazal'06] Generalized to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S'05] The boundary of union of Sm's of deep crit pts of a tight adaptive sample is homeomorphic to surface in \mathbb{R}^3 .

1. [Niyogi, Smale, Weinberger'04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy eqiv to manifold.

2. [Lieutier-Chazal'06] Generalized to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S'05] The boundary of union of Sm's of deep crit pts of a tight adaptive sample is homeomorphic to surface in \mathbb{R}^3 .

1. [Niyogi, Smale, Weinberger'04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy eqiv to manifold.

2. [Lieutier-Chazal'06] Generalized to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S'05] The boundary of union of Sm's of deep crit pts of a tight adaptive sample is homeomorphic to surface in \mathbb{R}^3 .

1. [Niyogi, Smale, Weinberger'04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy eqiv to manifold.

2. [Lieutier-Chazal'06] Generalized to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S'05] The boundary of union of Sm's of deep crit pts of a tight adaptive sample is homeomorphic to surface in \mathbb{R}^3 .

4. [S'08] Under uniform sampling, union of Sm's of shallow crit pts is homotopy equiv to the sampled manifold and that of deep ones is homotopy equiv to the complement of manifold.

Filtering the flow complex

Theorem.

Let $P \subset \mathbb{R}^n$ and h be the induced distance function. If $h(c_1) < \cdots < h(c_k)$ are critical points of h, then for any submanifold Σ of \mathbb{R}^n densely sampled by P, there is a 1 < j < k, such that:

$$\bigcup_{i=1}^{j} \mathsf{Sm}(c_i) \simeq \Sigma \qquad \text{and} \qquad$$

$$\bigcup_{i=j+1}^{k} \operatorname{Sm}(c_i) \simeq \Sigma^c$$

Other results using distance induced flows

[Lieutier'04] The medial axis of any bounded open subset of \mathbb{R}^n is homotopy equivalent to it.

[Giesen-Ramos-S'06] Union of unstable manifolds of deep critical points captures the homotopy type of the medial axis and can be used to approximate it.

[Ramos-S'07] Edelsbrunner's WRAP algorithm can be modified using the separation of critical points to guarantee topology.

[Cohen-Steiner-Lieutier-Chazal'06] Sampling criteria for guaranteed reconstruction of compact sets from a large family of non-smooth objects.

Other results using distance induced flows

[Lieutier'04] The medial axis of any bounded open subset of \mathbb{R}^n is homotopy equivalent to it.

[Giesen-Ramos-S'06] Union of unstable manifolds of deep critical points captures the homotopy type of the medial axis and can be used to approximate it.

[Ramos-S'07] Edelsbrunner's WRAP algorithm can be modified using the separation of critical points to guarantee topology.

[Cohen-Steiner-Lieutier-Chazal'06] Sampling criteria for guaranteed reconstruction of compact sets from a large family of non-smooth objects.

Thank You!