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By allowing proofs to make use of hypotheses and the
deduction theorem (if B can be proved from 4, then 4-B is
provable), any Frege system can be made into a "natural |
deduction" system like those of [Kleene 1967] and [Thomason 1970].
Since the deduction theorem has a long proof, incorporating it

into the proof system allows for shorter proofs in many examples.

Another family of proof systems are based on Gentzen's
system (see [Kleene 1867]). Thé objects manipulated by-Gentzen's
system are sequents, which are made up of a list of hypotheses
and é list of alternate conclusions for those hypotheses.
Gentzen's rules for deriving new sequents from old ones are
particularly intuitive, and the notational simplification of
[Smullyan 1968] gives rise to a proof system called analytic
tableaux that is both easy to understand, and efficient to use

on simple examples.

Proof systems based on the resolution principle
[Robinson 1965a] have received great attention from computer
scientists, as well as logicians. Resolution is particularly
suited to mechanization, because it uses only one proof rule,
and that rule is easy to implement. A resolution proof is a
way of showing thatra set of clauses (Z.e. a formula in
conjunctive normal form) is inconsistent. Various restrictions
on the form of resolution proofs have been proposed with the .
hope that they would simplify the task of finding resolution
proofs. They include the Davis-Putnam procedure (which actually
pre-dates resolution) [Davis § Putnam 1960], the unit preference '

strategy [Wos et al. 1964], set of support [Wos et al. 1965], |
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As a consequence of corollary 3.3.3.b. the question
of closure of ‘7149 under complements is reduced to the
investigation of verification systems for the complement

of any particular ﬁnwf{complete language. An obvious choice
for this language is TAUTOLOGIES of the propositional calculus.
The many systems that logicians have proposed for proving
tautologiés are obvious candidates for polynomial-bounded
verification systems. In fact, almost all of these proof
systems can be easily made into verification systems; by
regarding the proofs as strings over some alphabet and having
the verification system map a proof into the formula proved.
If some string does not code a valid proof, the verification
system maps it into some fixed tautology such as pvap. For
most proof systems it is easy to see how to check & string

to see that it codes a valid proof and find the formula
proved in polynomial time. All that remains_is to check

the verification systems derived from these proof systems

to see if they are polynomial-bounded.

Although no polynomial-bounded verification system
for TAUTOLOGIES has been found in this way, a number of
interesting results have been obtained. First, a number
of proof systems have been proven not to be polynomial-
bounded, and thus can be eliminated from further consideration.
Second, many of the remaining systems have been compared,
and simulation results have been obtained which show that
one system is polynomial-bounded only if another system is

polynomial-bounded. Thus, attention should be concentrated
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1 6{ is a set of atoms, then a truth aseignment
to (L is a function t: CL+B. If n is the cardinality of
a , then there are 2" distinct truth assignments to CZ
Given any ordering of CZ =<Py sl there is a one-to-one
correspondence between truth assignments to CL and n-tuples
from Bn given by T**<T(pl],..{,T(pn)>. It will be convenient
to assume that any set of atoms has a natural ordering
{lexicographic, for instance) so that this correspondence

can be exploited.

The truth function expressed by formula 4 is an
w-ary truth function Fyo where n is the cardinality of
at(A)=<py,.«.sP,>- The function fqis defined inductively
on the subformulas of 4 as follows:

) If © is P then fc(ml,...,mn)ﬂmj
2) If the principal connective of ¢ is « and the

principal subformulas of C are By,-..,B _, then
n

fc(xl""'xn)=f*(f31(m1"""rn)”"’fB *(xl""’xn))'
n

If 7 is a truth assignment to some set of atoms a .
then 1 gives a function from formulas A for which at(A)S;CZ
into B, defined by t(4)=f,(t). Thus, truth assignmeats

extend to formulas in a natural way.

Truth assignment v satisfies A if 1(4)=T, and
faleifies 4 if t(4)=F. Formula A4 is satisfiable (also
consistent) if there is a truth assignment that satisfies 4,

and A is falsifiable if there is a truth assignment that
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B (under o). The application of a substitution to 2 set of
formulas results in the substitution being applied separatély
to each formula. If T is a formula or set of formulas, then
a renaming for I' is a special kind of substitution

r 'UIQ’P
p = —l—-ﬂ—~ﬁ, where {rl,...,r } are distinct atoms disjoint
CERRERT " k

from the set {at[r)-{ql,...,qk}). If p is a renaming for 4,

then there is a suitable reordering of the arguments of fA

such that przfA (reordered).

The connectives most commonly encountered are

s+ (negation), v (disjunction), & (conjunction), > (implication),

i

and £ (equivalence). For completeness, all nontrivial
connectives of arity no greater than two will be introduced.
The two nullary connectives are T (where fl=T), and F
{where fF=F). The unary connective is -+, where -~ (])=F and

1 (F)=T. The other three unary truth functions are the two
constant functions (which can be represented by T and f)

and the identity function. The binary connectives and the
table of values for their semantic functions are given in
table 4.1.1i, Notice that ten of the possible sixteen binary
truth functions are present. The six missing functions are
the two constant functions (which can be represented by T
and f), the two projection functions, and the two negated

projection functions (which can be represented using ).
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It will also prove convenient to introduce four
connectives of arity greater than two. For each nz20 the
n-ary connectives Vn, En, &, and Sn have the following
semantic functions:

for n=1:

V, (®y50002) = F if and only if xlﬁ...=anF.
E,(zys.002,) = F if and only if the number of mi=F is odd,.
R, (215---»2,) = T if and only if z;=...=a =T.
Sn(ml,...,xn) = T if and only if the number of x£=T is odd.
Vo=Se=F
Ea=8e=T-

Note in particular that V,=v, F,=2, 8.=4, S.=%, and
Vi=F:1=81=S:1= the identity function. Note also that for n22,
Vn' En’ &, » and Sn can be represented by iterated formulas
in v, £, &, and Z respectively. For example,

V, (=,

®

.,xn) = V(xl,V(xz,...V(mn_l,xn)...)). Since the
semantic functions for v, £, &, and # are commutative and
associative, the order of the arguments and their
parenthesization are irrelevant. Thus VY, £, &, and §
(subscript n will be dropped whenever this causes no confusion)

are well-defined when applied to sets,

A set k of connectives is adequate if for every truth
function 6 there is a formula with only connectives from «
that expresses 6. It can be shown that, for connectives

of arity no greater than two, there are 26 minimally adequate

Fl
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A rule of inference is a pair <I',A>, written R=I-4,
where I' 1s a (possibly empty) finite set of formulas and 4
is a formula. Rule R is said to be a rule in x if A4 and the
formulas in I contain only connectives from the set k. Rule
R is sound if I'k=A., By fact 4. at the end of section 4.1.,
if # is sound, then Tol=4¢, for any substitution o. If &
is sound and I'=¢, then all substitution instances of 4 are
tautologies, and R is often called an axiom(scheme). If
D are

BS{AI,...,Ak}+B is a rule of inference and ¢ v s 5

l,’ k!

formulas, then D is inferred from Cl,...,ck by R if there
is a substitution o such that Cl=A10,...,Ck=Akc, and D=Bo.

If # is sound and p is inferred from C i gy BY R, then

" L k

CyseresCp =D

An inference system 1s a pair I=<K,ﬂE>, where x 1s
a set of connectives, and fa is a finite set of sound rules
of inference in the connectives k. A derivation in I of
formula B from the set of formulas T is a sequence

D=<Aqyeen,d, > of formulas in x such that for each i, lsisn,
Ay is inferred from formulas in FU{Al"“’Ai~1} by some rule
in 52, and An=B. The notation FF~IA via b means D is a
derivation of 4 from T in inference system I, and I'b-, A means
there is a D such that TF*IA via D. When I is clear from

context, I'—4 will be used for TF-IA.
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connective elimination rule
. {Atp,T'} + A,-p}T
v {a,pkT 5 b,qFT} = A,{pvq)tT
5 {8bp,T ; A,qtT} » A,(p=gq)tT
& {A,p,qtT} + A,{pé&q)tT

(i

{hsp:aFT 5 BRpagslk » &, {p3g)pl

With the addition of the aziom rule, +A,ptp,I', any
set of pairs of these introduction and elimination rules
(or the appropriate rules for other connectives) gives a
complete sequent inference system for the connectives
concerned. If the set of connectives is adequate, then the
system is called a baste Gentzen syestem. The fact that
basic Gentzen systems are not implicationally complete arises
from the fact that introduction and elimination rules are
analytie. That is, every formula in any sequent on the left
side of a rule also occurs (possibly as a subformula) in the
sequent on the right side of the rule. Thus, no sequent can
be derived which does not contain as subformulas all of the

formulas in the sequents from which it was derived.

Two rules which do. not make the system implicationally
complete, but nevertheless seem to allow for shorter
derivations in some examples, are the thinning rules:

thinning introduction: A+T =+ A+p,T

thinning elimination: ArI -+ A,ptl.
Systems with an introduction and an elimination rule for each
connective, the axiom rule, and the two thinning rules will

be called Gentszsen systems with thinning.
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In [Kleene 1967] sequents are pairs of sequences
(rather than sets) of formulas, so rules must be introduced
to allow such structural operations as reordering lists,
introducing multiple copies of formulas, and eliminating
duplicate Eopies of formulas. Such operations detract from
the basic elegance of Gentzen systems, and will not' be

discussed.

In [Kleene 1967], derivations in Gentzen systems are
trees with sequents at the nodes. Two sequents are adjacent
if the second comes from the first (and possibly others) by
the applicétion of one rule. The tree format means that
{(in principle, at least) if a sequent $ is used more than
once in a derivation, then separate copies of the derivation
of 5 must be supplied for each use of 5. This obvious
wastefulness is eliminated by letting derivations be sequences,

rather than trees, of sequents.

4,2.3.2. Analytic Tableaux

Although it may be wasteful to re-derive a sequent
each time it is used, a tree format for derivations in basic
Gentzen systems allows for economies of a different sort.

In derivations in Gentzen systems, formulas must be copied
over many times as other formulas are being built up using
the introduction and elimination rules. Smullyan '
[Smullyan 1968] reduced this copying with his method of
analytic tableaux. Information about the sequents is

distributed along the branches of the derivation tree, and
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3. For any clause C={£,;,...,£ }, any branch of the

tableau may be extended by adding all of ﬁl,...,En

as new branches,
4. Any branch which contains a literal & and its

complement £ is closed.

Analytic tableaux provide an elegant proof system
that is satisfying to apply on simple examples. This
elegance comes mostly from the restriction of the system to
tree-format derivations, however, and as the results of
Chapter 5 will show, this restriction leads to very in

inefficient derivations in certain cases.

4.2.4. Consensus and Resolution

An operafion called consensus was.introduced by
Quine [Quine 1955] as a method to help find the minimum
disjunctive normal form for a formula. It was adapted by
[Dunham & North 1962] as a computer method for establishing

the validity of formulas in disjunctive normal form.

The dual of consensus is resolution, which was
introduced by Robinson [Robinson 1965a] as part of a proof
method for the predicate calculus. It is simplest to regard
a elause to be a set of literals, where the implied
connective is disjunction. The notation C§ is used té mean
the clause (Cu{£}), and ¢D means (CuD). The empty clause
is denoted by {J and, consistent with the convention for VY,,

it has the truth value F. Two clauses are said to elash if
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one contains exactly one literal whose complement is in the
other. If two clauses clash, their reﬁolvent is defined

to be the clause obtained by removing the clashing pair of
literals from their union. That is, the resolvent of C¢& and
DE is ¢p. The resolvent of a ?air of clauses is a logical
consequeénce of their conjﬁnction. A resolution ﬁerivation D

of a clause ¢ from a set of clauses § (denoted S#rrc uia D)

is a sequence of clauses, each of which is either a clause
from S or a resolvent of two previous clauses in the sequence.
If D.is a resolution derivation of ¢ from 5, then Sk=C.
Robinson's completeness theorem says that if S is inconsistent.
then 5k 0. Thus, resolution is a complete system for proving
the inconsistency of formulas in conjunctive normal form.
Since there is an effective procedure to translate any formula
into a logically equivalent one in CNF, then, resolution can

be used as a general proof system.

Resolution derivations can be regarded as trees or
as directed acyclic graphs (dags). In either case, the nodes
are labelled with clauses, and the two edges into any clause
¢ come from the two clauses (called the parent clauses)
which clashed to form C as their resolvent. If CE and Dg
clash to form the resolvent CD, then the edge from CE to CD
is 1abelled £, and the edge from DE to ¢D is labelled g; In
the dag formulation, there is one node for each clause in
the linear-format derivation, but in the tree formulation,
the restriction of out-degree no greater than one requires

that the entire derivation of each clause must be repeated
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the length of P, then the simulation is "efficient". To within
a polynomial, then, ¢ is "at least as powerful" as F. If F is
polynomial-bounded, then ¢ is also polynomial-bounded, or, to
view it the other way, if ¢ is not polynomial-bounded, then F

cannot be.

5.1.1. Two Examples

This subsection gives two examples of cases where one
proof system simulates another. They are presented here in
an informal, intuitive way in order to motivate the formal,
and somewhat technical, definition of simulation, which is
given in the following subsection. 1In the first example it
is shown how one Frege system can simulate another, and the
second example shows how a Gentzen system with cut can be

simulated by extension.

5.1,1.1. Two Frege Systems

Recall system ¥ from subsection 4.2.1. [Mendelson 1964]
uses for its propositional language the connectives -~ and >.
His proof system has 3 axiom schemes:
(p>(gq>p))
({(p=(g>r))>((p>q)=(p>7r)))
((~p>q)=(q>p))
and the rule modus ponens:
p,(p2q) + q
The system is sound and implicationally complete (over all

formulas in - and >) and thus is an example of a Frege systenm.
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(another requirement of Frege systems), it must support a
derivation of ¢ from the hypotheses p and t(p>q). Such a

derivation, designated Dmp, is shown in figure 5.1.1.1.1ii.

To simulate the derivation of B from 4 and (4>B), the required
derivation is obtained by substituting £(4) for p and ¢(B) for

q into the last five lines of Dmp' (The formulas obtained by

substituting into the first two lines must have already appeared

earlier in the simulation.)

By this method of translating formulas from D and
preceding each translated formula by a sub-derivation of that
formula, the derivation D' can be constructed. This derifation
will be a legal derivation in system S of ¢(F). Furthermore,
the length of D' is no more than some constant times the length
of D. All that was needed in order to show this result was

1}y Et{d)se*Ra, 2Z) t(A§}=t(A)Eé§l, 3) system M is sound,

4) system S is implicationally complete, 5) any substitution
of a derivation is also a derivation, and 6) of all the
immediate consequences of a formula (4>B) by modus ponens, only
one (namely B) is not a subformula of the other parent formula.
These facts (except 6) remain true when the rb6les of systems

M and S are interchanged, so that system ¥ can éimulate system
S in the same way. (Although the derivation may grow.in length

more than linearly, growth is still bounded by a polynomial.)

But this is not quite enough to show that system M is
polynomial-bounded if and only if system S is polynomial-

bounded. The problem arises because not every formula in 1,V
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With this new translation function, the simulation of

system M by system S can proceed as before, except that each

axiom and the modus pomnens rule of system M will be simulated

by several "standard" derivations in system S. For example,

corresponding to (p>(g>p)) there will be derivations

4+ + - -+

(0212021200210 304 D 1) of (apvisgvp)), (~pvigvp))

(pv(~gqvap)), and (pv(gv-p)). The translation of any instance
of this axiom will be an instance of one of these féur formulas
so taking the proper instance of the proper derivation gives a
derivation of-that translated formula. The other axioms are

handled the same way, with axioms containing »n atoms getting

2
no more than 2" different simulating derivations+ . Two

simulations of modus ponens are required: a derivation of g
from p and -pvg (as before), and a derivation of ¢ from ~p and
pvg. (The two cases where ¢ is negated are instances of the

above two, but neither of the above two is an instance of the

-E-l

other.) Any instance of modus ponens, when translated, becomes -

an instance of one of these two cases.

1
T Note that in this case, the first formula is an instance

of the second, and the third is an instance of the fourth, so
that only two really distinct derivations are required.

2
: In fact, the minimum number of simulating derivations is
no greater than Zk, where k is the number of atoms that appear
both as left subformulas of > and some other way (Z.e. negated

or as a right subformula of »)}.

(e.g. g in ((p=(g>r))=((p=q)=(p>r))), but not p or »).
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every system in box b. A downward arrow between two dotted

el ——

¥ .‘a'

'E""‘"i

boxes \L» indicates that every system in box a. p-simulates -
b. ¢ '

o e s

L-.....

the system in box b. for the same set of connectives; The arrow
in the figure from box 5. to box 8. indicates that the Gentzen
system'with thinning for sets of clauses p-simulates the

Gentzen system with thinning for fofmulas in the connectives
{-,v,&}. The simulation relationship inside of boxes is always
the same. Within solid boxes all systems p-simulate each other, i
while inside each dotted box, the only known simulations are

the trivial ones: if k;cx;, then the system for the connectives

, k; p-simulates the system for the connectives k.

‘Upward arrows in the figure indicate negative results

iy {_ , | a.

about simulations. An upward dashed arrow }F_ indicates
H bo -~

that no system in box b. can .directly simulate any system in box'

The flgure contains two upward arrows that need special

explanation. The arrow from box 20. to box 8. indicates that

for eéch adequate set of connectives kK, the system of analytic
tableaux for « cannot-diré;tly simulate the Gentzen.system with thinning

for x. The ppward arrow from box 7. to box 4., indicates that

for certain sets of connectives kx (see paragraph 5.6.2.2. for
details}, the system of regular resolution with limited
extension for formulas in the connectives k cannot directly shmﬂaté

any system in the equivalence class with Frege systems.
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1) +E(p,p),
2) {B(p,q),pr}+q,
3) {E(p,q),q}>p, and

4) for each connective x:
qreq

n
Ppe--P *)'
n

{Blpyrqq)s-- 2B ,0a JIEAT,B”
n n

Since £ represents equivalence and ¢'(4)~4, these rules are
clearly sound, so that I=<m,§{> is an inference system. For

A

any formula 4 in the connectives k, let D” be a derivation of

B(4,t"(4)) in the system I, defined inductively as follows:

1) if A4 is an atom p, then D? is B(p,p), by rule 1, and 2) if
4 By

4 is =(By,...,B ), then D” is D ~...D " B(a,t’(4)), the last

I

formula of which follows according to rule 4% under the

. ByersB BB ) (B )
substitution ¢ = 7 n_.'. Note that
. pl...p * ql..Qq *
n n
ESDA=2aA+£cA, d(DA)=1, and for each formula B=E(C,t'(C)) ¢ BA,

2B < 2B (p,q)+2%E(p,q)* (LC+2E7(C)) < ba+by(R4+bsRA) < bel4,

where bg = by+by(1+bs). Let k be the maximum arity of any
connective in k, so that £%4<k2®4, This implies that
QSDAs£k+1)EGA. Finally, let D, be DAt’(A) (which follows by

rule 2) and let D, be p?a (which follows by rule 3). Then,

A ka t'(4) via Dy, t'(4) P-I A via Dy, and for i=1,2,

%D, = 142504 < 14(%+1)+2%2 < b1+2%4, where by=k+2,
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Therefore, any function g satisfying

g(1)=1, and

g(n) 2 3+10g(Km)  (n22)
4k

gives an upper bound for f(n). One such function is g(n)=n ",

4k

since 1 "=121, and for n=22,

[-3.410- (k) 4oy %

n

i

3+10-(2§In)4k

4k

A

t%w-((z%)")“]-n

114N

[%3+1D'(%)4]-n4k (lenma 5.3.1.3.,8.)

[gg1n*

4%

A

= n

Therefore, £°0<(24)%%, so that 2D < e+2£(4) 25D = e~ (24)%%*1,
. B5.3.1.4.e.
LEMMA 5.3.1.4.f.

Lemma 5.3.1.4.e. still holds, even if the inference
system I is replaced by Frege system F,.
Proof

This is an immediate consequence of lémma . T L -
where the direct translation from k; to k; is the identity

function. ®W5.3.1.4.¢f.

Lemmas 5.3.1.4.e. and 5.3.1.4.f. form the crucial 1link
in the simulation of system # by system F,. Now the simulation
may proceed by analogy with the proof of lemma 5.3.1.2.a.,
with indirect translation here playing the rdle that direct’

translation played there.
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Finally, it must be noted that since ¥ is implicationally
complete, F is implicationally complete, and thus really is a

Frege system. . ®5.4.4d.

This theorem leads immediately to the following
corollaries.

THEOREM 5.4.e.

If ¥ is a natural deduction system, then there is a
Frege system that p-simulates N.

COROLLARY 5.4.f.

Every Frege system p-simulates every natural deduction

system.

Having established that natural deduction systems are
no more powerful (to within a polynomial) than Frege systems,
it would be reassuring to know that they are no less powerful.

LEMMA - 5.4.g.

If ¢, &, , and Cn are defined as usual and N=<K,ﬂﬂo>

is a natural deduction system, then there is a Fre%e system
Fmsm,§a> and there are constants g; and g; such that whenever
?(C(Fl),Al),...,?(C(Fk),ﬁk) 5 7(C(a),B) via D, there is a
derivation D, such that

3] Perl,...,FkFAk by ArB via Do,

2) 28Dy < gy+2°p+2D, and
3) Dy < go*2%D-(2D)2+d(D).
Proof

First, observe that theorem 5.4.d. guarantees the

existence of some Frege system F with the connectives x. The
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5.5.1. Sequent Systems vs Frege Systems

Recall from paragraph 4.2.3.1. the definition of
sequent systems., Since the sequent A+T 1is logically equivalent
to the formula 7(C(A),D(r)) (where [) is the analog of { for
disjunctions), it is clear that the techniques of section 5.4.
can be extended to show that sequent systems and Frege systems
p-simulate one another. Thus, to avoid a lengthy and
repetitious development, the following theorems are stated
without proof.

THECOREM 5.5.1.a.

Every Frege system p-simulates every sequent system.

THECOREM 5.5.1.B,

Every sequent system p-simulates every Frege system.

COROLLARY 5.5.1.c.

Any two sequent systems p—simulate each other.

CORODLLARY 5.5.1.4.

Any two systems from the class {Frege systems} v
{natural deduction systems} u {sequent systems} p-simulate

each other.

As with Frege systems and natural deduction systems,
the concepts of extended sequent systems and sequent systems
with substitution could be introduced, but it is clear that
the techniques developed in this thesis could be used to show
that they would be p-simulation equivalent to extended Frege

systems and s-Frege systems, respectively.




—
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Dedil; KUt-Free Systems

Recall from paragraph 4.2.3.1. the definitions of basic
Gentzen system, Gentzen system with thinning, and Gentzen
system with cut. For each adequate set of connectives k, there
is one system of each of these three types. Let ¢ be the basic
Gentzen system for the connectives k, and let ¢G and eG be the
corresponding systems with thinning and cut, respectively.
Since any derivation of system G is also a derivation of
systems ¢G and ¢G, these systems p-simulate ¢ in a trivial way.
Nearly as Simply, eG p-simulates ¢G. Each application of the
thinning rules is replaced by an instance of one of the G
derivations simulating that rule. For example, if Ar4,T is
inferred from A+rT by the thinning introduction rule and A is

non-empty, so that A=A',B, then Ar4,I' is derived from A+T by

the following derivation.

Iy &':8 % [ {hypothesis)
2. A, B+ 4,T,B (axiom)

B. BTB B A,T (eut) (1,2)

Similar two-line derivations exist for thinning elimination
and for the cases where A is empty (but T must then be nomn-

empty) .

Combining these trivial results with corollary 5.5.1.d.

and the fact that ¢ is a sequent system leads to the following

theorems.

a4 1 ot e A A
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basic Gentzen system for k, then the construction described in

paragraph 4.2.3.2. gives a way of turning a tableau for 4 into

a2 basic Gentzen derivation of the sequent 4+, This method

could be used equally well to obtain a derivation of r4 from
a tableau for -4. Since basic Gentzen systems are analytic,
no sequent in any derivation of 4 can be longer than 24. Thus,
the increase in size of a string representation of the tableau
tree caused by replacing the formula at each node by a sequent
is not too great, so that the following theorem is obtained.

THEOREM 5.5:3.a.

The basic Gentzen system for any adequate set of
connectives ka2{-} p-simulates the system of analytic tableaux

for k.

It is not clear whether tableaux simulate basic Gentzen
systems, because basic Gentzen derivations need not be trees.
Also, the relationship between tableau systéms for diffevent
sets of connectives is similar to the situation for basic

Gentzen systems.

But certain simulations involving analytic tableaux
are known not to exist, because Cook has shown that the system
of analytic tableaux for sets of clauses (which trivially
p-simulates the system of tableaux for {-,v,£&} is not
polynomial-bounded [Cock 1973] [Cook § Reckhow 1974]. 1In
his proof Cook constructs an infinite family of inconsistent

sets of clauses {Tm}.
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The sets of clauses 7 ~could be defined inductively
as follows. The atoms of T, are taken from the set
{Pi|i€{e:1}*}- For aef{o,1}, let 8% be the set of clauses
obtained from the set of clauses S by replacing each atom P;
by the atom Pui For any literal £, let £S be the set of

clauses obtained from the set of clauses S by adding £ to each

clause. The inductive definition of Tm can now be stated as:

T, = {0}, and for m=20

" 1 =m0
Tm+1 = me u me

T; = {P’E}

o |
™
H]

{pp1,pP1,PP0,PP0}

|
w
|

{ppi1pP11,PP1P11,PP1P10,PP1P10,PP 0P 01 PPoP01,PDoPoo,PPoP oo}

ete.,

Note that Tm is a set of 2" clauses, each of which contains m
literals. The total number of distinct atoms in T is 2"-1,
and the total number of occurrences of literals in Tm is me2".

Thus there is a constant d such that m-2" < me < dem?+2™.

In his proof Cook shows that there is a constant

e>0 such that for every m>0, the smallest analytic tableau
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em
for 7 ~has at least g nodes. The proof can easily be

extended, by converting {Tm} into formulas in {-,v,&} and using

direct translations, to show the same lower bound for the
system of analytic tableaux for any adequate set of connectives
i

THEOREM 5.5.3.b. (Cook)

No system of analytic tableaux is polynomial-bounded.

Cook observed that for each m there is a resolution

derivation of (O from T of length proportional to sz, but a

much stronger statement can be made. Those resolution
derivations not only are regular, but they are trees and they
can also be generated by the Davis-Putnam procedure without

making use of the subsumption rule. The formulas {Tm} also

have semantic trees of size proportional to 7. This proves
the following theorem.

" THEOREM 5.5.3.c. (Cook)

The system of analytic tableaux for sets of clauses

cannot directly simulate either the Davis-Putnam procedure without

subsumption, the method of semantic trees, or tree resolution,

Somewhat less obvious is that if {Tm} are converted

into formulas in the right way, then there are derivations of

T r in the appropriate Gentzen system with thinning of length
proportional to (iijs. To see how these derivations are

constructed, consider the case where x={-,v,8} and m=3. The

formula for 7; is a renaming of
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set 5§ of clauses and a semantic tree Tt for §. Prune t (by
removing pairs of leaves) until no tree contained in 7T is
closed for S. Label each leaf t with one of the clauses

falsified by that branch. Consider the pair of leaves

v
P/\?
Cy C2
and note that since t has been pruned, it must be true that
peC, and peC,. Since the same truth assignment that falsifies
¢, falsifies C, when the value of p is changed, ¢, and ¢, have
a resolvent Cs. Label noqe v with C3, and note that if 7' is
T with the leaves labelled ¢, and (¢, removed, then t' is a
closed semantic tree for Su{cCz}. Prune t' if necessary, and
repeat this process until t has been converted into a tree
resolution derivation of {J from $ with no more resolvents than
‘the number of nodes in 1. This completes the proof of the
following theoren.

THEOREM 5.6.1.2.b.

Tree resolution p-simulates the system of semantic
trees for sets of clauses.

COROLLARY 5.6.1.2.c.

No system of semantic trees is polynomial-bounded.
The converse of theorem 5.6.1.2.b. is also true.

THEQOREM 5.6.1.2.d,

The system of semantic trees for sets of clauses

p-simulates tree resolution.
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5.6.2.2. Tseitin's Lower Bound for Regular Resolution

Tseitin never actually discussed the Davis-Putnam
procedure in [Tseitin 1968], but part of his proof of the
following theorem effectively shows that the shortest regular
resolution derivation of [0 from S(¢) can be generated by the
Davis-Putnam procedure (without subsumption). Thus, theorem
5.6.2.1.c. applies to regular resolution as well as the Davis-
Putnam procedure. Galil has extended Tseifin‘s work even
further, showing that theorem 5.6.2.1.c. also applies to
enumeration dags [Galil 1975]. Finally, it is not hard to see
(Galil has also made this observation.) that combining
Tseitin's and Galil's proofs with Kirkpatrick‘s.graphs gives
the following theorem.

THEOREM 5.6.2.2.a., (Tseitin; Kirkpatrick, Galil)

There exists an infinite family of inconsistent sets

of clauses {Sn} and there are constants ¢;, e¢», and es such
that if L8 =n, and if the shortest derivations of Sn have

lengths r in the system of regular resolution, 4 in the system
of enumeration dags, and e in the system of regular extended

resolution, then

9 wm B
px g (Pog(®))®
n
aa*

ds2 (Pog(m))?* o4

®
A

ci*n*log(n).
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If S' is a set of clauses labelling some node of D, then D'
will contain the sequent §', along with a derivation in system
G of S' from the sequents corresponding to the parents of 5’

in D.

Assume that the parents of S' are 5,uS:' and S,uS,’',
and that (5)uS:'EuS,uS2’E) ¢ S§', If Sus1" = S,us8,' = {0},
then {£,E£} < 8' (or e8’', in which case D could have been

pruned), so that the sequent 5' is an axiom in system &.

1f one parent of 8’ is {0}, then (S:1u8:'EBu{E}) ¢ s7.
Assume that the sequent S;uS;' has already been derived, and

glr={cl,...,ck}. If k=0, then S"can be derived from S, by a

series of thinning steps. Otherwise, for lsi<k, let 8* be the

axiom {Sl,Clg,...,Ci"15,0i+1,...,Ck,E,E}. Then, derive
Sl,cl,...,ck,i by a single thinning step, and for l<igk, derive

sl,clg,...,c.g,ci+1,...,ck,§ from Sl,clg,...,ci_lg,ci,...,ck,z

2
and 8* by a single v-elimination step. The result of this
last step is the sequent 5,,5:'E,E , from which 8' can be

derived by thinning.

Finally, assume that both parents of S' have been

derived, and that S1’={Cl,...,0k}, and 52'={Bl,‘..,8j}. 1£f

k=0, then S' can be derived from S; by thinning, and if j5=0,
S8' can be derived by thinning from S,. Otherwise, 8’ is
derived from 5;,5:' and 5,,5,' by the derivation shown in

figure 5.6.4.1.1.

LR e i s o s = e >~
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evidence to support the speculation that Tuf is not closed
under complements. Conversely, if there is any system in
figure 5.2.i. that can be used to show that NP is closed
under complements (Z.e. if one of them is a polynomial-bounded
verification system), then every s-Frege system is polynomial-
bounded. Furthermore, it would not be hard to imagine that a
proof that some system is polynomial-bounded could be extended

to give a polynomial-time decision procedure, thus proving that

;P =7Qj3.
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Although their relevance to the f) Vs 5ngquestion has
been ruled out, the systems below the double solid line in
figure 5.2.1i. also give rise to some interesting open questions.
For instance, all of the examples that have been found for
showing a non-polynomial lower bound for the Davis-Putnam
procedure with subsumption are also. non-polynomial for regular
resolution. Is this necessarily the case (7.e. can the Davis-
Putnam procedure with subsumption simulate regular resolution),
or can examples be found for which regular resolution allows
polynomial-length proofs while the Davis-Putnam procedure with
subsumption does not? The relationships between the Davis-
Putnam procedure {with or without subsumption) and two other
systems are also of interest. Can the Davis-Putnam procedure
simulate either tree resolution or analytic tableaux? If the
answer to either question could be shown to be '"no'", then an

s 2k

incomparable pair of proof systems will have been found (with :
respect to the "directly simulates" relation). +k%ﬁc53 _Mj$5f
| e
a /
6.3. SUGGESTIONS FOR FURTHER RESEARCH

The concept of verification systems is not specific
to propositional calculus, nor even to logical theories in

general, It would be intérasting to see 1if reasonable

verification systems could be devised for the complements of

vavious problems from Oljz such as non-isomorphic graph pairs,

p————

non-isomorphic subgraph pairs, non-three-colourable graphs,\
ete. It would then be instructive to try to find simulations
between these systems and the various systems for tautologies

and unsatisfiable sets of clauses discussed in this thesis.
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