
Proving Ultimate Limitations
on Computers

Stephen Cook

Presented at Classroom Adventures in

Mathematics: Summer Institute

August 17, 2011

1



Computational Complexity

This is a branch of mathematics that stud-

ies how much time and memory are required

for computers to solve various computational

problems.

In particular we try to prove that certain prob-

lems can never be solved because they will take

too much time, even on the fastest conceivable

computers.

This is important, because present methods

for computer security depend on unproven as-

sumptions that computers cannot solve certain

problems.

2



Search Problems

These are problems that have a very large (ex-

ponentially large) number of potential solu-

tions. It may be hard to find any solution,

but given a solution it is easy to verify that it

is a solution.

Easy example: finding the square root of a

large integer.

e.g.
√

9345249 = 3057

It’s easy to check that 3057×3057 = 9345249.

Multiplication is easy for computers using the

elementary school algorithm, even if the num-

bers have thousands of digits.

But what about finding square roots?

3



Can a computer find the square root of a 60

digit number (to the nearest integer) using

‘blind search’ ?

Supose n has 60 digits, so

1059 ≤ n < 1060

and

1029 <
√
n < 1030

so there are about 1030 possibilities for b
√
n c

How long would it take a computer to square

each of these 1030 possibilities?

4



Assume that the computer can square a trillion

= 1012 numbers in a second.

There are

365× 24× 60× 60 = 31,536,000 < 108

seconds in a year, so the computer can square

fewer than

108 × 1012 = 1020

numbers in a year. So the computer would

take more than

1030/1020 = 1010

years (i.e. more than 10 billion years).

5



So computers cannot use blind search to find

square roots of 60 digit numbers. But there

are faster ways:

binary search

Home in on
√
n by successive approximations.

Suppose x2
1 ≤ n < x2

2. Then

x1 ≤
√
n < x2.

Let a = (x1 + x2)/2.

If a2 < n choose y1 = x1 and y2 = a

Otherwise choose y1 = a and y2 = x2.

In either case y1 ≤
√
n < y2

and (x2 − x1) = 1
2(y2 − y1)

The error is cut in half in one step.

In k steps the error is divided by 2k.

6



If n has 60 digits, how many steps does binary

search take to find
√
n?

Recall that k steps of binary search reduces the

error by a factor of 2k.

n < 1060, so
√
n < 1030

Let x1 = 1 and x2 = 1030, so (x2−x1) < 1030.

After 100 steps of binary search we can reduce

the error from 1030 to 1.

This is because

2100 = (210)10 = (1024)10 > (103)10 = 1030

Thus 2100 > 1030.

100 steps takes a laptop a fraction of a second.

7



But Newton’s Method is much faster even than

binary search.

Compute successive approximations

x1, x2, x3, . . .

to
√
n.

xi+1 =
1

2
(xi +

n

xi
)

Let x1 be the first one or two digits in
√
n,

obtained by observing the first two digits of n.

Then the number of significant digits of suc-

cessive approximations x2, x3, ... doubles with

each iteration.

In the case n has 60 digits, the difference be-

tween x6 and
√
n is less than 1.

8



Summary so far

Using blind search to find the square root of

a 60 digit number takes a computer 10 billion

years, but Newton’s method takes a fraction

of a second.

9



Prime Factorization

Every integer greater than one can be writ-

ten uniquely as a product of primes.

[Euclid]

60 = 2× 2× 3× 5

221 = 13× 17

228947 = 283× 809

10



Prime Factorization

Every integer greater than one can be writ-

ten uniquely as a product of primes.

[Euclid]

60 = 2× 2× 3× 5

221 = 13× 17

228947 = 283× 809

Paradox: There are practical methods that al-

low computers to determine whether a number

of several hundred digits is prime (brute force

does NOT work).

But there is no known such practical method

for finding the factors of such a number, even

though it has been determined not to be prime.

11



In fact the security of the RSA encryption scheme

depends on the assumption that the following

problem cannot be solved by computers:

Given a number N = P ×Q where P and Q are

large random prime numbers (say 400 digits

each) which are secretly generated:

Find P and Q.

How hard is it to factor the product of two

large random primes?

Note that this is a Search Problem (because

given P it is easy to find Q = N/P and check

that N = P ×Q).

12



Current (2010) World Record (Wikipedia):

A 232 digit number known as RSA-768 was

factored in Dec, 2009 using hundreds of ma-

chines over 2 years.

1230 · · ·3413︸ ︷︷ ︸
232 digits

= 3347 · · ·9489︸ ︷︷ ︸
116 digits

×3673 · · ·8917︸ ︷︷ ︸
116 digits

13



Current (2010) World Record (Wikipedia):

A 232 digit number known as RSA-768 was

factored in Dec, 2009 using hundreds of ma-

chines over 2 years.

1230 · · ·3413︸ ︷︷ ︸
232 digits

= 3347 · · ·9489︸ ︷︷ ︸
116 digits

×3673 · · ·8917︸ ︷︷ ︸
116 digits

Summary so far:

Blind search does not work for either finding

square roots or factoring large numbers.

However there are fast methods for finding square

roots, but no known fast methods for factor-

ing.

Unfortunately we have been unable to prove

that there are no fast methods for factoring.

14



Public Key Encryption
Diffie and Hellman 1976

RSA (Rivest, Shamir, Adleman) 1978

It is possible to securely send an encrypted

message on a public channel without the par-

ties agreeing ahead of time on a secret key.

But security depends on the assumption

that a suitable problem (e.g. factoring) is

intractable for computers.

Previously the parties needed to agree on a

secret key.

Secret Key Example:

During WWII the German Navy used Enigma

Machines to code messages.

The Secret: The settings of the code disks

needed to be agreed upon first.

15



The eavesdropper is happy because she learns

your credit card number.

16



17



18



Prime Testing

Fermat’s Little Theorem If p is a prime number

and 1 < a < p then ap−1 − 1 is divisible by p.

Thus to show that p is NOT prime, it suffices

to find a such that

1 < a < p and ap−1 − 1 is NOT divisible by p

(1)

For most numbers p, if p is not a prime, then

at least half of the numbers a with 1 < a < p

will detect that p is not prime.

Choose 100 random values of a. If even one

of them satisfies (1) then you know p is not

prime.

There are numbers called Carmichal numbers

which are not prime but which cannot be de-

tected by (1), but Carmichal numbers can be

recognized.

19



Computational Complexity Theory

Classifies problems according to their compu-
tational difficulty.

The class P(Polynomial Time)
[Cobham, Edmonds, 1965]

P consists of all problems that have an efficient
(e.g. n, n2...) algorithm.
(n is the input length)

Examples in P:
• Addition, Multiplication, Square Roots
• Shortest Path (MapQuest)
• Network flows (Internet Routing)
• Pattern matching (Spell Checking, Text Pro-
cessing)
• Fast Fourier Transform (Audio and Image
processing, Oil exploration)
• Recognizing Prime Numbers [AgrawalKayal-
Saxena 2002
.
.
.

20



The class NP(Nondeterministic Polynomial Time)

NP consists of all search problems whose so-

lutions can be efficiently (i.e. in polynomial

time) verified.

Examples in NP (besides everything in P)

• Prime Factorization

• Cracking cryptographic protocols.

• Scheduling delivery trucks, airlines,

hockey matches, exams, ... (‘Verify a solu-

tion’ means checking that it satisfies various

constraints)

21



P versus NP

P: Problems for which solutions can be effi-

ciently found

NP: Problems for which solutions can be effi-

ciently verified

Conjecture: P 6= NP

Most computer scientists believe this conjec-

ture.

But is seems to be incredibly hard to prove.

22



Why is proving P 6= NP difficult?

One reason is that some search problems in

NP (such as finding a square root) turn out to

easy.

Here is another easy example.

Matching: Given a large group of people, we

want to pair them up to work on projects. We

know which pairs of people are compatible, and

(if possible) we want to put them all in com-

patible pairs.

If there are 50 or more people, a brute force

approach of trying all possible pairings would

take billions of years.

However in 1965 Jack Edmonds found an in-

genious efficient algorithm.

So this problem is in P.

How can we identify the hard NP problems?

23



NP-Complete Problems

These are the hardest NP problems.

A problem A is p-reducible to a problem B if an
“oracle” for B can be used to efficiently solve
A.

If A is p-reducible to B then any efficient pro-
cedure for solving B can be turned into an ef-
ficient procedure for A.

If A is p-reducible to B and B is in P then A is
in P.

Definition: A problem B is NP-complete if
B is in NP and every problem A in NP is p-
reducible to B.

Theorem: If A is NP-complete and A is in P
then P = NP.

To show P = NP you just need to find a
fast (polynomial-time) algorithm for one NP-
complete problem!!.

24



A great many (thousands) of problems have

been shown to be NP-complete.

Most scheduling problems (delivery trucks, ex-

ams etc) are NP-complete.

Example: The following simple exam schedul-

ing problem is NP-complete:

We need to schedule N examinations, and only

three time slots are available. We are given a

list of exam conflicts:

A conflict is a pair of exams that cannot be of-

fered at the same time, because some student

needs to take both of them.

Problem: Is there a way of assigning each

exam to one of the time slots T1, T2, T3, so

that no two conflicting exams are assigned to

the same time slot.

This problem is also known as graph 3-colourability.

25



Graph 3-colourability

A graph is a collection of nodes, with certain

pairs of nodes connected by an edge.

Problem: Given a graph, determine whether

each node can be coloured red, blue, or green,

so that the endpoints of each edge have dif-

ferent colours.

26



Graph 3-colourability

A graph is a collection of nodes, with certain

pairs of nodes connected by an edge.

Problem: Given a graph, determine whether

each node can be coloured red, blue, or green,

so that the endpoints of each edge have dif-

ferent colours.

This problem is NP-complete.

27



Lance Fortnow has an article on P and NP in

the September 2009 Communications of the

ACM, in which he says

“The P versus NP problem has gone from an

interesting problem related to logic to perhaps

the most fundamental and important mathe-

matical question of our time, whose impor-

tance only grows as computers become more

powerful and widespread.”

28



Clay Math Institute Millenium
Problems: $ 1,000,000 each

• Birch and Swinnerton-Dyer Conjecture

• Hodge Conjecture

• Navier-Stokes Equations

• P = NP?

• Poincaré Conjecture (Solved)∗

• Riemann Hypothesis

• Yang-Mills Theory

∗ Solved by Grigori Perelman 2003: Prize un-
claimed

29


