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This circamftance at firft gave me much trouble and dif;

fatisfaction, till I fell upon the following method by
‘which the defe@& was in a great meafure fupplied,

and by which I was enabled to proceed in the cftimation
of the altitudes both with much expedition and a confi-
degable degree of accuracy. | This method was the con-
‘necting together by a faint line all the points which were

df .the fame relnativc :iltitude: by fo doing, I obtained a
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great number of ‘irregular polygons lying within, and|
at fome diftance from, one another, and bearing a confi-
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derable degree of refemblance to each other: thefe polfr-
gons were the figurcs of {o many level or horizontal fec-
tions of the hills, the relative altitudes of all the parts of
them being known; and as cvery bafe or little fpace had
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Not Just for Altitude

Current Temperatures Find Local Weather
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Terrains

A terrain is the graph of a continuous bivariate function.




Terrains

A terrain is the graph of a continuous bivariate function.

LIDAR (Light Detection and Ranging)

e Massive (irregular) point sets (1-10m resolution) <
e Becoming relatively cheap and easy to collect

e Appalachian mountains between 50GB to 5TB




Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.
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The level-set Ml; at height ¢ is h~1




Level Sets, Coutours, and Contour Maps
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The Ievel set M, at helght Vish ()




Level deoMour
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The Ievel set Mg at helght E IS h (8)
Each connected component of a level set is called a contour.




__Level Sets, Contours, and Contour Maps
The IeveI set M, at height Fish- Ly
Each connected component of a level set is called a contour.
Given levels L = {/1,...,£}, the contour map is h™!(L).
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The level-set Ml, at height £ is h=1().
Each connected component of a level set is called a contour.

Given levels L = {{1, ...,/ }, the contour map is h=(L).




Level Sets, Contours, and Contour Maps

The level-set Ml, at height £ is h=1().
Each connected component of a level set is called a contour.

Given levels L = {¢1,...,4}, the contour map is h=1(L).




Computing Contour Maps

Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.
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Computing Contour Maps

Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.




_Answering Contour Queries
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Preprocess the terrain to answer contour querles eff|C|ent|y
Given a level ¢ € R, return the level set h=1({) such that each contour is
reported separately and in sorted (circular) order.

Output: ay,a9,...,a13,b1,...,b16




The 1/0 Model

Classical Complexity: Number of basic operations as a function of V.
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Important to store/access data to take advantage of locality.




The 1/O Model

internal external
Scanning N N/B

Sorting N log N 7 logu

B
Permuting N min {N, 5 logu %}

Searching logy N logp N
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B number of items per disk block

M number of items that fit main memory

7 number of items in output
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Previous Work

Answering contour queries |/O-efficiently:

Preprocessing
1/Os

Structure Size

Query I/Os

Chiang, Silva’97

O(logg N + T/B)

Agarwal, Arge,
Murali,

Varadrarajan,
Vitter’'98
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Answering contour queries |/O-efficiently:

Chiang, Silva’97

Agarwal, Arg
Murali,

Varadrarajan,
Vitter’'98

Preprocessing
1/Os

nsorted Contours!

Structure Size

Query I/Os
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Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.
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“Very naive’ Mqoﬁthm: Trace one contour at a time
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Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

This is essentially the optimal algorithm for the RAM model.




"Very naive” Algorithm: Trace one contour at a time

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

/O Complexity:
O(N/B -logg |L| +T).

# segments In the output I
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Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.
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Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.
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Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.
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“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.
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“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

/O Complexity:
O(N/B -logg |L| + Sort(T)).

This talk: O(Sort(N) +T'/B).



Idea: Gf_ow Cantouri CeMiquouslv
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If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.
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Idea: Grow Contours Contiguously
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in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering




ldea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering
Ay: triangles that intersect level /¢
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ldea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering
Ay: triangles that intersect level /¢

The restriction of < to Ay traverses each contour of M in circular order.




Level Ordering Theorem
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Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.
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Theorem. For any terrain M, there is, and can be found in O(Sort(/N)) 1/Os,
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Level Ordering Theorem

Theorem. For any terrain M, there is, and can be found in O(Sort(/V)) I/Os,
a total ordering “<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
t1 <t3 <19 e S s i S )

We call < a “level-ordering” of triangles in M.

Can separate contours using a stack

in O(T/B) 1/Os.
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1. Sweep the terrain by a horizontal plane in the +z direction.




1. Sweep the terrain by a horizontal plane in the

2 direction.




The Algorithm
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1. Sweep the terrain by a horizontal plane in the +z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d
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1. Sweep the terrain by a horizontal plane in the 42z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d

3. When passing target level ¢; € L, dump contents of tree to disk.
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1. Sweep the terrain by a horizontal plane in the +z direction. Sort( )

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d

3. When passing target level ¢; € L, dump contents of tree to disk.
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1. Sweep the terrain by a horizontal plane in the +z direction. Sort(NV)

2. Keep triangles that intersect the sweep plane in a search tree ordered by

o I Buffer Tree [Arge'95] '

3. When passing target level /; € L, dump contents of tree to disk.
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1. Sweep the terrain by a horizontal plane in the +z direction. Sort(NV)

2. Keep triangles that intersect the sweep plane in a search tree ordered by
=. < Amortized Sort(N)' I Buffer Tree [Arge’95] '

3. When passing target level /; € L, dump contents of tree to disk.
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1. Sweep the terrain by a horizontal plane in the +z direction. <Sort(NV) '

2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]
3. When passing target level /; € L, dump contents of tree to disk. @
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1. Sweep the terrain by a horizontal plane in the +z direction. <Sort(NV) '

2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]
3. When passing target level /; € L, dump contents of tree to disk. m

Using a persistent search tree, we can answer
contour queries in O(loggz N +T/B) 1/0Os.
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1. Sweep the terrain by a horizontal plane in the +z direction. Sort(NV)

2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]
3. When passing target level /; € L, dump contents of tree to disk. m

Using a persistent search tree, we can answer
contour queries in O(loggz N +T/B) 1/0Os.

Preprocessing needs O(Sort(IN)) 1/Os and O(N) space.



Buffer Tree

Buffer Tree is an |/O-efficient search tree introduced by Arge [Arge'95].

The amortized cost of /V intermixed insert and delete operations on an initially
empty buffer tree is O (% log /5 N) = O(Sort(N)) 1/0Os.
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Flushing the tree writes the entire content of the tree in sorted order on disk,
and this takes O(N/B) 1/Os.




Buffer Tree

Buffer Tree is an |/O-efficient search tree introduced by Arge [Arge'95].

The amortized cost of /V intermixed insert and delete operations on an initially
empty buffer tree is O (% log s/ %) = O(Sort(NN)) 1/0Os.

Flushing the tree writes the entire content of the tree in sorted order on disk,
and this takes O(N/B) 1/Os.

It Is possible to make a persistent tree such that each version can be retrieved
in O(logg N) 1/0Os.




In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.
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Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).
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ake a monotone min (bd) to max path P and delete its dual from M*.

Lemma. Every cycle of M* loses precisely one edge.
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Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).
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3. The min-max path can only cross the cycle once.

Lemma. I he resulting dual graph is acyclic and the induced relation "<" a
partial order. Thus we can topologically sort it into a total order.
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Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).
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3. The min-max path can only cross the cycle once.

Lemma. I he resulting dual graph is acyclic and the induced relation "<" a
partial order. Thus we can topologically sort it into a total order.

| [Arge, Toma, Zeh'03] I




What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.




What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.




What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.

If we replace h with —A, the two types switch roles.




What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.

If we replace h with —A, the two types switch roles.

[Agarwal, Arge, Yi '06] Positive and negative saddle points can be found in
O(Sort(N)) 1/0Os.
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Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.
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' Positive Cut-Tree: follow an ascending path in every connected component
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Lemma. The result is a tree (not just forest) that reaches every maximum. 22
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Turning a terrain into an elementary one by surgery
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Turning a terrain into an elementary one by surgery

Lemma. Doing this removes all
positive saddles and maxima and adds
: :



What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.
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What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M’

Theorem. In a contour of M, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.
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What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M’

Theorem. In a contour of M, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.

a1a9 * *[bl % % *[616263]* * % xhybg *[d1d2]>1< *b4]>1< kA3A405
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RedandﬂmCoMours
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A contour is red (blue) if “IocaIIy the sublevel set is in its outside (|nS|de)
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A contour is red (blue) if “locally” the sublevel set is in its outside (inside).
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Red and Blue Contours
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A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Theorem. Only the red tree connects a blue
contour and its red children.
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A contour is red (blue) i “IocaIIy the sublevel set is in its out5|de (inside).

Theorem. Only the red tree connects a blue
contour and its red children.

Theorem. If we contract each contour to
a point, the result is a tree.
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Theorem. Only the red tree connects a blue
contour and its red children.

Theorem. If we contract each contour to
a point, the result is a tree.




Remarks and Open Problems
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Remarks and Open Problems

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus > 17 (Orientable or not)

,

Can a topological sphere M embedded in R? be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Thank You!




