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Propositional Proof Systems

@ A proof system is a polytime map
f:{0,1}* 22 {tautologies}

If f(x) = A, then x is a proof of A.

@ The system is polybounded iff for some polynomial p(n), every
tautology of length n has a proof of length at most p(n).

Simple Fact
NP = co-NP iff there exists a polybounded proof system. J

Conjecture
NP # co-NP (i.e. there is no polybounded proof system). J

@ Activity: Try to prove specific proof systems are not super.



Frege Systems for Propositional Calculus
(Hilbert Style systems)

@ Finitely many axiom schemes and rule schemes.
@ Must be implicationally complete.

Example for connectives V, —

Axiom scheme: —-AV A

A AV A (AvB)VvV C AV B -AvV C

Rules: 204 A AV (BV C) BvC

@ All Frege systems p-simulate each other.
Definition
Proof system f p-simulates proof system g if 3 polytime T such that
f(T(x)) = &(x)

@ Gentzen's propositional LK is p-equivalent to every Frege system.




Are Frege systems polybounded?

To disprove this, we need a family of hard tautologies. J

Possible example:

Pigeonhole Principle:
If n+ 1 pigeons are placed in n holes, some hole has at least 2 pigeons. J

Atoms pjj, i € [n+1],j € [n] (pigeon i placed in hole j)

—PHP™*1 is the conjunction of clauses:
Q (pi1V...Vpin)i€[n+1] (pigeon i placed in some hole)
@ (—pik V —pjk),i <j € [n+1],k € [n] (pigeons i,j not both in hole k)

e —PHP™! is unsatisfiable

e O(n®) clauses



Conjecture (C. 1979)
The tautologies {PHP™ "1} do not have polysize Frege proofs.

Milestone Result:
Theorem (Haken 1985)

{=PHP"*1} do not have polysize resolution refutations.

Theorem (Buss 1987)
{PHP™ 1 have polysize Frege proofs
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Theorem (Buss 1987)
{PHP™ 1} have polysize Frege proofs

Proof.

@ Counting is in NC* (i.e. polynomial formula size).

o Define County, «(p1, ..., pn) <+ Exactly k of p1, ..., p, are true.

Family (Count, x) has poly formula size (n®(1))

@ Hence there are polysize formulas

Ax(pjj) = "“Pigeons 1, ..., k occupy at least k holes”

Prove if no two pigeons occupy same hole, then

A]_ = A2 = coo =1 An+1

to get a contradiction.
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@ So the tautologies {PHP"™1} are not hard for Frege systems.

@ The question of whether Frege systems are polybounded remains wide
open.

o Later we will give tautology families that might be hard for Frege
systems.
Thesis

If a hard tautology family (for Frege systems) comes from a combinatorial
principle, then that principle should not be provable using NC! concepts.

@ This motivates associating a first-order theory VC with a complexity
class C. The theorems of VC are those that can be proved using
concepts from C.

@ Associated with VC is a propositional proof system CFrege.

@ Each universal theorem of VC can be translated to a tautology family
with polysize proofs in CFrege.



The three-way connection

© C is a complexity class.
© VC is a theory whose proofs use concepts from C.

© CFrege is a propositional proof system such that the lines in a
CFrege-proof express concepts from C.

Note that NC!Frege is the same as Frege.

Example triple: {NC!, VNC!, Frege}



Theories for Polytime reasoning:

e PV [C. 75] Equational theory with function symbols for all polytime
functions f : N¥ — N. Inspired by Skolem’s Primitive Recursive
Arithmetic (1923).

@ PV functions introduced via Cobham's 1963 characterization of
polytime functions:
» The least class containing initial functions and closed under
composition and limited recursion on notation.
» The axioms and rules include recursive defining equations for
eachfunction symbol and
» Rule: Equational Induction on (binary) notation

F(0) = (), {F(xi) = hilx, F(x)).8(x)) = hi(x.g(x)) : i = 0,1}
F() = g(x)
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The first-order version of PV

o PV Nowadays
» a first-order theory with polytime function symbols as before, and
» universal axioms based on Cobham’s theorem, but
> the rule induction on notation is replaced by the axiom scheme
induction on notation:

[0(0) A x(0(x) 2 ((x0) A p(x1)) ) | © Wyely)

where ¢(x) is a quantifier-free formula.
» Note that an induction proof of ¢(x) can be unwound in just |x| steps,
where |x| is the binary length of x.

o First-order PV is a conservative extension of equational PV.
Theorem (Dowd)

PV proves the induction scheme for open formulas :
[(0) A vx(p(x) > p(x + 1)) | > ¥ye(y)

@ But this induction proof of ¢(x) requires 21| steps to unwind.

@ Dowd's theorem is proved using binary search.
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PV Witnessing Theorem

If PV = VX3Jyp(X, y), where ¢ is open (i.e. expresses a polytime
predicate) then there is a polytime f such that

PV F VXp(X, f(X))

Proof.

Since PV is a universal theory, this is an easy consequence of the
Herbrand Theorem. []

o S} [Buss 86]: Finitely axiomatizable first-order theory, including
induction on notation for NP formulas, associated with class P.

e Theorem [Buss 86]. PV and S3(PV) prove the same V3p
theorems, where  expresses a polytime predicate.

@ A function f(x) is provably total in a theory T if

T Vx3yp(x,y)

where o(x, y) is a X2 formula expressing y = f(x).
@ The provably total functions of PV (and of S3) are the polytime
functions.



PV is a ROBUST MINIMAL THEORY for P. )
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Observations: (‘Polytime proof’ means PV proof.)

© 'Natural’ polytime algorithms usually have polytime correctness
proofs.

© Combinatorial theorems of interest in computer science often have
polytime proofs.
Kuratowski's Theorem
Hall's Theorem
Menger’'s Theorem
Linear Algebra (Cayley-Hamilton, properties of determinants,...)
Extended Euclidean Algorithm

Possible counter-example to @: Primes in P. [AKS 04]
@ The correctness statement implies

—Prime(n) An>2>3d(1 <d < nAd|n)

o If PV proves this, then by the Witnessing Theorem, the divisor d can
be computed from n in polytime, so this implies a polytime integer
factoring algorithm.

@ (The same reasoning applies to any polytime algorithm for Primes.)
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Theses: (‘Polytime proof’ means PV proof.)
© ‘Natural’ polytime algorithms usually have polytime correctness
proofs.

@ Combinatorial theorems of interest in computer science often have
polytime proofs.

Possible counter-example to @:

@ Fermat’s Little Theorem:
Prime(n)Al<a<n — a" = 1(modn)
o Contrapositive:
Va,n3d < n(a" "' # 1(modn) — d # 1Ad|n)

@ Thus if PV proves this then by the Witnessing Theorem, d can be
found from a, n in time polynomial in |n|.

@ This leads to a probabilistic polytime algorithm for factoring.
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Propositional proof system associated with P?

@ Recall: Frege systems are associated with NC!

@ A problem is in NC! iff it can be solved by a uniform polysize family
of Boolean formulas.

@ A Frege proof consists of a sequence of Boolean formulas, where each
formula is an axiom or follows from earlier formulas by simple rules.

@ NOTE: A problem is in P iff it can be solved by a uniform polysize
family of Boolean circuits.

@ So a proof for a polytime propositional proof system should be a
sequence of Boolean circuits, with axioms and rules as for Frege
systems.

@ A Boolean circuit can be described by a straight line program in which
each line defines the value of a gate in terms of previous gate values.

@ So we abbreviate circuit outputs by introducing new extension

variables defined by formulas.
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Extended Frege Systems
(EFrege systems, or “P-Frege Systems”)

@ Extend Frege systems by allowing new extension variables and their
definitions:
pe A
for any atom p and formula A, provided p does not occur in A, or
earlier in the proof, or in the conclusion.

@ p may occur in a later formula A’
This allows lines in a Frege proof to be massively abbreviated.

p1 <> A1, p2 <> Aa(p1), .-, Pn <> An(prs - -, Pao1)

@ Lines in an Extended Frege proof are like Boolean circuits. (The new
atoms are like gates in the circuit.)
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Historical Notes

@ Extended Resolution (ER) introduced by G.S. Tseitin in 1966.

» ER extends the resolution proof system by allowing clauses defining
new variables.
» For example, to introduce p so that p «> (g V r), add clauses

BVqVr,  pvq, ~ pVT

@ (C. 75) Introduced PV and indicated that theorems of PV can be
translated into polysize families of ER proofs.

o (C. 75) also outlined a proof that PV proves the soundness of ER
(reflection principle).

@ (C.-Reckhow 74 and 79) Introduced ‘Frege Systems’ and EFrege
systems and pointed out the latter are p-equivalent to ER.
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Recall the three-way connection

o C is a complexity class.
@ VC is a theory whose proofs use concepts from C.

@ CFrege is a propositional proof system such that the lines in a
CFrege-proof express concepts from C.

NC!Frege is the same as Frege. PFrege is the same as EFrege.

Example triples
o {NC! VNC!, Frege}
o {P,PV, EFrege}

Theorem
@ VC proves soundness of CFrege

@ IfVC proves the soundness of proof system S, then CFrege
p-simulates S.

v
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Recall Historical Notes

@ Extended Resolution (ER) introduced by G.S. Tseitin in 1966.

@ (C. 75) Introduced PV and indicated that theorems of PV can be
translated into polysize families of ER proofs.

e (C. 75) also outlined a proof that PV proves the soundness of ER
(reflection principle).

o (C.-Reckhow 74 and 79) Introduced ‘Frege Systems’ and EFrege
systems and pointed out the latter are p-equivalent to ER.

@ (Clote 90) 'ALOGTIME and a conjecture of S. A. Cook’ introduced
first theory ALV for NC! with translations to Frege systems.

@ (Arai 91, 00) ‘A bounded arithmetic AID for Frege systems’ Showed
his system AID is equivalent to Clote's ALV, and proves soundness of
Frege using a result of Buss.

o (Krajitek 95) ‘Bounded Arithmetic, Propositional Logic, and
Complexity Theory' expounded the three way connection.
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Complexity Classes

(Google: Complexity Zoo)

ACO Cc AC'(m) C TCOC NC*C NC2C P |

Defined by uniform polysize Boolean circuit families
e ACY — bounded-depth circuits with unbounded fanin A, V
(Immerman'’s FO)

e AC%(m) - Allow mod m gates (py + p2 + ... + px) mod m in above
circuits.

@ TCO — Allow threshold gates (counting class)
@ NC! — polynomial formula size

@ NC? - polysize log? depth families of Boolean circuits (contains
matrix inverse, determinant, etc)

@ P — polysize families of Boolean circuits
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Complexity Classes

AC’ c ACO(m) C TCOC NC! C NC2CP ]

@ Open question: P = NP?
e Also open: AC%(6) = NP?

Theorem (Razborov-Smolensky 87)
AC?(p*) € TCO, for every k > 1 and prime p. J
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ACO c AC'(m) C TCOC NC*C NC2C P

[C.-Nguyen 2010] presents a unified way to define a first-order theory VC
(over a two-sorted language) corresponding to a complexity class C,
including all of the above classes.

In particular:
e VNC! is a simplified version of Clote's ALV and Arai's AID.
@ VP is a finitely axiomatized theory for polynomial time.

@ VPV is the two-sorted version PV, with function symbols for all
polytime functions.

@ VPV is a conservative extension of VP.

Also the book describes propositional translations of the theories to the
corresponding proof systems.



Two-sorted theories cont’d

@ The base theory VO (= VAC?) corresponds to ACO.

@ The pigeonhole principle PHP(n, X) is expressed by the following
two-sorted formula where X is a bit-array, and X(i,j) means that
pigeon i is mapped to hole j:

Vi < ndj < nX(i,j)— Ji,k < n3j < n(i < kAX(i,j)AX(k,Jj))

For each constant n, This translates into a propositional formula
equivalent to PHP"+1

@ Each bit X(/,) translates to a Boolean variable pf

@ Bounded quantifiers 9/ < n and Vi < n translate to

A

1 i=1

n n
1=

respectively.
Does VO prove PHP(n, X)?



What is the proof system AC’-Frege?

@ Answer: Restrict formulas in a Frege proof to have depth < d, for
some constant d.

Theorem (Ajtai 88)
There are no polysize AC%-Frege proofs of {PHP"*1} J

@ Since Zg theorems of VO translate to polysize families of AC%-Frege
proofs, we answer our earlier question:

Corollary
VO does not prove PHP(n, X). J
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e VTCO corresponds to TC? (the counting class), so it is easy to see
that
VTCO - PHP(n, X)

@ Since VTC? C VNC!, if follows that VNC! - PHP(n, X), so we
obtain Buss's Theorem that {PHP”"1} has polysize Frege proofs as a
corollary.

o (Recall that NC!-Frege = Frege.)
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We can associate propositional systems with other
classes

AC°(m)-Frege

TCOFrege Has polysize proofs of {PHP"*1}
NC!-Frege = Frege

NC?-Frege

PFrege = EFrege (Extended Frege):

> Allows introduction of new variables by definition, corresponding to
gates in a circuit
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Surprising open question

Is AC°(2)Frege polybounded?

This is open, despite the [Razborov-Smolensky 87] proof that
AC°(p) Z TCO for any prime p.

Conjecture

PHP”! do not have polysize AC%(2)Frege proofs.

A weaker conjecture:
VAC®(2) i/ PHP(n, X)

but this is also open.
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Hard tautology families for Frege systems?

Consider the ‘hard matrix identity’

AB=1—BA=1

where A, B are n X n matrices.

@ If the entries are in GF(2) (or even in Z or Q) this translates into a
polysize family {¢,} of tautologies.

@ Proofs of these identities seem to require tools from linear algebra,
such as Gaussian Elimination, or the Cayley-Hamilton Theorem.

@ Note that computing matrix inverses (over finite fields or Z or Q) can
be done in NC2, but apparently not in NC.

Conjecture (e.g. [Soltys-C. 04])
{®n} do not have polysize Frege proofs. J

@ This conjecture remains open.
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Hard matrix tautologies cont’d

AB=1— BA=1

where A, B are n X n matrices.

@ In [Solys-C. 04] we develop formal theories for linear algebra.
Although the standard linear algebra operators are in NC2, proving
their properties seems to require VP rather than VNC?2.

@ Question: Do these matrix identies have polysize NC?-Frege proofs?
Answer: [Hrube¥ -Tzameret 2011]: Yes, and they have quasi-polysize
Frege proofs.

@ But [Hrubes -Tzameret] leave open the question of whether the
theory VNC? proves the identities.
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What about hard tautologies for EFrege systems?
o It's difficult to think of interesting universal combinatorial theorems
involving polytime functions, which cannot be proved in VPV.
@ However mathematical logic suggests consistency statements.

@ We know [Godel 31] con(VPV) is universal sentence not provable in
VPV.

@ It seems plausible to conjecture that the corresponding tautology
family does not have polysize EFrege proofs.

@ For that matter what about con(PA), or con(ZF)?

@ Let [con(ZF)], be a propositional tautology asserting ZF has no
proof of 0 # 0 of length n or less.

@ It's hard to imagine how the family {[con(ZF)]n} could have polysize
EFrege proofs, unless EFrege is polybounded.
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Concluding thought

@ Given the extreme difficulty of proving lower bounds even for simple
proof systems (such as AC?(2)Frege), perhaps we should
contemplate the possibility

NP = coNP

@ This might surprise complexity-theorists, but would not otherwise
have the potentially earth-shaking consequences of

P=NP



