Flow-Based Methods in Manifold Reconstruction

Bardia Sadri
Duke University
We have “all” worked on this problem!
We have “all” worked on this problem!
Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.
Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.
Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.
Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

- Homeomorphic
- Ambient-isotopic
- Co-dimension 1 submanifold of \mathbb{R}^n

Hausdorff distance relative to lfs
Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

any submanifold of \mathbb{R}^n

co-dimension 1 submanifold of \mathbb{R}^n

Hausdorff distance relative to lfs

homeomorphic ambient-isotopic
Surface (manifold) reconstruction

Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

homeomorphic
ambient-isotopic
homotopy equivalent
homology equivalent

any submanifold of \mathbb{R}^n
co-dimension 1 submanifold of \mathbb{R}^n

Hausdorff distance relative to lfs
Surface (manifold) reconstruction

Given a point cloud sampled from a surface Σ, we want to compute a surface $\hat{\Sigma}$ that has the same topology as Σ and closely approximates it geometrically.

- Any submanifold of \mathbb{R}^n
- Co-dimension 1 submanifold of \mathbb{R}^n
- Topological space
- Homotopy equivalent
- Homology equivalent
- Homeomorphic
- Ambient-isotopic
- Hausdorff distance relative to lfs
Reconstructing the complement

Unlike homeomorphism, homotopy equivalence does not preserve dimension.
Reconstructing the complement

Unlike homeomorphism, homotopy equivalence does not preserve dimension.

All these knots have the same homotopy type, but not their complements.
Chapter 0 Some Underlying Geometric Notions

Naturally we would like $f(t)$ to depend continuously on both t and x, and this will be true if we have each $x \in X - X$ move along its line segment at constant speed so as to reach its image point in X at time $t = 1$, while points $x \in X$ are stationary, as remarked earlier.

Examples of this sort lead to the following general definition. A deformation retraction of a space X onto a subspace A is a family of maps $f_t: X \to X$, $t \in I$, such that $f_0 = 1$ (the identity map), $f_1(X) = A$, and $f_t|_A = 1$ for all t. The family f_t should be continuous in the sense that the associated map $X \times I \to X$, $(x, t) \mapsto f_t(x)$, is continuous.

It is easy to produce many more examples similar to the letter examples, with the deformation retraction f_t obtained by sliding along line segments. The figure on the left below shows such a deformation retraction of a Möbius band onto its core circle.

The three figures on the right show deformation retractions in which a disk with two smaller open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction can be described by means of the following definition. For a map $f: X \to Y$, the mapping cylinder Mf is the quotient space of the disjoint union $(X \times I) \bigsqcup Y$ obtained by identifying each $(x, 1) \in X \times I$ with $f(x) \in Y$. In the letter examples, the space X is the outer boundary of the thick letter, Y is the thin letter, and $f: X \to Y$ sends the outer endpoint of each line segment to its inner endpoint. A similar description applies to the other examples. Then it is a general fact that a mapping cylinder Mf deformation retracts to the subspace Y by sliding each point (x, t) along the segment $\{x\} \times I \subset Mf$ to the endpoint $f(x) \in Y$.

Not all deformation retractions arise in this way from mapping cylinders, however. For example, the thick X deformation retracts to the thin X, which in turn deformation retracts to the point of intersection of its two crossbars. The net result is a deformation retraction of X onto a point, during which certain pairs of points follow paths that merge before reaching their final destination. Later in this section we will describe a considerably more complicated example, the so-called 'house with two rooms,' where a deformation retraction to a point can be constructed abstractly, but seeing the deformation with the naked eye is a real challenge.

Unlike homeomorphism, homotopy equivalence does not preserve dimension.

All these knots have the same homotopy type, but not their complements.
What if we don’t know the submanifold’s dimension?

Naturally occurring data may be generated by structured systems with much fewer degrees of freedom than the ambient dimension.
What if we don’t know the submanifold’s dimension?

Naturally occurring data may be generated by structured systems with much fewer degrees of freedom than the ambient dimension.
• Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al’92, Curless et al’96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals’02]
 Mean Least Square [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05, Dey et al’05]
 SVM [Schölkopf et al’04]

• Delaunay Methods:
 [Boissonnat’84, Amenta-Bern’99, Amenta et al’91, Amenta-Choi-Kolluri’01]

• Using distance functions:
 [Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey-Giesen-Ramos-S’05]
• Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al’92, Curless et al’96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals’02]
 Mean Least Square [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05, Dey et al’05]
 SVM [Schölkopf et al’04]

• Delaunay Methods:
 [Boissonnat’84, Amenta-Bern’99, Amenta et al’91, Amenta-Choi-Kolluri’01]

• Using distance functions:
 [Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey-Giesen-Ramos-S’05]
• Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al’92, Curless et al’96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals’02]
 Mean Least Square [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05, Dey et al’05]
 SVM [Schölkopf et al’04]

• Delaunay Methods:
 [Boissonnat’84, Amenta-Bern’99, Amenta et al’91, Amenta-Choi-Kolluri’01]

• Using distance functions:
 [Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey-Giesen-Ramos-S’05]
• Reconstruction as an iso-surfaces:
 0-set of signed dist functs [Hoppe et al’92, Curless et al’96]
 Nearest Neighbor Interpolation [Boissonnat-Cazals’02]
 Mean Least Square [Levin’98, Alexa et al’01, Amenta-Kil’04, Kolluri’05,
 Dey et al’05]
 SVM [Schölkopf et al’04]

• Delaunay Methods:
 [Boissonnat’84,
 Amenta-Bern’99,
 Amenta et al’91,
 Amenta-Choi-Kolluri’01]

• Using distance functions:
 [Edelsbrunner’04, Chaine’03, Giesen-John’03, Dey-Giesen-Ramos-S’05]
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.

The local feature size of $x \in \Sigma$ is

$$lfs(x) := \text{dist}(x, M).$$
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.

The local feature size of $x \in \Sigma$ is

$$\text{lfs}(x) := \text{dist}(x, M).$$

The reach of Σ is

$$\text{reach}(\Sigma) := \text{dist}(\Sigma, M) = \min_{x \in \Sigma} \text{lfs}(x).$$
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.

The local feature size of $x \in \Sigma$ is

$$\text{lfs}(x) := \text{dist}(x, M).$$

The reach of Σ is

$$\text{reach}(\Sigma) := \text{dist}(\Sigma, M) = \min_{x \in \Sigma} \text{lfs}(x).$$

An adaptive ε-sample of Σ has a point within $\varepsilon \cdot \text{lfs}(x)$ of every $x \in \Sigma$.
The medial axis (MA) of Σ is the set of points $M \subset \mathbb{R}^n$ that have ≥ 2 closest points in Σ.

The **local feature size** of $x \in \Sigma$ is

$$\text{lfs}(x) := \text{dist}(x, M).$$

The **reach** of Σ is

$$\text{reach}(\Sigma) := \text{dist}(\Sigma, M) = \min_{x \in \Sigma} \text{lfs}(x).$$

An **adaptive ε-sample** of Σ has a point within $\varepsilon \cdot \text{lfs}(x)$ of every $x \in \Sigma$.

A **uniform ε-sample** of Σ has a point within $\varepsilon \cdot \text{reach}(\Sigma)$ of every $x \in \Sigma$.
The squared distance function induced by P is

$$h(x) := \min_{p \in P} \|x - p\|^2$$
The squared distance function induced by P is

$$h(x) := \min_{p \in P} \|x - p\|^2$$

P is a discrete set of points.
Generalized gradient

[Diagram of generalized gradient]
Generalized gradient
Generalized gradient
$V(x)$: lowest-dimensional Voronoi face containing x.
Generalized gradient

\[V(x) : \text{lowest-dimensional Voronoi face containing } x. \]
$V(x)$: lowest-dimensional Voronoi face containing x.

$D(x)$: Delaunay dual to $V(x)$.
$V(x)$: lowest-dimensional Voronoi face containing x.

$D(x)$: Delaunay dual to $V(x)$.
Generalized gradient

\[v(x) = 2(x - d(x)) \]

\(V(x) \): lowest-dimensional Voronoi face containing \(x \).

\(D(x) \): Delaunay dual to \(V(x) \).

The **driver** of \(x \) is the closest point to \(x \) in \(D(x) \).

\(V(x) \): lowest-dimensional Voronoi face containing \(x \).

\(D(x) \): Delaunay dual to \(V(x) \).

The **driver** of \(x \) is the closest point to \(x \) in \(D(x) \).

\[v(x) = 2(x - d(x)) \]
$V(x)$: lowest-dimensional Voronoi face containing x.
$D(x)$: Delaunay dual to $V(x)$.
The driver of x is the closest point to x in $D(x)$.

$v(x) = 2(x - d(x))$
Generalized gradient

\[d(x) \]
\[v(x) \]
\[x = d(x) \]
\[v(x) = \nabla h(x) \]

\[V(x) \text{: lowest-dimensional Voronoi face containing } x. \]
\[D(x) \text{: Delaunay dual to } V(x). \]

The driver of \(x \) is the closest point to \(x \) in \(D(x) \).

\[v(x) = 2(x - d(x)) \]
Generalized gradients can be defined for distance to any *compact* set.
Distance from arbitrary compact sets

Generalized gradients can be defined for distance to any compact set.
Generalized gradients can be defined for distance to any \textit{compact} set.
Generalized gradients can be defined for distance to any compact set.
Generalized gradients can be defined for distance to any compact set.
Generalized gradients can be defined for distance to any compact set.
Generalized gradients can be defined for distance to any compact set.
Distance from arbitrary compact sets

Generalized gradients can be defined for distance to any compact set.
Distance from arbitrary compact sets

Generalized gradients can be defined for distance to any **compact** set.

\[\sum d(x) v(x) \]

... or even for (geodesic) distances relative to a compact subset of a Reimannian manifold. [Grove’ 93]
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$.

\begin{align*}
x(0) &= x_0 \\
x'(t) &= v(x(t))
\end{align*}
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

\[x(0) = x_0 \]
\[x'(t) = v(x(t)) \]
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

\[
x(0) = x_0 \\
x'(t) = v(x(t))
\]
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$.

\[
x(0) = x_0 \\
x'(t) = v(x(t))
\]
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

$x(0) = x_0$

$x'(t) = v(x(t))$
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y”.
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$.

$\phi(t, x) = y$ means “starting at x and going for time t we reach y”.

$\phi(x) = \{ \phi(t, x) : t \geq 0 \}$
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y”.

$$\phi(x) = \{ \phi(t, x) : t \geq 0 \}$$

$$\phi(X) = \bigcup_{x \in X} \phi(x)$$
Moving at point x with speed $v(x)$ results a flow map $\phi : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n$. $\phi(t, x) = y$ means “starting at x and going for time t we reach y”.

$$\phi(x) = \{ \phi(t, x) : t \geq 0 \}$$

$$\phi(X) = \bigcup_{x \in X} \phi(x)$$

Theorem [Lieutier’04]. ϕ is continuous.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$
3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$

2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$

3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$
 Identity at time 0

2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$

3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
A criterion for homotopy equivalence

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \rightarrow X$$

be a **continuous** function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ \hspace{1cm} Identity at time 0
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$ \hspace{1cm} Nothing leaves Y
3. $\forall x \in X : H(1, x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \rightarrow X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ Identity at time 0
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$ Nothing leaves Y
3. $\forall x \in X : H(1, x) \in Y$ Everything in Y by time 1

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0, 1] \times X \rightarrow X$$

be a **continuous** function (on both variables) satisfying

1. $\forall x \in X : H(0, x) = x$ \hspace{1cm} **Identity at time 0**
2. $\forall y \in Y, \forall t \in [0, 1] : H(t, y) \in Y$ \hspace{1cm} **Nothing leaves Y**
3. $\forall x \in X : H(1, x) \in Y$ \hspace{1cm} **Everything in Y by time 1**

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$H : [0,T] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : H(0,x) = x$ \hspace{1cm} \text{Identity at time 0}$

2. $\forall y \in Y, \forall t \in [0,T] : H(t,y) \in Y$ \hspace{1cm} \text{Nothing leaves } Y$

3. $\forall x \in X : H(T,x) \in Y$ \hspace{1cm} \text{Everything in } Y \text{ by time 1}$

Then X and Y have the same homotopy type.
A criterion for homotopy equivalence

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0, T] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : \phi(0, x) = x$ \hspace{1cm} **Identity at time 0**
2. $\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y$ \hspace{1cm} **Nothing leaves Y**
3. $\forall x \in X : \phi(T, x) \in Y$ \hspace{1cm} **Everything in Y by time 1**

Then X and Y have the same homotopy type.
A criterion for homotopy equivalence

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0,T] \times X \to X$$

be a continuous function (on both variables) satisfying

1. $\forall x \in X : \phi(0,x) = x$

2. $\forall y \in Y, \forall t \in [0,T] : \phi(t,y) \in Y$

3. $\forall x \in X : \phi(T,x) \in Y$

Then X and Y have the same homotopy type.
Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$
\phi : [0, T] \times X \to X
$$

be a **continuous** function (on both variables) satisfying

1. $\forall x \in X : \phi(0, x) = x$
2. $\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y$
3. $\forall x \in X : \phi(T, x) \in Y$

Then X and Y have the same homotopy type.
A criterion for homotopy equivalence

Proposition. Let X and $Y \subseteq X$ be arbitrary sets and

$$\phi : [0, T] \times X \to X$$

be a **continuous** function (on both variables) satisfying

1. $\forall x \in X : \phi(0, x) = x$

2. $\forall y \in Y, \forall t \in [0, T] : \phi(t, y) \in Y$

3. $\forall x \in X : \phi(T, x) \in Y$

Then X and Y have the same homotopy type.
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subseteq X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subseteq X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and

2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and

2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.
Lemma [Lieutier’04]. If $Y \subset X$ are bounded and

1. $\phi(X) = X$ and $\phi(Y) = Y$, and
2. $\|v(x)\| \geq c > 0$ for $x \in X \setminus Y$,

then X and Y are homotopy equivalent.

So, we “push X into Y” at speed > 0.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.
Important flow-tight sets

complements of tubular neighborhoods of the manifold, and union of balls placed at samples are flow-tight, for the right range of parameters.

Finite unions and intersections of flow-tight sets are flow-tight.
A point c with $v(c) = 0$ is called critical.
A point \(c \) with \(v(c) = 0 \) is called critical.

A point \(c \) is critical iff \(\{c\} = V(c) \cap D(c) \).
A point \(c \) with \(v(c) = 0 \) is called critical.

A point \(c \) is critical iff \(\{c\} = V(c) \cap D(c) \).
A point \(c \) with \(v(c) = 0 \) is called critical.

A point \(c \) is critical iff \(\{ c \} = V(c) \cap D(c) \).
A point c with $v(c) = 0$ is called critical.

A point c is critical iff $\{c\} = V(c) \cap D(c)$.

The index of c is the dimension of $D(c)$.

Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}$.
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$

The flow complex is the collection $\{ \text{Sm}(c) : c \text{ is critical} \}$.
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$

The flow complex is the collection $\{ \text{Sm}(c) : c \text{ is critical} \}.$
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{x : \phi(\infty, x) = c\}.$$

The flow complex is the collection \{\text{Sm}(c) : c \text{ is critical}\}.

Computation and properties [Giesen-John’03, Dey-Giesen-John’04, Buchin-Dey-Giesen-John’08, Cazals-Parameswaran-Pion’08]
Stable manifold of a critical point c is the set of all points that flow to c.

$$\text{Sm}(c) = \{ x : \phi(\infty, x) = c \}.$$

The flow complex is the collection $\{\text{Sm}(c) : c \text{ is critical}\}$.

Computation and properties [Giesen-John’03, Dey-Giesen-John’04, Dey-Giesen-John’08, Cazals-Parameswaran-Pion’08] [Giesen-John’03] found out that a subcomplex of FC reconstructs manifold.
Separation of critical points
Theorem [Dey-Giesen-Ramos-S’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \text{reach}(\Sigma)$.
Theorem [Dey-Giesen-Ramos-S’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \text{reach}(\Sigma)$.

- A related result was observed by [Niyogi-Smale-Weinberger’04].
Theorem [Dey-Giesen-Ramos-S’05] If P is a uniform ε-sample of Σ with $\varepsilon < 1/\sqrt{3}$, then any critical point c of h is either shallow, i.e. $\text{dist}(c, \Sigma) \leq \varepsilon^2 \cdot \tau$ or is deep, i.e. $\text{dist}(c, \Sigma) \geq (1 - 2\varepsilon^2)\tau$, where $\tau = \text{reach}(\Sigma)$.

- A related result was observed by [Niyogi-Smale-Weinberger’04].
- [Lieutier-Chazal’06] Generalized this to “noisy” samples.
1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy equiv to manifold.
1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr. range centered at points of a **uniform** sample is homotopy equiv to manifold.
1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy equiv to manifold.

2. [Lieutier-Chazal’06] Generalized to noisy and adaptive samples.
1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy equiv to manifold.

2. [Lieutier-Chazal’06] Generalized to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S’05] The boundary of union of Sm’s of deep crit pts of a tight adaptive sample is homeomorphic to surface in \mathbb{R}^3.
1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy equiv to manifold.

2. [Lieutier-Chazal’06] Generalized to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S’05] The boundary of union of Sm’s of deep crit pts of a tight adaptive sample is homeomorphic to surface in \mathbb{R}^3.
1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr. range centered at points of a uniform sample is homotopy equiv to manifold.

2. [Lieutier-Chazal’06] Generalized to noisy and adaptive samples.

3. [Dey-Giesen-Ramos-S’05] The boundary of union of Sm’s of deep crit pts of a tight adaptive sample is homeomorphic to surface in \mathbb{R}^3.
Reconstruction Results

1. [Niyogi, Smale, Weinberger’04] Union of balls of same radius within appr. range centered at points of a **uniform** sample is homotopy equiv to manifold.

2. [Lieutier-Chazal’06] Generalized to **noisy** and **adaptive** samples.

3. [Dey-Giesen-Ramos-S’05] The **boundary** of union of Sm’s of deep crit pts of a **tight adaptive sample** is homeomorphic to surface in \mathbb{R}^3.

4. [S’08] Under **uniform sampling**, union of Sm’s of shallow crit pts is homotopy equiv to the sampled manifold and that of **deep** ones is homotopy equiv to the complement of manifold.
Theorem.
Let $P \subset \mathbb{R}^n$ and h be the induced distance function. If $h(c_1) < \cdots < h(c_k)$ are critical points of h, then for any submanifold Σ of \mathbb{R}^n densely sampled by P, there is a $1 < j < k$, such that:

\[
\bigcup_{i=1}^{j} \text{Sm}(c_i) \simeq \Sigma \quad \text{and} \quad \bigcup_{i=j+1}^{k} \text{Sm}(c_i) \simeq \Sigma^c
\]
[Lieutier’04] The medial axis of any bounded open subset of \mathbb{R}^n is homotopy equivalent to it.

[Giesen-Ramos-S’06] Union of unstable manifolds of deep critical points captures the homotopy type of the medial axis and can be used to approximate it.

[Ramos-S’07] Edelsbrunner’s WRAP algorithm can be modified using the separation of critical points to guarantee topology.

[Cohen-Steiner-Lieutier-Chazal’06] Sampling criteria for guaranteed reconstruction of compact sets from a large family of non-smooth objects.
[Lieutier’04] The medial axis of any bounded open subset of \mathbb{R}^n is homotopy equivalent to it.

[Giesen-Ramos-S’06] Union of unstable manifolds of deep critical points captures the homotopy type of the medial axis and can be used to approximate it.

[Ramos-S’07] Edelsbrunner’s WRAP algorithm can be modified using the separation of critical points to guarantee topology.

[Cohen-Steiner-Lieutier-Chazal’06] Sampling criteria for guaranteed reconstruction of compact sets from a large family of non-smooth objects.

Thank You!