I/O-Efficient Algorithms for Computing

Contours on a Terrain
Bardia Sadri

University of Toronto

joint work with:

Pankaj K.Agarwal Lars Arge Thomas Mglhave
Duke University MADALGO MADALGO

——— . — & —— o~ —

T B

Y

COAST CIAXT Xo 73
AMPA BA
FLORIDA

"I\

——— . — & —— o~ —

T B

Y

COAST CIAXT Xo 73
AMPA BA
FLORIDA

"I\

»

-
=
e

Va

O

O
>
e
wfd
3]
-
o

.t

T
P et

-
-t
‘-'m”.--aub.
e

.

et b e T TR

R
)
~
are

.t'm

DXy

-
FeSTRne

-

X
- .-”

3 B R T e Y
TN AS M S IR

o a5 & . .
. . 2 0
3 , ox
W %W
) i
O

e S Nl |\ ~. _ _CL)

XXXIL. An Account of the Calculations made from the .
Survey and Meafures taken at Schehallien, in order to

By Charles

2ATER T %

>
. P .
. “rrs ~1 Yy
o ts 4 EVEND

afcertain the mean Denfity of the Earth.
Hutton, Efg. F. R. S. -

. R . L4
. .. . N
" .V
ARIRO o 3
- Bt A . .-' -
v Yot T - %
‘. m", . Sal
v
S

- ;.
2%

O 47 A U

AL v

This circamftance at firft gave me much trouble and dif;

fatisfaction, till I fell upon the following method by
‘which the defe@& was in a great meafure fupplied,

and by which I was enabled to proceed in the cftimation
of the altitudes both with much expedition and a confi-
degable degree of accuracy. | This method was the con-
‘necting together by a faint line all the points which were

df .the fame relnativc :iltitude: by fo doing, I obtained a

PR e -

great number of ‘irregular polygons lying within, and|
at fome diftance from, one another, and bearing a confi-

ICRSRE
»2 3 4 2%

" LS
v o
e

derable degree of refemblance to each other: thefe polfr-
gons were the figurcs of {o many level or horizontal fec-
tions of the hills, the relative altitudes of all the parts of
them being known; and as cvery bafe or little fpace had

PR | p

Philosophical Transactions of
Royal Society of London, 1779

Not Just for Altitude

Current Temperatures Find Local Weather
*C -850 -40 -30 -20 -10 0 10 20 30 40 50
j B e s
‘F 60 -50 40 -30 -20 -10 0 10 20 30 40 S50 60 70 80 90 100 110 120 130

ThuNov 13 2008 19:48 GMT

Terrains

A terrain is the graph of a continuous bivariate function.

Terrains

A terrain is the graph of a continuous bivariate function.

LIDAR (Light Detection and Ranging)

e Massive (irregular) point sets (1-10m resolution) <
e Becoming relatively cheap and easy to collect

e Appalachian mountains between 50GB to 5TB

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.

<
P e L

" N,
ﬂx L

7 ’4’4&7’%
= "4"
/ ,/

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.

/
e

i

ST
P
e e e

e e
// =
-

Representation: Triangulated Irregular Network (TIN)

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.

| Romsenutboﬂ_; Tﬂmouhud Irregular Ncmrk mm =

™ '."l*‘

S JWM‘“(- '%MWWM X

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.

Remsenutbﬂ Tﬂmouhud Irregular Ncmrk mmw

MJWM‘“& T '%MWWM"

Given a plane triangulation M with a height h(v) for each vertex v,
one can linearly interpolate /i in the interior of every face of M.

Lwdsm.Comwrs.demw

A R s o iy o T s i oy e A ST T i B RN L R

The level-set Ml; at height ¢ is h~1

Level Sets, Coutours, and Contour Maps

B _.': y R L -
R R R e R B I B sl 2

The Ievel set M, at helght Vish ()

Level deoMour

BT ST AR T Sk IR K I “a Lt SR -

The Ievel set Mg at helght E IS h (8)
Each connected component of a level set is called a contour.

__Level Sets, Contours, and Contour Maps
The IeveI set M, at height Fish- Ly
Each connected component of a level set is called a contour.
Given levels L = {/1,...,£}, the contour map is h™!(L).

O - k 9 ¢) o - - > S & ¢ g - - g . M
a0 Rl A -1 ; #'e o At g X - g B i A . s x e o ” &
» ! 2 » A ! - s 4 —, - - » 7 % ” by P) ’
Ko g4 A o “ v . Y : g s, oF . oF v » e P > e < e, >
J - o B 2 R > L& S St ; - h 2 e oo s A 4 . ¥ o e <
4, : o ey v - S b e - - - =l & _ e ., N - A 4 v
] 1 . v -~ v ¥ . y - - - & < > 2
* b ALl e P - A o E v) v 1% e N - - -
oy et = » & il 2o .
g y . A ¢ R - g T4 - 3 ‘ L . ¢ oY TR ¢ g x £ 4
. v - (e . Ey 'S >
- e AT wht P \ o
» A P
=

’ = : : Ol 1 , s o
S Jielt 00 —— I SRy o -—- - P vt TP, { ~;‘. ';_"_’1‘4“‘ - ’ ‘-_f ".,'; .1.-,‘.0_ a3 . el & o -o‘_‘_y._-. ,.f.—r ,,".' :l. o
e oot B B i S S S L #ﬂrm&ML;Myr 2 7#;7}5;:,,,; L g I S H Y s BN T

The level-set Ml, at height £ is h=1().
Each connected component of a level set is called a contour.

Given levels L = {{1, ...,/ }, the contour map is h=(L).

Level Sets, Contours, and Contour Maps

The level-set Ml, at height £ is h=1().
Each connected component of a level set is called a contour.

Given levels L = {¢1,...,4}, the contour map is h=1(L).

Computing Contour Maps

Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.

Computing Contour Maps

Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.

a17a27"'7a35ab17'°'7b167617627'"7621-°-

Computing Contour Maps

Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.

Computing Contour Maps

Given a set of levels L = {/1,...,¢.}, compute the contour map h™'(L)
such that each contour is reported separately and in sorted (circular) order.

_Answering Contour Queries

P . e
R S i L &

Preprocess the terrain to answer contour querles eff|C|ent|y
Given a level ¢ € R, return the level set h=1({) such that each contour is
reported separately and in sorted (circular) order.

Output: ay,a9,...,a13,b1,...,b16

The 1/0 Model

Classical Complexity: Number of basic operations as a function of V.

The 1/O Model

Classical Complexity: Number of basic operations as a function of /V.

Disk access is about 10° times slower than main memory access.

The 1/O Model

Classical Complexity: Number of basic operations as a function of /V.

Disk access is about 10° times slower than main memory access.

To amortize access delay, disks transfer large contiguous blocks of data.

The 1/O Model

Classical Complexity: Number of basic operations as a function of /V.

Disk access is about 10° times slower than main memory access.

To amortize access delay, disks transfer large contiguous blocks of data.

number of items in the problem instance
number of items per disk block

number of items that fit main memory

number of items in output

The 1/O Model

Classical Complexity: Number of basic operations as a function of /V.

Disk access is about 10° times slower than main memory access.

To amortize access delay, disks transfer large contiguous blocks of data.

N num
B num
M num

T num

ver of items in the problem instance
per of items per disk block

oer of items that fit main memory

per of items in output

| /O-Complexity: Number of 1/Os as a function of N, B, M, and T

The 1/O Model

Classical Complexity: Number of basic operations as a function of /V.

Disk access is about 10° times slower than main memory access.

To amortize access delay, disks transfer large contiguous blocks of data.

N num
B num
M num

T num

ver of items in the problem instance
per of items per disk block

oer of items that fit main memory

per of items in output

| /O-Complexity: Number of 1/Os as a function of N, B, M, and T

Important to store/access data to take advantage of locality.

The 1/O Model

internal external
Scanning N N/B

Sorting N log N 7 logu

B
Permuting N min {N, 5 logu %}

Searching logy N logp N

number of items in the problem instance
B number of items per disk block

M number of items that fit main memory

7 number of items in output

| /O-Complexity: Number of 1/Os as a function of N, B, M, and T

Important to store/access data to take advantage of locality.

The 1/O Model

internal external

Scanning N

Sorting N log .

Permuting N

Searching logy N

N number of items in the problem instance
B number of items per disk block

M number of items that fit main memory

7 number of items in output

| /O-Complexity: Number of 1/Os as a function of N, B, M, and T

Important to store/access data to take advantage of locality.

The 1/O Model

internal external

Scanning N

Sorting N log .

Permuting N

Searching logy N

N number of items in the problem instance
B number of items per disk block

M number of items that fit main memory

7 number of items in output

| /O-Complexity: Number of 1/Os as a function of N, B, M, and T

Important to store/access data to take advantage of locality.

Previous Work

Answering contour queries |/O-efficiently:

Preprocessing
1/Os

Structure Size

Query I/Os

Chiang, Silva’97

O(logg N + T/B)

Agarwal, Arge,
Murali,

Varadrarajan,
Vitter’'98

Answering contour queries |/O-efficiently:

hiang, Silva’97

Preprocessing
1/Os

Structure Size

Query I/Os

Agarwal, Arge,
Murali,
Varadrarajan,

Vitter’98

logp N +T/B

Answering contour queries |/O-efficiently:

Chiang, Silva’97

Agarwal, Arg
Murali,

Varadrarajan,
Vitter’'98

Preprocessing
1/Os

nsorted Contours!

Structure Size

Query I/Os

: (N] “
A n T |
P i~ B e 0 s A o i e O B G SR YT AT D8 ot A Dy e 2 S B o T S i i e e S Bt s B B e T G 4 ke S v e
x X <t i Tl e Al . - .." - f ~ & 5 (e - - - ¢ Ot .." % _,d),. o ot v » 5 - ; "> ’ . i " A “ W f. ‘_ % N . g

. T E B ok S -9 s O

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

: (N] “
A n T |
P i~ B e 0 s A o i e O B G SR YT AT D8 ot A Dy e 2 S B o T S i i e e S Bt s B B e T G 4 ke S v e
x X <t i Tl e Al . - .." - f ~ & 5 (e - - - ¢ Ot .." % _,d),. o ot v » 5 - ; "> ’ . i " A “ W f. ‘_ % N . g

. T E B ok S -9 s O

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

: (N] “
A n T |
P i~ B e 0 s A o i e O B G SR YT AT D8 ot A Dy e 2 S B o T S i i e e S Bt s B B e T G 4 ke S v e
x X <t i Tl e Al . - .." - f ~ & 5 (e - - - ¢ Ot .." % _,d),. o ot v » 5 - ; "> ’ . i " A “ W f. ‘_ % N . g

. T E B ok S -9 s O

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

: (N] “
A n T |
P i~ B e 0 s A o i e O B G SR YT AT D8 ot A Dy e 2 S B o T S i i e e S Bt s B B e T G 4 ke S v e
x X <t i Tl e Al . - .." - f ~ & 5 (e - - - ¢ Ot .." % _,d),. o ot v » 5 - ; "> ’ . i " A “ W f. ‘_ % N . g

. T E B ok S -9 s O

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

“Very naive’ Mqoﬁthm: Trace one contour at a time

B, T EN T PP I ¥ CiellE T I N G D g N 0 e R T AL T v S Il s N s p ol s g i e g T . R e T G R L R W e S SRS B P)
A SN b A MR B W g o -G, Sl b e S b o s o et sd S G s nlicg i -'N&’a’.‘-k'w—'—u‘r«/kik’w&aiwﬂm:ﬁﬂﬂfw‘m s

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

This is essentially the optimal algorithm for the RAM model.

"Very naive” Algorithm: Trace one contour at a time

Find one “seed” triangle intersecting each contour and trace out the contour
sequentially.

/O Complexity:
O(N/B -logg |L| +T).

segments In the output I

o A 2o

(] H [] []
. ')
. . - v)
S o e e iE o T A M B b W DR S N N g Loty e BTN e e R D ¥, L R
¥ L v s 'l:. \‘".:v/ . , ’ : .f.".’ / o7 o % - v PR 4_’9 g - A ~ I.‘

o8 et A 4,

L A A R i e {'".":.»ﬂ(_- L™ ';.";‘ et
P .sedw % &N l'li,i % ‘.‘ »

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

(] H [] []
. ')
. . - v)
S o e e iE o T A M B b W DR S N N g Loty e BTN e e R D ¥, L R
¥ L v s 'l:. \‘".:v/ . , ’ : .f.".’ / o7 o % - v PR 4_’9 g - A ~ I.‘

o A

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

o8 et A 4,

L A A R i e {'".":.»ﬂ(_- L™ ';.";‘ et
P .sedw % &N l'li,i % ‘.‘ »

(] H [] []
. ')
. . - v)
S o e e iE o T A M B b W DR S N N g Loty e BTN e e R D ¥, L R
¥ L v s 'l:. \‘".:v/ . , ’ : .f.".’ / o7 o % - v PR 4_’9 g - A ~ I.‘

o A

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

o8 et A 4,

L A A R i e {'".":.»ﬂ(_- L™ ';.";‘ et
P .sedw % &N l'li,i % ‘.‘ »

“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.

“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store

pair (4;,s) plus the segments
oefore and after s

on contour containing s.

Sort pairs on first component to separates

level sets. Then use successor/predecessor-sorting
to put contours in order.

“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

/O Complexity:
O(N/B -logg |L| 4+ Sort(T)).

“Less naive” Algorithm: Generate pieces, sort later

Scan the triangles (in the order laid out on the disk) and generate all seg-
ments. Then sort the output.

-or segment s at level /; store
pair (4;,s) plus the segments
pefore and after s

on contour containing s.

Sort pairs on first component to separates
level sets. Then use successor/predecessor-sorting
to put contours in order.

/O Complexity:
O(N/B -logg |L| + Sort(T)).

This talk: O(Sort(N) +T'/B).

Idea: Gf_ow Cantouri CeMiquouslv

B, T EN T PP I ¥ CiellE T I N G D g N 0 e R T AL T v S Il s N s p ol s g i e g T . R e T G R L R W e S SRS B P)
AR A Vg NV IRY N N o SR) A AN PG TG L AP TR P SO (PR AP N O SR Qe r ST U L NI S Yy . WL RS NGRS T N e WA A

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

Idea: Gf_ow Cantouri CeMiquouslv

B, T EN T PP I ¥ CiellE T I N G D g N 0 e R T AL T v S Il s N s p ol s g i e g T . R e T G R L R W e S SRS B P)
AR A Vg NV IRY N N o SR) A AN PG TG L AP TR P SO (PR AP N O SR Qe r ST U L NI S Yy . WL RS NGRS T N e WA A

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

Idea: Gf_ow Cantouri CeMiquouslv

B, T EN T PP I ¥ CiellE T I N G D g N 0 e R T AL T v S Il s N s p ol s g i e g T . R e T G R L R W e S SRS B P)
AR A Vg NV IRY N N o SR) A AN PG TG L AP TR P SO (PR AP N O SR Qe r ST U L NI S Yy . WL RS NGRS T N e WA A

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

Idea: Gf_ow Cantouri CeMiquouslv

B, T EN T PP I ¥ CiellE T I N G D g N 0 e R T AL T v S Il s N s p ol s g i e g T . R e T G R L R W e S SRS B P)
AR A Vg NV IRY N N o SR) A AN PG TG L AP TR P SO (PR AP N O SR Qe r ST U L NI S Yy . WL RS NGRS T N e WA A

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

Idea: Grow Contours Contiguously
S w~r..<n_/_—:v S S N B I PN, iv“""“ ‘..’J.‘ ;.;_';,5,;,' -uw» - .,;-a_aix;f.:.; ;,:;H'J;z'w«-h«;--?»«;;i;z;pdﬂ»ini‘ oA -:f“\/wd’c‘. W}y,u»vf,(ﬂfmw.‘,k{;g# .
If triangles were ordered on disk such that all partially generated contours

in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering

ldea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering
Ay: triangles that intersect level /¢

n
L] h
L] 4
. 4 » 5 p ’ 4
5 1 . ” ,
s, P\, & TN A P - 9 Gy B ol oo Wb RO 5 W P b P PN g L IR A g Yo R WG, A G - 3::‘. A e S P

4 o e | -
PUl Wi, NS RS S N

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

7 NN

A

. such an orderin ‘
Zz: trizngles ’(cjhat itersect level / 24“'}' Eﬁk
S

o

ldea: Grow Contours Contiguously

If triangles were ordered on disk such that all partially generated contours
in “less naive” algorithm stayed connected, no succ/pred sorting would be
needed.

~<: such an ordering
Ay: triangles that intersect level /¢

The restriction of < to Ay traverses each contour of M in circular order.

Level Ordering Theorem

B, T EN T PP I A R PRI g I e e i PR B W B SR W R R P R L 4 s g i e g T . R e T G R L R W e S SRS B P)
AN S T I AT B Wb g o A K T, g atP A AF P el o U @Sy it st AR G sl it P BB G i H B w&¢WﬂM¢Mﬂfwm T

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

Level Ordering Theorem

B, T EN T PP I A R PRI g I e e i PR B W B SR W R R P R L 4 s g i e g T . R e T G R L R W e S SRS B P)
AN S T I AT B Wb g o A K T, g atP A AF P el o U @Sy it st AR G sl it P BB G i H B w&¢WﬂM¢Mﬂfwm T

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

~ Level Ordering Theorem %

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
Pl 2 Bty V1 W g S B B O e i

~ Level Ordering Theorem %

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
Pl 2 Bty V1 W g S B B O e i

~ Level Ordering Theorem %

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
Pl 2 Bty V1 W g S B B O e i

~ Level Ordering Theorem %

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
Pl 2 Bty V1 W g S B B O e i

~ Level Ordering Theorem %

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
Pl 2 Bty V1 W g S B B O e i

Level Ordering Theorem

Theorem. For any terrain M, there is
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
t1 <t3 <19 =S R et G2

We call < a “level-ordering” of triangles in M.

Level Ordering Theorem

Theorem. For any terrain M, there is, and can be found in O(Sort(/N)) 1/Os,
a total ordering "<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
t1 <t3 <19 =S R et G2

We call < a “level-ordering” of triangles in M.

Level Ordering Theorem

Theorem. For any terrain M, there is, and can be found in O(Sort(/N)) 1/Os,
a total ordering “<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
t1 <t3 <19 =S R et G2

We call < a “level-ordering” of triangles in M.

Level Ordering Theorem

Theorem. For any terrain M, there is, and can be found in O(Sort(/V)) I/Os,
a total ordering “<" of triangles of M, s.t. for any /:

1. Triangles of each contour in A, are <-sorted in cw or ccw order.

2. For contours C' and D of Ay and t1.15 € C' and t3,t4 € D:
t1 <t3 <19 e S s i S)

We call < a “level-ordering” of triangles in M.

Can separate contours using a stack

in O(T/B) 1/Os.

P R S e 2R e T S e T s R i

1. Sweep the terrain by a horizontal plane in the +z direction.

1. Sweep the terrain by a horizontal plane in the

2 direction.

The Algorithm

. T B2 AR 4 RS BT e BN WAL, e B T i - . - :) y WL e £ A A IR W L R i TRt o, N Lyrad e]
g~ \r“l‘ﬂl‘m”' il B w‘--(‘../_lf_«%*u‘v e "‘.-“‘.M"‘" v .“-‘J{h.d\—ﬁ-“i St 4»4\.,.1.(‘,-‘#4-‘“‘;;»4".‘/“/\' ~ -'M,a’.‘-k'w'—'«w o o R AL i G &".«"W v .”id‘w.' ‘_.-4«#(.9’-.-“‘% bl

1. Sweep the terrain by a horizontal plane in the +z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d

~ The Algorithm

4 . g . & v P o o o - » 25
: . -4 - , . - 3 o - £ . p o e >
B AN R T S S e e "-‘t B Gt WL @i d s At PG L, & eGP A P s b M_‘ L L s b MO ps J B s P P g Ly g, -G d‘._, G IC‘ Aq,.w!) e ¢‘(" M -~—~u‘.~,.lawfﬁ;,—h

1. Sweep the terrain by a horizontal plane in the 42z direction.

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d

3. When passing target level ¢; € L, dump contents of tree to disk.

~ The Algorithm -

B N i T PP PINC e S P e & wrtd R ala Tt S ,-4; st il LS SN G ol Y st P P2y L P A dm-‘o~~¢°ﬁ‘..-&we«.3f S cM"'- -"’J N't‘ "’L.J'Jvu—h

1. Sweep the terrain by a horizontal plane in the +z direction. Sort()

2. Keep triangles that intersect the sweep plane in a search tree ordered by
o d

3. When passing target level ¢; € L, dump contents of tree to disk.

g -
e L TR ‘..‘_5./4- o A st b M o B B e P P g - LI AT b g o N

- et G

1. Sweep the terrain by a horizontal plane in the +z direction. Sort(NV)

2. Keep triangles that intersect the sweep plane in a search tree ordered by

o I Buffer Tree [Arge'95] '

3. When passing target level /; € L, dump contents of tree to disk.

- The Algorithm

4B b i -~
o IRl Pt SR P N 2T 2 A

1. Sweep the terrain by a horizontal plane in the +z direction. Sort(NV)

2. Keep triangles that intersect the sweep plane in a search tree ordered by
=. < Amortized Sort(N)' I Buffer Tree [Arge’95] '

3. When passing target level /; € L, dump contents of tree to disk.

caaitt lNgOMIN

1. Sweep the terrain by a horizontal plane in the +z direction. <Sort(NV) '

2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]
3. When passing target level /; € L, dump contents of tree to disk. @

cednS RSOt

1. Sweep the terrain by a horizontal plane in the +z direction. <Sort(NV) '

2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]
3. When passing target level /; € L, dump contents of tree to disk. m

Using a persistent search tree, we can answer
contour queries in O(loggz N +T/B) 1/0Os.

s ogorithen

1. Sweep the terrain by a horizontal plane in the +z direction. Sort(NV)

2. Keep triangles that intersect the sweep plane in a search tree ordered by
~. < Amortized Sort(N)' Buffer Tree [Arge’95]
3. When passing target level /; € L, dump contents of tree to disk. m

Using a persistent search tree, we can answer
contour queries in O(loggz N +T/B) 1/0Os.

Preprocessing needs O(Sort(IN)) 1/Os and O(N) space.

Buffer Tree

Buffer Tree is an |/O-efficient search tree introduced by Arge [Arge'95].

The amortized cost of /V intermixed insert and delete operations on an initially
empty buffer tree is O (% log /5 N) = O(Sort(N)) 1/0Os.

B

Buffer Tree

Buffer Tree is an |/O-efficient search tree introduced by Arge [Arge'95].

The amortized cost of /V intermixed insert and delete operations on an initially
empty buffer tree is O (% log s/ %) = O(Sort(NN)) 1/0Os.

Flushing the tree writes the entire content of the tree in sorted order on disk,
and this takes O(N/B) 1/Os.

Buffer Tree

Buffer Tree is an |/O-efficient search tree introduced by Arge [Arge'95].

The amortized cost of /V intermixed insert and delete operations on an initially
empty buffer tree is O (% log s/ %) = O(Sort(NN)) 1/0Os.

Flushing the tree writes the entire content of the tree in sorted order on disk,
and this takes O(N/B) 1/Os.

It Is possible to make a persistent tree such that each version can be retrieved
in O(logg N) 1/0Os.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

In More Detail

0. Compute a level ordering of Ml and the rank of each triangle.
1. Sort the vertices in the ascending order of their heights.
2. Let ¢/ = /1 be the first level of interest in L = {/y,...,0;}.
3. Scan the sorted list of vertices: at vertex v
If h(v) > ¢
Flush the buffer tree: set ¢/ to the next level in L.
For each triangle ¢ for which v is the lowest vertex:
If ¢ intersects level £ insert ¢ into the buffer tree.
For each triangle ¢ for which v is the heighest vertex:
Delete t from the buffer tree.

b ¢

PR P

Crmal Pomts of a Terrain

Critical Points of a Terrain

MW.-&NIM «iw«wwﬂ%r%UmeM«www“mwM» A.J:'M W:ﬁ‘w At

regular

Critical Points of a Terrain

MW.-&NIM «iw«wwﬂ%r%UmeM«www“mwM» A.J:'M W:ﬁ‘w At

regular

Crmul' Po%nt;_ ofa Terrain

regular

Critical Points of a Terrain

Critical Points of a Terrain

maxima minima

=
(S
-
-
()
T
ge)
Gl
®)
(Vg
o
5
®)
o
I
O
-
-
O

minima

maxima

Critical Points of a Terrain

maxima minima

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

ake a monotone min (bd) to max path P and delete its dual from M*.

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

ake a monotone min (bd) to max path P and delete its dual from M*.

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

ake a monotone min (bd) to max path P and delete its dual from M*.

Level Ordering of Elementary Terrains

An elementary terrain has no saddles; thus 1 max and 1 min (boundary).

ake a monotone min (bd) to max path P and delete its dual from M*.

Lemma. Every cycle of M* loses precisely one edge.

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).

&

\A/ o
T

\ﬂ

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).

&t A
25 % o K

¢ ;
L |

\S

-t

he min-max path can only cross the cycle once.

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).

&t A
25 % o K

¢ ;
L |

\ﬂ

-t

3. The min-max path can only cross the cycle once.

Lemma. I he resulting dual graph is acyclic and the induced relation "<" a
partial order. Thus we can topologically sort it into a total order.

Partial Order on Triangles

Lemma. Every cycle of M* loses precisely one edge.

1. max vertex is reachable from every vertex.
2. Every vertex is reachable from min (bd).

&t A
25 % o K

¢ ;
L |

\S

-t

3. The min-max path can only cross the cycle once.

Lemma. I he resulting dual graph is acyclic and the induced relation "<" a
partial order. Thus we can topologically sort it into a total order.

| [Arge, Toma, Zeh'03] I

What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.

What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.

What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.

If we replace h with —A, the two types switch roles.

What about terrains with saddles?

A saddle i1s negative If 1t joins two disjoint connected components of its
sublevel-set and positive otherwise.

If we replace h with —A, the two types switch roles.

[Agarwal, Arge, Yi '06] Positive and negative saddle points can be found in
O(Sort(N)) 1/0Os.

Positive and Negative Cut-Trees

Lb{:“-; e g e op et " ;’

Positive Cut-Tree follow an ascendmg path in every cOnnected COmponnt
of the upper link of every positive saddle, Jommg paths when they collide.

2

Positive and Negative Cut-Trees

B, T EN T PP I A B AP A TR A a3 PPt B WS e 1 P voyin o B 2 e _ i g i e g T . R e T G R L R W e S SRS B P)
A SN b A M B Wb g o -GG, S A P p e S b o s o et S G sl i -'N&’a’.‘-k'w—'—u‘r«/kik’w&aiwﬂm:ﬁﬂﬂfw‘m s

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

B, T EN T PP I A B AP A TR A a3 PPt B WS e 1 P voyin o B 2 e _ i g i e g T . R e T G R L R W e S SRS B P)
A SN b A M B Wb g o -GG, S A P p e S b o s o et S G sl i -'N&’a’.‘-k'w—'—u‘r«/kik’w&aiwﬂm:ﬁﬂﬂfw‘m s

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

B, T EN T PP I A B AP A TR A a3 PPt B WS e 1 P voyin o B 2 e _ i g i e g T . R e T G R L R W e S SRS B P)
A SN b A M B Wb g o -GG, S A P p e S b o s o et S G sl i -'N&’a’.‘-k'w—'—u‘r«/kik’w&aiwﬂm:ﬁﬂﬂfw‘m s

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

B, T EN T PP I A B AP A TR A a3 PPt B WS e 1 P voyin o B 2 e _ i g i e g T . R e T G R L R W e S SRS B P)
A SN b A M B Wb g o -GG, S A P p e S b o s o et S G sl i -'N&’a’.‘-k'w—'—u‘r«/kik’w&aiwﬂm:ﬁﬂﬂfw‘m s

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees

B, T EN T PP I A B AP A TR A a3 PPt B WS e 1 P voyin o B 2 e _ i g i e g T . R e T G R L R W e S SRS B P)
A SN b A M B Wb g o -GG, S A P p e S b o s o et S G sl i -'N&’a’.‘-k'w—'—u‘r«/kik’w&aiwﬂm:ﬁﬂﬂfw‘m s

Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

Positive and Negative Cut-Trees
' Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

A\ D>
#‘@y%

o -~
ST 2wy

Lemma. The result is a tree (not just forest) that reaches every maximum. 22

Positive and Negative Cut-Trees
' Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

e de AT N ¢ ——
& S Sl e Pt @ SER A I

Lemma. The result is a tree (not just forest) that reaches every maximum. 22

Positive and Negative Cut-Trees
' Positive Cut-Tree: follow an ascending path in every connected component
of the upper link of every positive saddle, joining paths when they collide.

e de AT N ¢ ——
& S Sl e Pt @ SER A I

Lemma. The result is a tree (not just forest) that reaches every maximum. 22

Positive and Negative Cut-Trees
 Positive Cut-Tree: follow an ascendin g path in eve ry ‘connected com ponent.
of the upper link of every positive saddle, joining paths when they collide.

r _'> AT N o ——y
& S Sl e Pt @ SER A I

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees
 Positive Cut-Tree: follow an ascendin g path in eve ry ‘connected com ponent.
of the upper link of every positive saddle, joining paths when they collide.

r _'> AT N o ——y
& S Sl e Pt @ SER A I

Lemma. The result is a tree (not just forest) that reaches every maximum.

Positive and Negative Cut-Trees
 Positive Cut-Tree: follow an ascendin g path in eve ry ‘connected com ponent.
of the upper link of every positive saddle, joining paths when they collide.

r _'> AT N o ——y
& S Sl e Pt @ SER A I

Lemma. The result is a tree (not just forest) that reaches every maximum.

A O i L0 ACH diLAa * ; ' , 1 U 1
~ Turning a a1 NtV an Eisimentary ONne Oy suliyely
g TR v;f»}m.:’;v%«-'«w,-.rasuf?‘?.-‘:" YL AR AL S TE N i o i G LT S ¥ TR RS NS Eiss . AR f TR NI

A O i L0 ACH diLAa * ; ' , 1 U 1
~ Turning a a1 NtV an Eisimentary ONne Oy suliyely
g TR v;f»}m.:’;v%«-'«w,-.rasuf?‘?.-‘:" YL AR AL S TE N i o i G LT S ¥ TR RS NS Eiss . AR f TR NI

A O i L0 ACH diLAa * ; ' , 1 U 1
~ Turning a a1 NtV an Eisimentary ONne Oy suliyely
g TR v;f»}m.:’;v%«-'«w,-.rasuf?‘?.-‘:" YL AR AL S TE N i o i G LT S ¥ TR RS NS Eiss . AR f TR NI

Turning a terrain into an elementary one by surgery

N ’~ P . A .

- . . 4 4 1 - r
o - : Pheiey - e, i =y L P 3 £ v P Ly e 5 T L g YoR o i £ B g« P i % A A
A T A i - A C s Wt g s -GG, e P 5 P 2 B G T i @A e eI F AN oS i P R L B S50 g o P AL i PGt IR ~ S

Turning a terrain into an elementary one by surgery

Lemma. Doing this removes all
positive saddles and maxima and adds
: :

What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M’

What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M’

Theorem. In a contour of M, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.

a1a9 * b1 * x % c1CoC3 * * x xbobs * dydo * xby * *aza4a5

What surgery does to contours?

The elementary terrain M’ has all the triangles of M plus some of “new”
triangles.

All contours of a level set of M are
combined in a single contour in M’

Theorem. In a contour of M, corresponding contours of M are broken (by
segments from new triangles) in a nested (parenthesized) manner.

a1a9 * *[bl % % *[616263]* * % xhybg *[d1d2]>1< *b4]>1< kA3A405

0
-
\ ' 3
r~.
\ 9 sf\
G
.
. B
, e
-y
by
: : .
.41
Lo
B ’i;
< N
) A\‘-.
B
; 2
Va
K
r-M
il
a.a.
s
> If
O
3
;|
i
»
"8
— g AR
.ﬁ..
\ "
Ba
3 &
?.
&3
(Vo I
" —
¥
PES
B
"
2%
="
cw
,.ﬂ.
’ \
433
......
,I
Py
N
h !

RedandﬂmCoMours

Y A (.,.-‘.y: & o W - l e -
’ B & 2—‘ e, ’4.. _"‘. ' ’ Jﬁ" 4 P ‘ ‘h_‘_d“(y

A contour is red (blue) if “IocaIIy the sublevel set is in its outside (|nS|de)

- . - ” —— - > . - > o L v - e ~ -~ g - - o, . . 2% b * » - » -t % L . - . o g, = ol >
',,; - . 'p’ .l:' S3 ; PRy 3 -..".!. ;: Moo A b B P ot G @B Y 8 W ..:.',ﬂ_;.. Nars T s T R i P -'5'.»’ 2 -~ ..#'r oy B s e :,. “ .r:f. i Ry ,A - o _ el 2 44 w,,-r ~ il .-) et P Gy
i J 4 e . o . y] Py S "3 ~] ~ AG » -~ A

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

L Nue,Contours

Red and Blue Contours

M#«\¢~m—/ -ik' «456-././11,»«,..}- M*ﬂ bw-&xn‘u kbt .&4»4 o .,-.a::.-ﬂ“\.-wl..yw Aa',a. W——w‘r m-»:wat‘- W.ﬁ‘m Mm‘"a‘u&M ok il

A contour is red (blue) if “locally” the sublevel set is in its outside (inside).

Theorem. Only the red tree connects a blue
contour and its red children.

Red and Blue Contours

? A ¥ E ’ d < 5 > >, o
A S A i 4:-« B A e e AP & PR P W e Y \p»-.lJ w~.f~«-&4_ L 8B G 4,._,¢,~f51 EAIPR Ty |) \-x., wc’»— M—M "’L_,J'Ju,—h

A contour is red (blue) i “IocaIIy the sublevel set is in its out5|de (inside).

Theorem. Only the red tree connects a blue
contour and its red children.

Theorem. If we contract each contour to
a point, the result is a tree.

Red and Blue Contours

< "u S r _" - ——
L A e N P WA IR L5 O SO WP

A contour is red (blue) i “IocaIIy the sublevel set is in |ts outside (|n5|de)

Theorem. Only the red tree connects a blue
contour and its red children.

Theorem. If we contract each contour to
a point, the result is a tree.

Remarks and Open Problems

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus > 17 (Orientable or not)

Remarks and Open Problems

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus > 17 (Orientable or not)

Can a topological sphere M embedded in R? be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Remarks and Open Problems

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus > 17 (Orientable or not)

Can a topological sphere M embedded in R? be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Remarks and Open Problems

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus > 17 (Orientable or not)

,

Can a topological sphere M embedded in R? be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Remarks and Open Problems

The embedding of the terrain is unimportant: the set of triangles that inter-
sect a level set only depends on function value on vertices.

What about surfaces of genus > 17 (Orientable or not)

,

Can a topological sphere M embedded in R? be
preprocessed into a (near) linear-size structure that
allow efficient answering of queries that specify the
vertical direction?

Thank You!

