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ABSTRACT 

Just as f = 1Lf if and only if some i1f- complete set ; 

is a member of f, the c ~ass l1f is closed under cornplementati~m 

if and only if the cornpl ernent of some 1lf- complete set is a 

member of 1lf. This in turn leads to the fact that 1lJP is 

closed under complementa~ion if and only if there exists a 

system for proving tauto~ogies of the propositional calculus 

in which each tautology has a (polynomial-time verifiable) 

proof whose length is no greater than some fixed polynomial in ; 

the length of the tautology. Such a system is called a 

polynornial-bqunded verification system. 

Most of the important proof systems for the propos i tio! l1 

calculus that have been proposed in the literature have been 

investigated, and two types of results are reported. The 

first are simulation results that show that if one system is 

polynomial -bounded, then the simula~ing system is also 

polynomial-bounded. Such simulations are shown for all Frege 

systems (called "Hilbert -type" systems by Kleene), natural 

deduction sys terns, and Gent zen systems with cut. Frege system! 

with the substitution rule simulate all other systems studied. ; 

The second type of results are lower bounds, where certain 

systems are shown not to be polynomial-bounded. Lower bounds 

are reported for regular resolution, semantic trees, analytic 

tableaux, and other systems, and Tseitin's lower bound for 

regular resolution is i~proved and applied to certain system~ 

of regular r esolution with limited extension. 
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1. INTRODUCTION 

This thesis is concerned with the computational 

complexity of proof systems for the propositional calculus. 

In particular it is an investigation into the relationship 

between the length of a Boolean formula and the length of the 

shortest proof of that formula in var ious proof systems . 

Besides its intrinsic interest to logicians, this relation is 

also of importance in the theory of computational complexity, 

because of its relationship to the fP vs 1/.;f question. 

1. 1 . THE P VB ~nf QUEsT roN 

An important area of study in computational compl exity 

is the general area of nondetermin ism . The question asked is, 

"under what circumstances are resource-bounded nondeterministic 

machines ·able to compute more than deterministic machines with 

the same resource bounds?" For many problems it is easy to 

find very efficient nondeterministic algorithms, but 

straightforward simulation of these algorithms by deterministic 

machines leads to inefficient so lut ions . 

An early example of a nondeterminism question is known 

as the "LBA problem". A Turing machine whose storage is limited 

to some constant times the length of its input is called a 

linea~-bounded automaton ( LBA). It was shown by Kuroda 

[Kuroda 1964] that the class of languages accepted by 

non~eterministic LBAs is the class of context-sensitive 

languages. It remains an open question, however, whether or 

- 1-
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not there exists a context-sensitive language that cannot be 

i.lL"Ct'pteJ by a Jetenninisth: LR/\. Thus, it remains unknown 

whether or not nqndeterministic LBAs are strictly more powerful 

than deterministic LBAs. 

In a similar vein, but this time concerning computation 

time rather than storage, Cook (Cook 197lb] defined classes, 

now called :f and '1Lf. These are the classes of languages 

accepted (or problems solved) in polynomial t ime by deterministic 

and nqndeterministic Turing machines, respectively. He observed 

that a number of combinatorial problems with no known 

deterministic polynomial-time algorithms have simple polynomial­

time nondeterministic algorithms. The obvious question then is, 

"is P: !}j??" And if f;e/VP, are any of these problems in 

/Uf-f!? Cook answered this second question by showing that 

certain problems (known as 'Ja?-complete problems), including 

the satisfiability prob lem for propositional calculus, belong 

to b.) if and only if / Ltf is identical to f . Since Cook's 

proof is constructive , a deterministic polynomial-time decision 

procedure for propositional calculus (if it exists and can be 

found) would effectively yield deterministic polynomial-time 

algorithms for all problems in ·'Jt.f. many of which are not now 

known to have such algorithms . Conversely, if it could be 

shown that the satisfiability problem for propositional calculus 

has no deterministic polynomial-time algorithm, then it would· 

follow that :.fJ"' JUf, and as a byproduct would come the result 

that none of the )if-complete problems has a deterministic 

polynomial-time algorithm. 
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1.2. POSSIBLE CLOSURE OF /1&PuNDER COMPLEMENTATION 

AND POLYNOMIAL-BOUNDED VERIFICATION SYSTEMS 

Another question that can be asked is whether ·JZJP is 

closed under complementation (i.e. if the complement of every 

language from 7"/J' is also in ;Jlf) . If not, then P ;z: '?2.P, since 

f is clearly closed under complementation. On the other hand, 

there are many languages from 7l.f(including all known "'7LP-
complete languages) whose complements are not known to be in 

vf"Lf. It is shown in this thesis that ·tJP is closed under 

complementation if and only if the complement of any 12oP­
complete language is in ~uP. It is furthermore shown that /UP 
is closed under complementation if and only if there exists 

a proof system for tautologies of the propositional calculus 

(where proofs ca~ be verified for correctness in polynomial 

time) and a polynomial p such that every tautology of length 

n has a proof of length no greater than p(n). This result 

motivates the investigation of lengths of proofs in systems 

· for proving propositional tautologies. 

1.3. PROOF SYSTEM SURVEY 

Logicians have proposed a great number of systems for 

proving theorems. These systems give certain rules for 

constructing proofs and for associating a theorem (formula) 

with each proof. It is important that these rules are much 

simpler to understand than the theorems . Thus, a proof gives 

a co~structive way of understanding that a theorem is true. 

A proof system is sound if every theorem is true, and it is 



t· 

r 

-

- 4-

complete if every true statement (from a certain class) is a 

theorem (i.e. has a proof). 

Some proof systems prove valid formulas, others prove 

inconsistent formulas, and some prove either. Also, some 

systems prove only formulas of certain forms, such as 

conjunctive normal form . . Thus, "true statement" in the 

preceding paragraph could refer to valid formulas, inconsistent 

sets of clauses, eto., depending on the proof system. 

The most straightforward kind of proof system for 

propositional formulas is the system of truth tables. For a 

formula in n variables; one simply writes down the zn possible 

different truth assignments to those variables, and verifies 

that each one makes the formula true (to prove the formula is 

valid). This is obviously a great deal of work, and several 

systems have been derived which allow shorter derivations in 

some examples. These include reduced truth tables [Kleene 1967], 

semantic trees [Robinson 1968] [Kowalski & Hayes 1969], and 

enumeration trees [Galil 1975] . 

The proof system in Mendelson's introductory logic text 

[Mendelson 1964] is typical of a large class of proof systems 

called Frege systems. This system constructively proves valid 

formulas containing only negations and implications. Three 

valid formulas are distinguished and called axioms. Any 

instance of an axiom is a theorem. Mendelson's only other rule 

for constructing proofs . is modus ponens: if A is a theorem 

and A~B is a theorem, then B is a theorem. 

------· .. ·----.. ···----·······-"-"' ...... - . ....... .... . 
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By allowing proofs to make use of hypotheses and the 

deduction theorem (if B can be proved from A, then A~B is 

provable), any Frege system can be made into a "natural 

deduction" system like those of [Kleene 1967] and (Thomason 1970). 

Since the deduction theorem has a long proof, incorporating it 

into the proof system allows for shorter proofs in many examples. 

Another family of proof systems are based on Gentzen's 

system (see [Kleene 1967]). The objects manipulated by Gentzen's 

~ystem are sequents, which are made up.of a list of hypotheses 

and a list of alternate conclusions for those hypotheses. 

Gentzen's rules for deriving new sequents from old ones are 

particularly intuitive, and the notational simplification of 

[Smullyan 1968) gives rise to a proof system called analytic 

tableaux that is both easy to understand, and efficient to use 

on simple examples. 

Proof systems based on the resolution principle 

[Robinson 1965aJ have received great attention from computer 

scientists, as well as logicians. Resolution is particularly 

suited to mechanization, because it uses only one proof rule, 

and that rule is easy to implement. A resolution proof is a 

way of showing that a set of clauses (i.e. a formula in 

conjunctive normal form) is inconsistent. Var~ous restrictions 

on the form of resolution proofs have been proposed with the. 

hope that they would simplify the task of finding resolution 

proofs. They include the Davis-Putnam procedure (which actually 

pre~dates resolution) [Davis & Putnam 1960], the unit preference 1 

strategy [Was et aZ. 1964], set of support (Was et aZ. 1965], 
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·linear resolution [Loveland 1970], Method I [Cook 1972b], and 

regular_ resolution [Tseitin 1968]. Resolution has also been 

generalized to hyper-resolution [Robinson 1965b), and extension 

[Tseitin 1968]. 

1.4. PREVIOUSLY KNOWN RESULTS 

Before the work of Tseitin [Tseitin 1968] and Cook 

[Cook 197lc], little work had been done on the complexity of 

any of these systems. The size of a truth table can obviously 

grow exponentially with the size of the formula, but even for 

such simple systems as semantic trees and analytic tableauxf 

no nontrivial (i.e. more than linear) lower bounds on proof 

lengths were known. The lengths of proofs for Frege systems 

and Gentzen-type systems had apparently never been studied. 

Although efficiency was of primary importance to the designers 

of resolution theorem provers, most of the results in this area 

have the form: "Here is an example of a family of (usually 

predicate) formulas where this resolution strategy found a 

proof in fewer resolutions than that strategy." Nothing was 

said about absolute lower bounds, and little attention was paid 

specifically to propositional ca~culus. 

Tseitin [Tseitin 1968] was the first to obtain nontrivial 

lower bounds on lengths of proofs. He found a family of sets .of 

clauses for which the length of the shortest regular resolution 

~- proof grows faster than any polynomial in the size of the set 

of clauses. He showed that these same sets of clauses have 

polynomial-length proofs when the extension rule is allowed. 
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polynomial - length proofs when the extension rule is allowed. 

' ' \ 
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.Tseitin also briefly indicated that proof lengths in the system 

of resolution with extension are no greater than proof lengths 

in Gentzen's system, by showing how resolution with extension 

can "simulate" proofs in Gentzen's system . Cook [Cook 1973] 

found a family of ~ormulas for which the size of the small~st 

analytic tableau grows faster than any polynomial in the size 

of the formula. Kirkpatrick [Kirkpatrick 1974] observed that 

Tseitin's lower bound for regular resolution a lso applied to 

proofs generated by the Davis-Putnam proce~ure, and he raised 

the lower bound from zein to zc'n/(Log(n))
2

• Finally, after 

the results of this thesis were announced [Cook & Reckhow 1974], 

Galil [Galil 1975) showed that enumeration trees (a 

generalization of semantic trees) can simulate regular resolution, 

and also extended Tseitin's lower bound to this system. 

1.5. ·SUMMARY OF RESULTS 

Figure l.S.i. is a chart summarizing the major known 

results concerning lengths of proofs for the propositional 

calculus. A more detailed version of this chart appears in 

section 5.2. The boxes indicate proof systems or families of 

proof systems, and the arrows indicate simulations. The 

strongest proof systems (i.e . those with shortest proofs) are 

at the top . 

A solid arrow [s.1]---1!""B~ indicates that system S 1 can 

simulate S 2 in the sense that for some polynomial p(n), for 

every proof D of length n in system S2 there is a proof D' in 
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system s 1 , where the formula proved by D' is a suitable 

~ranslation of the fo rmula proved by D and the length of D' 

is bounded by p(n). The translation is only necessary if the 

systems use different connectives. A dashed arrow ~----)~ 

indicates that no such simulation is possible. Labels on the 

arrows indicate the author of the result. The label N indicates 

that the result is new, and arrows corresponding to trivial 

results are unlabelled. Where a box contains a family of 

systems, all systems in the family can simulate each other. 

All of these results are new. 

The dashed horizontal line divides systems with known 

non-polynomial lower bounds from those with no such bound known. 

All of the lower bounds shown can be derived as corollaries of 

Tseitin's lower bound for regular resolution. 

The results indicated by the chart are described in 

more detail in the following three subsections. 

1.5.1. Simulation Result s 

The chart in figure l.S.i. shows what is now known 

about proof systems for the propositional calculus partially 

ordered by the "simulates" relation. 

The family of systems in the top box on the chart are 

Frege systems with the substitution rule added: any instance 

of a theorem is also a theorem. These systems are the mos t 

powerful systems shown on the chart, since any one of them can 
I 
simulate any other system shown (including other Frege systems. 

with substitution). 
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The next lower box contains the system of resolution 

with extension, which was introduced by Tseitin [Tseitin 1968]. 

This system can simulate all of the other systems shown, except 

Frege systems with substitution. It has not been shown, 

however, that resolution with extension cannot simulate Frege 

systems with substitution. Such a result would necessarily 

imply a non-polynomial lower bound for proof lengths in the 

system of resolution with extension (and, thus, everything 

below extended resolution in the diagram), and would therefore 

be an important result. 

Below this is a box containing Frege systems, natural 

deduction, and th~ Gentzen systems with cut . . Ev~ry system in 

this class can simulate any other system in the class, regardless 

of what connectives the systems use for expressing formulas, 

and regardless of what rules of inference they have. This 

result is surprising in at least two ways. First, some logical 

connectives allow much more succinct expression of certain 

truth functions than others, and one would expect that a proof 

system designed to deal with these more "powerful" connectives 

would allow shorter proofs of some formulas. Secondly, the 

form of inference rules in natural deduction systems and 

Gentzen-type systems is much less restricted than in Frege 

systems, and one might expect that certain rules that are not 

allowed in Frege systems (the deduction theorem, in particular) 

would lead to much shorter proofs of some formulas. In chapter 

s-: of this thesis it is shown that while more "powerful" 

connectives and inference rules might lead to shorter proofs, the 

improvement can never be more than a polynomial imprbvement. 
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Below Frege systems there are a large number of specific 

proof systems, not all of which are shown in figure l.S.i. Many 

of these systems deal only with sets of clauses, and most have 

provably non-polynomial lower bounds. · Many of the simulations 

.among these systems are trivial, because one system is a 

. special case or a simple notational variant of another. The ­

more detailed chart in section 5.2. includes a number of other 

systems of technical interest that fit into the chart in the 

vicinity of the dividing line between systems with proven 

non-polynomial lower bounds and -systems without them. 
--

1.5.2. Lower Bounds 

The dashed horizontal line in figure l.S.i. separates 

·systems with proven non-polynomial lower bounds (below) from 

· ,system·s without known non-polynomial lower bounds (above the 

line)~ As the chart shows, all of the lower-bound results can 

be derived from Tseitin's lower bound for regular resolution. 

' Some of these results were derived independently of Tseitin's 

work, however, by Cook (for analytic tableaux) and Kirkpatrick 

(for the Davis-Putnam procedure). 

Associated with non-polynomial lower bounds, negative 

results about simulation can usually be derived. For example , 

Tseitin showed that regular resolution cannot directly simulate 

r "esolution with extension, by showing how to construct 

polynomial-length resolution-with-extension ' pr oofs for the sets 

of slauses tha t have no poly~omial-length reg~lar res olution 

proofs. Similarly, Cook s howed t ha t the f ormul as (whi ch are 

actually sets of claus es) that · have no polynomial-sized 



.. 

. ; , 

I 

I. 
L 

·-12"- .. .. 

anal~ic tableaux have linear-sized tree resolution proofs. 
' 

(A resolution proof is a tree if each derived . clause is used ! . 
only once to create a new resolvent; clauses that are used more 

than once must. be re-derived for each use.) Tseitin also found 

~ different family of sets of clauses for which there is no 

polynomial upper bound on lengths of shortest tree resolution 

proofs, but which have polynomial-length regular resolution 

proofs. Careful scrutiny of Tseitin's proof reveals that such 

polynomial-length regular resolution proofs can actually be 

·generated by the Davis-Putnam procedure . Finally, for any 
.. 

system other than complete truth tables, it is easy to find 

infinite families of n-vari~ble formulas that have proof lengths 

bounded .above by a polynomial in . n, thus ruling out the possibili~ 
·.·. 

of a · direct simulation of that system by complete truth tables. 

1.5.3. Original . Contributions of this Thesis 

. Many of the results of this research \vere first announced 

in a preliminary report (Cook & Reckhow 1974]. Significant 

consequences of the publication of that report were that it made 

researchers in North America aware of the work of Tseitin 

[Tseitin 1968], and ' that it stimulated research in the area of 

proof system complexity (e.g. fGalil 1975]) . 

· The definition of "verification system" in subsection 

3.3.1. gives a new and precise formalism for proof systems. 

The connection between .verification systems and the 00 va ?LAD 
question, as embodied in lemmas 3.3.2.a. and 3.3.3.a., and 

corollary 3.3.3.b., is new, a s is the formalization of 

"simulation" of verification systems, as given in subsection S .1.) 

. . 

s paaf5ffiiif3;7~~~=e~¥§iiiiee&f.e-~"'ii¥%'iiii~tii"iJ1iiTseJ&iiiiF%1i1inwreiiTiilhliii~iit'ii11i1'ii 
' 
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The definition of "Frege system" of section 4.2.1. 

gives new precision to the vaguely-held feeling that these 

systems (called "Hilbert-type _systems" by Kleene [Kleene 1967]) 

are all very similar. The terms "natural deduction system" 

and "sequent system11 are defined by analogy with Frege systems, 

and apply to familiar systems as well as new ones invented for 

the purpose of proving simulation results. 

The most important new results, however, are the 

simulations. Frege systems are shown to be able to simulate 

other Frege systems, natural deduction systems, and sequent 

systems. Perhaps the most interesting of these is the 

simulation of natural deduction. Natura l deduction systems 

c an use the deduction theorem as a rule of inference, whereas 

Frege systems cannot. The usual proof of the deduction theorem 

seems to indicate that proof lengths can double with each 

elimination of an application of the deduction theorem. A way 

was found to eliminate all applications of the deduction 

theorem from a proof at once, while only increasing the proof 

length by a polynomial. 

The fact that any Frege system can simulate any other 

Frege system is also a bit surprising . This is because some 

connectives are more "powerful" than others. For example, 

the "mod 2 sum" of n arguments can be expressed by a formula 

of size O(n) if the exclusive-or connective (~) is allowed. 

If only the connectives {,,v,&} are allowed, it first appears 

that a formula of size 0(2n) is required, but in fact there 

f. 

~ 
. . 

' ..... -... --~ -- ~· 
~~ ~ifijjiijjjij'ji~~~---··-·--
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is a formula of size O(n 2
) that works. It might then seem that 

Frege systems with t cannot simulate Frege systems with {,,v,&}, ' 

because they can express theorems that cannot even be expressed, 

let alone proved, succinctly in the second system. On the 

other hand, it might seem that Frege systems without 1 could 

not simulate Frege systems with 1, because, although 1 could 

not be used to ·express theorems, its use in expressing 

intermediate steps of a proof (along with inference rules for 

manipulating formulas with ~) might allow economies that could 

not be matched by the system without ~ . In subsection 5.3 .1. 

it is shown that neither of these cases holds. 

The simulation of resolution by Frege systems is new, 

as is the simulation of extended resolution by Frege systems 

with substitution. This last result establishes Frege systems 

with substitution as no less powerful (modulo a polynomial) 

than any other system studied here. 

The observation that tree resolution and semantic trees 

(for sets of clauses) are equivalent (modulo a linear factor) 

established the position of semantic trees within the hierarchy 

of proof systems. Also, the observation of the fact that the 

optimal regular resolution proofs in Tseitin's lower-bound 

theorems can be generated by the Davis-Putnam procedure (without 

subsumption) establishes for the first time that no simulation 

of the Davis - Putnam procedure by tree resolution or semantic 

trees is possible. Finally, Kirkpatrick's stated belief that 

his techniques can be combined with Tsei tin's to raise Tsei tin' s l 

lower bound for regular resolution is confirmed in paragraph S. 61 2, 
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1.6. PREVIEW OF THE THESIS 

Chapter 2. gives a brief history of the work that has 

been done in computational complexity pertaining to polynomial-

time-bounded computations. The results of Cobham, Cook, and 

Karp are described in some detail, and a few more recent results 

are mentioned. 

In chapter 3 . the more important results of chapter 2. 

are made precise, and given a uniform notation. These results 

are then extended in order to pr.ove that <'}1f is closed under 

complement if and only if t here is a proof system for 

propositional calculus with a polynomial upper bound on lengths 

of shortest proofs. 

Chapter 4 . begins with a description of a formalism · 

for propositional calculus and a few simple theorems. The bulk 

of the chapter is devoted to describing in more detail a number 

of proof systems and fami li es of proof systems for propositional 

logic. The chapter closes with a description of how these 

systems can be made to fit the formalism introduced in chapter 3. 

for the complexity-analysis of proof systems . 

The major results of this thesis are contained in 

chapter 5., where the proof systems described in chapter 4. 

are compared in an attempt to answer the complexity related_ 

questions raised in chapter 3. The chapter begins with two 

specific examples that both typify the results given later in 

the chapter and motivate the formal definition of what it means 

for one proof system to simulate another. A more detailed 

....... - -.--.... ~~~--·· · · -··· ···::l-:~::..."="·---
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version of figure l.S.i . 1s then given, summarizing the results 

that follow. Simulation results are given first for Frege 

systems, followed by natural deduction, Gentzen systems and 

their derivatives, and resolution and related systems. 

The results of the thesis are summarized and conclusions 

are drawn in chapter 6. The thesis closes with a discussion of 

the important open questions relating to proof system complexity 

and suggestions for further research. 

' ' 

i 
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2. PROBLEMS OF POLYNOMIAL DIFFICULTY 

Most algorithms that are commonly used to solve 

Pr?ctical computational problems have running times that grow 

in proportion to a polynomial in the size of the input. Any 

algorithm that does not have this property would be impractical 

for large inputs, since its running time would grow faster 

than any polynomial in the size of the input . Such 

considerations have motivated researchers to attempt to 

determine which problems have algorithms with this property 

and which problems have no such algorithm. 

2.1. COBHAM'S CLASS~ 

The class of functions that are computable in 

polynomial time was first discussed by Cobham [Cobham 1965]. 

He used L to denote the class of natural number functions 

that are computable by devices (from some class of computing 

devices) whose computation times are bounded by polynomials 

in the lengths (i . e. logarithms) of the arguments. He 

argued that ~ is a natural complexity class to study for 

sever.al reasons. 

First, the class ~ is relatively insensitive to 

the class of computing devices under consideration. The same 

class of functions is obtained whether one cons iders one-tape 

Turing machines (see, for example, [Hop c roft & Ullman 1969)), 

many -tape Turing machines [Hartmanis & Stearns 1965] 

[Mennie & Stearns 1966], Turing machines with multi-dimensional 

- 1 7-
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tapes and/or many heads per tape, register machines 

[Shepherdson & Sturgis 1963], random-access machines 

(provided they cannot multiply two arbitrarily large 

integers in a single step) [Earley 1970) [Hartmanis 19711 

[Cook 1972a] (Cook & Reckhew 1972) [Cook & Reckhow 1973], 

Schoenhage's storage modification machines, or iterative 

arrays of finite-state machines. This is a consequence of 

the fact that for each machine in any one of these classes 

there is a machine in each of the other classes that can 

simulate it with no worse than a polynomial time loss. 

The class ~ , then, seems to be a reasonable abstraction 

for the class of functions that can be computed by real 

computers in polynomial time. 

Second, ~ is an interesting class because it 

includes many functions of practical interest, such as 

addition and multiplication, polynomials, and the integer 

encodings of many practical computational problems from graph 

theory and combinatorics. Also, it can be argued that any 

function not in L should be labelled as "practically 

intractable", since the computation time for such a function 

would grow faster than any polynomial in the length of the 

input, making computation times impracti~ably long for large 

inputs. Similar arguments were advanced by Edmonds 

(Edmonds 1965], who called an algorithm "good" if its running 

time increased algebraically (as opposed to exponentially) 

with the size of its input. He argued that finding "good" 

algorithms is of practical as well as theoretical interest, 
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because, he said, "for practical purposes the difference 

between algebraic and exponential order is often more crucial 

than the di ffe renee be t\-Jeen finite and non- finite . " 

Finally, the class i has some natural closure 

properties and an interesting characterization in terms of 

these closure properties. Cobham observed that ~ is 

closed under explicit transformation, composition, and limited 

recursion on notation (digit-by - digit recursion, or recursion 

on length). Limited recursion on notation was discussed by 

Bennett [Bennett 1962], and may be described as follows: 

the function f is defined from the functions g,h~~··· ,h 9 , 

and k by limited recursion on (decimal) notation if 

f(l,O) = g(~) 

tcx,y) s kC~.y) 

h . th . th 1' d were s. lS e ~ genera 1ze successor: 
~ 

si(y) :: lOy+i. 

Cobham stated that /_ can be characterized as the least 

class of functions containing the functions s. and xt(y) 
'!. 

(where !(z) is the (decimal) length of z), and closed under 

the operations of explic·i t transformation, composition, and 

limited recursion on notation . 
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2.2. COOK'S CLASSES~* fu~D ~+ , ru~D COOK'S THEOREM 

A "time- bounded computer" \vas defined by Cook 

[Cook 197la] to be any device that can be simulated by a 

simple deterministic Turing machine with no more than a 

polynomial time loss. This gives a name to the family of 

classes of machines over which Cobham's class L is invariant. 
f 

Cook defined d-....-* to be the class of sets of strings (over 

some finite alphabet ~) that can be recognized by time-bounded 

computers in polynomial time. That is, the set A is in L * 
if and only if there are a time-bounded computer M and a 

polynomial P such that for every string x in~*. M halts on 

input x within time P(n) (where n is the length of x), and 

M accepts x if and only if x is a member of A. A set A is 

in [* if and only if A is the set of base 'b notations for 

a set B of integers whose characteristic function is in 

Cobham's class ~ (where b is the number of symbols in E). 

In the same paper Cook characterized ~* as the class of 

languages accepted by two-way multihead (deterministic or 

nondeterministic) pushdown automata. 

In a later paper Cook [Cook 197lb] investigated the 

class of sets of strings that are accepted by nondeterministic 

Turing machines in polynomial time. He defined a set S of 

strings to be P-reduaible to a set T of strings if some 

deterministic multitape Turing machine with an oracle for T 

recognizes s in polynomial time. The set {DNF tautologies} 

was defined to be the set of strings that encode tautologies 

of propositional calculus that are in disjunctive normal form. 

~ I 
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Cook then proved that if a set S of strings is accepted by 

some nondeterministic Turing machine within polynomial time, 

then S is P-reducible to {DNF tautologies}. In other words, 

if a deterministic polynomial-time recognition procedure 

were available for recognizing {DNF tautologies}, then that 

procedure could be used as a subroutine to provide 

deterministic polynomial-time recognition procedures for 

every set of strings that has a nondeterministic polynomial­

time acceptor. On the other hand, since it appeared likely 

te Cook that nondeterministic polynomial-time acceptors are 

strictly more powerful than deterministic polynomial-time 

recognizers, h~ suggested that {DNF tautologies} would be 

a likely candidate for an interesting set that is not in ~*. 

In the same paper Cook showed that {DNF tautologies} 

is P-reducible to two other interesting sets: (isomorphic) 

{subgraph pairs} and D3 , DNF tautologies with at most three 

conjuncts per term. He observed that each of these sets, 

along with {primes} and {isomorphic graph pairs}, is 

P-reducible to {DNF tautologies}, since each set (or its 

complement) is accepted in polynomial time by some 

nondeterministic Turing machine . Such machines use the 

"guess and verify" technique . For example, a nondeterministic 

polynomial-time acceptor for the complement of the set of 

{primes} would, through a sequence of nondeterministic moves~ 

write two random numbers on its work tape ("guess"), and 

then deterministically multiply the two numbers and compare 

their product with the input ("verify''), all in polynomial 
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time. If the comparison succeeded , the machine would accept 

the input, and if not, it would abort. 

Using strings to represent n-tuples of natural numbers 

in m-adic or b-ary notation, Cook defined j_,* relations as 

those relations that are recognized in po l ynomial time by 

deterministic Turing machines. He used J/ to denote the 

class of relations accepted in polynomial time by 
.1+ nondeterministic Turin g machines. He then characterized ~ 

as the relations of the form 

(3ysgk(x)) R(x,y) 

( q ~))k 
where gk(x) ~ 2 max i(z) is the dyadic length of z, 

and R(x,y) is an L* relation. He remarked that L+ is 

also the same as Bennett's class of extended positive 

rudimentary relations [Bennett 1962]. 

Drawing an analogy with recursive function theory, 

Cook observed that L* is the analog of the recursive sets 

and L + is the analog of the recursively enumerable sets 

.within the polynomial-time domain. Then {DNF tautologies} 

can be seen as the analog of the halting problem, s ince it 

has the complete ~+ degree (in the sense of P-reducibility) 

just as the halting problem has the comple te r.e. degree 

(in the sense of Turing reducibility). He noted that the 

diagonal argument that shows the halting probl em is not 

recursive apparently cannot be easily adapted to show that 

{DNF tautologies} is not in JC*. 

\ \ \ 

e. 
' 
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2.3. KARP'S COMPLETE PROBLEMS 

In a paper that popularized and extended Cookrs work, 

Karp [Karp 1973] used P to denote Cook's class ~*. He 

used IT to denqte the class of functions from E* into I* that 

are computable in polynomial time by one-tape Turing mach ines. 

The class of two-place relations over I* that are recognized 

in polynomial time by deterministic one-tape Turing machines 

was denoted by P( 2 ). If L(Z) is a relation in p(Z) and p 

is a polynomial, then the language (set of strings) L defined 

by 

L ~ {x!there exists y such that cx,y>eL(Z) and lg(y) s p(lg(x))} 

(where lg(z) is Karp's notation for the length of z), is the 

language derived from L(Z) by p-bounded existential 

quantification. Karp then defined NP to be the class of 

languages derivable from languages in: p.CZ) by polynomial-

bounded existential quantification, and proved NP is also 

the class of languages accepted by n?ndeterministic Turing 

machines that operate in polynomial time. 

· While Cook's definition of P-reducibility is t he 

polynomial time analog of Turing reducibility from recursive 

function theory [Rogers 1967], Karp used a polynomial-time 

analog of many-one reducibility. He said language L is 

reducible to language M if there is a function f from IT 

such that f(x)eM if and only if x eL. A language L is s aid 

to be (polynomi al ) complete if L is a member of NP and every 

language in NP is reducible to L. As with Cook's notion of 

··' 
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P-reducibility, if L 1 is in P and L 2 is reducible to L 1 

(in Karp 's sense), then L 2 is in P. Consequently, if L is 

any complete language, then L is in P if and only if P and 

NP are the same class. 

Karp defined the language SATISFIABILITY to be the 

set of encodings into E* of satisfiable se ts of clauses 

(propositional formulas in conjunctive normal form that are 

true under at least one truth assignment). Cook's theorem, 

then, asserts that SATISFIABILITY i s complete. Karp's main 

contribution was to show that about twenty other language 

recognition problems arising from practical problems in 

graph theory, discrete opt imi zation; and combinatorics are 

also complete. These include such problems as 0-1 INTEGER 

PROGRAMMING, CLIQUE, SET COVERING, UNDIRECTED HAMILTON 

CIRCUIT, CHROMATIC NUMBER, STE INER TREE, and JOB SEQUENCING. 

Each of these languages is defined precisely in Karp's 

paper, but the names should give an idea of the va riety of 

problems that a re complete. 

2.4. RECENT WORK 

Cook's and Karp's papers were followed by a flood 

of pape rs related to the P vs NP question. (See , for 

example [SIGACT 1973, 1974], [SWAT 1972 , 1973].) Some 

papers concentrated on showing new problems to be complete. 

It is now clear that the class of complete problems includes 

a vast number of practical problems from discrete mathematics. 

Jt is common for researchers, when confronted with a new 

' ' ' 
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combinatorial problem with no obvious polynomial-time algorithm, 

to attempt to show the problem is complete. Once a problem 

has been shown to be complete it is known to be very difficult 

(perhaps impossible) to solve efficiently. 

There are three important problems from NP with no 

known polynomial-time algorithms that have not been shown 

to be complete: the problems of recognizing NONPRIMES and 

ISOMORPHIC GRAPH PAIRS (both of which were mentioned by Cook 

[Cook 1971b]), and LINEAR PROGRAMMING. It is interesting 

to note that, since PRIMES has also been shown to be in NP 

[Pratt 1975], if either PRIMES or NONPRIMES were complete, 

then NP would be closed under complementation. Since the 

complement of LINEAR PROGRAMMING can also be shown to be 

in NP, the same s'ituation holds for LINEAR PROGRAMMING as 

for PRIMES. 

Other recent papers have investigated subrecursive 

reducibilities. In addition to general papers about 

computation-limited reducibilities, there have appeared 

papers about log- space reduci bi 1 i ty and completeness in P 

with respect to log-space reducibility, polynomial-time 

analogs of truth-table reducibility as well as (Cook's) 

Turing reducibility and (Karp's) many-one reducibility, 

and some nondeterministic polynomial-time reducibilities. 

One interesting paper [Meyer & Stockmeyer 1972] 

used a nondeterministic polynomial-time reducibility-like 

- ' ~<2!;;;;,;;;;~~~·~ ~~~~~~-" ~~ 
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relation to build a possible analog of Kleene's arithmetical 

hierarchy [Rogers 1967]. They defined a deterministic oracle 

reducibility $p like Cook's, and a nondeterministic relation: 

L 1 RnL 2 if L 1 is accepted by some nondeterministic polynomial­

time machine with oracle language L2. Then they defined the 

following sequence of classes of languages: 

= nP = tl = <t> 0 0 

= {LL,LRnL' for some L'EE~} (,£ is the complement 
of L) 

In particular, then, El = NP and Al = P. The class TI~ is 
1-

the class of languages whose complements are in E~. Meyer 
'l-

and Stockmeyer noted that their "hierarchy" has the same 

inclusion structure as the Kleene hierarchy, but they were 

unable to show that any of the inclusions are proper. Such 

a demonstration would have as a corollary that P~NP . The 

final result of this paper was the derivation of a sequence 

B1 ,B 2 , ••• of languages such that Bk is complete with respect 

to ~p in the class Ekun~. 

Another characterization of this potential hierarchy 

can be based on polynomial-bounded quantification. In this 

case it is most convenient to think of a language as being 

a k-place relation over E*, for some k. If L1 is a k+l-place 

relation over E* and pis a polynomial ink variables, then 

j . 

' ' ' 
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the k-place relation L2 defined by 

L 2 "'{<x1 , •.• ,xk>I'Jy such that R.ysp(~x 1 , ... R.xk),<x1 , .•. ,xk,y>eL 1 } 

(where ~z is the length of z) 

is the language derived from L2 by p-bounded existential 

(universal if 3 is replaced by V) quantifiaation. Then a 

sequence of language classes can be defined: 

E~+l = {Lifor some L'~A~, Lis derived from L' by 

polynomial-bounded existential quantification} 

· A~ 1 = {L!for some L'eE~, Lis derived from L' by 
~· ~ 

polynomial-bounded universal quantification}. 

As Cook and Karp have pointed out, El = NP = El~ and their 

arguments can be easily extended to show that for all i~l , 

2.5. DISCUSSION 

It is now widely accepted that the P vs NP question 

is one of the most important open questions in computational 

complexity. As Karp observed, NP can be informally described 

as the class of problems that can be solved by polynomial­

depth backtrack sear~h. This is an extremely wide class, 

and the practical impact would be tremendous if it could 

be shown that each of these problems could be solved 

deterministically in polynomial time. On the other hand, 

it would be a breakthrough for computational complexity if 
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it could be shown that some language in NP has no polynomial-

time recognition algorithm, since thi_s would imply that none 

of the complete languages can be recognized deterministically 

in polynomial time. 

Another question that can be asked is whether NP is 

closed under complementation; that is, does LeNP imply ,£ENP? 

Since P is a class of languages defined in terms of 

deterministic recognition devices, it is closed under 

complementation. Thus, a proof that NP is not closed under 

complementation would demonstrate that P~NP. 

Although closure of NP under complementation would not 

directly imply P=NP, it would have a number of interesting 

consequences. The "hierarchy" of Meyer and Stockmeyer 

would collapse to the two classes P and NP. In particular, 

this would mean that many languages that are clearly in a 

higher level of the "hierarchy" but not known to be in NP, 

such as BOOLEAN MINIMIZATION, HAXIMUM CLIQUE, TRAVELING 

SALESMAN PROBLEM, and TAUTOLOGIES, would be in NP . The 

languages whose complements are in NP could be characterized 

as those languages that can be recognized by a polynomial­

depth backtrack search that fails . For example, a pair of 

isomorphic graphs can be recognized by searching for an 

isomorphism. It seems unlikely, however, that there is any 

polynomial - depth backtrack algorithm that searches for 

something that 11 proves" two given graphs are not isomorphic. 

Similarly, satisfiability of a Boolean expression can be 

demonstrated by exhibiting a satisfying truth assignment. 
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Demonstrating that such an expression is unsatisfiable seems 

to require a proof whose length is potentially exponential 

I. in the length of the expression. Thus, it would be nearly 

a-s surprising to find that NP is closed under complementation 

as it would be to find that P=NP . 
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3, PoLYNOMIAL-BOUNDED VERIFICATION SYSTEMS 

This chapter establishes a consistent notation and 

gives precise definitions and proofs of the results upon 

which the rest of this thesis is based. The definitions 

and notation are based on thos e introduced by [Cook 197lb], 

[Karp 1973] and [Ladner et al. 1974] and the standardizing 

efforts of [Knuth 1974a,b]. The results of section 3.3. 

first appeared in [Cook & Reckhow 1974), and the notion of 

"super proof system" from that paper has been generalized 

here to the concept of polynomial-bounded verification 

systems . 

3.1. NOTATION AND BASIC DEFINITIONS 

The concern here is with the complexity of recognition 

by time-bounded computers of sets of strings over some finite 

alphabet. For the sake of definiteness, the computing model 

used will be one-tape Turing machines as formalized in 

[Hopcroft & Ullman 1969], and the reference alphabet will 

be {0,1}. The customary notation {0,1}* is used to denote 

the set of all finite strings of O's and l's. A language is 

a subset of {0,1}*, and a function from {O,i}* into {0,1}* is 

called a string function. If x is a string from {0,1}*, 

then 9-x denotes the l ength (n umb er of symbols) of x. If L 

is a language, then ,£denotes its complement with respect 

to · {0,1}*. 

-30-
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3.1.1. Polynomial-Time-Bounded Computations 

If T(n) is a function on the natural numbers, then 

language L is recognized in time T(n) if there is a one-tape 

deterministic Turing machine M such that for every string w 

(from {0,1}*), M with input w halts with its tape blankt 

within T(tw) steps, halting in the ACCEPT state if W£L and 

in the REJECT state if wiL. Language L' is aaaepted 

(nondeterministiaally) in time T'(n) if there is a one-tape 

nondeterministic Turing machine M' such that for every 

string xEL' there is a computation of M' on input x that 

halts in the ACCEPT state within T'(ix) steps, and for 

every string yi..L' there is no computation of M' on inpu·t y 

that halts. (Note: nondeterministic Turing acceptors have 

no REJECT state; they either ACCEPT or compute forever.) 

.... 
' The restriction that the recognizer must halt with blank 

tape can be satisfied by adding end markers to the machine's 

tape alphabet, along with states to maintain the markers 

and to erase them and all symbols between them before the 

machine halts. · These extra operations can increase the 

machine's running time by at most a linear factor, and 

provided T(n)>n, the speedup theorem [Hartmanis & · 

Stearns 1965] can be applied to give a machine that 

simulates the original machine and halts with blank tape 

within T(n) steps. 
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String function F is computed in time T"(n) if there 

is a one-tape deterministic Turing machine M" such that for 

every string a* M" with input a halts within T"(lz) steps 

with F(z) on its tape . It is a trivial observation that a 

language is recognized in time T(n) if and only if its 

characteristic function is computed in time T(n). Whenever 

the recognizer enters the ACCEPT (REJECT) state, the machine 

computing the characteristic function prints a l (O) and 

halts, and vice ve1'sa. (Recall t'hat a recognizing Turing 

machine must halt with a blank tape.) 

A language is 1"eaognized (aacepted) in polynomial 

time if there is a polynomial P(n) such that the language 

is recognized (accepted) in time P (n) • Define /P to be the 

class of languages recognized in polynomial . time, and ~ 

to be the class of languages accepted in polynomial time. 

A class of languages C is said to be closed under complements 

(or complementation) when LeC if and only if ,£EC. 

A string function is computed in polynomial time 

if there is a polynomial P'(n) such that the function is 

computed in time P'(n). Let~ be the class of string 

functions that are computed in polynomial time. A string 

function fE~ is called a t1'ansformation. 
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3.1.1.1. Insensitivity to the Computing Model 

A class of time-bounded computers is any class of· 

abstract computing devices such that whenever there is a 

device in the class that computes string function F in 

time T(n). there is an integer k such that F is computed 

in time (T(n))k (by a one-tape Turing machine). A time­

bounded computer recognize s a language by computing its 

characteristic function. For most classes of time-bounded 

computers there is an obvious generalization to 

nondeterministic computations, and in these cases the concept 

of nondeterministic acceptance of languages by time-bounded 

computers can be formalized in a straightforward way. 

A direct consequence of the definition of time-

bounded computers is that a function is computed (a 

language is recognized, or accepted) in polynomial time 

(by a one-tape Turing machine) if and only if it is computed 

(respectively, recognized, or accepted) in polynomial time 

by a device from some class of time-bounded computers. 

Thus the classes P, flfJ, and [J;J would be the same if 

they had been formalized in terms of any class of time­

bounded computers (as long as machines from the class can 

simulate Turing machines in polynomial time) rather than 

one - tape Turing machines. In fact, the same classes ?-, 
/LP , and {J;} would be obtained if they had been 

formalized in terms of the union of all classes of time-

bounded computers. 
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As noted in section 2.1., the family of classes of 

time-bounded computers is a rich one. Most of the common 

abstract models of computing are classes of time-bounded 

computers. These include various models of random-access 

computers, list processing machines, and numerous extensions 

to the basic Turing machine model. 

3.1.1.2. Insensitivity to the Alphabet and Notation 

ill addition to its insensitivity to the class of 

computing devices considered, the theory of polynomial-time­

bo~~ded computations is insensitive to the alphabet used. 

Given any finite alphabet A, there is a straightforward 

encoding function e which maps A* one-to-one into {0,1}* 

such that e and its left inverse can be computed in polynomial 

time. 

Membership in P or 1Lf of the encoding into 

{0,1}* of various combinatorial problems is also relatively 

insensitive to the way the encoding is done. That is, the 

set of strings obtained by a "reasonable" encoding of some 

combinatorial problem is a member of fJ (or /LP) if and 

only if the set obtained from any other "reasonable" 

encoding of the same problem is in tf> (or /LP) . . Although 

this is not a mathematically precise statement, its intuitive 

meaning can be clarified with the aid of a few examples. 

Problems related to the recognition of graphs with 

certain properties can be encoded by representing graphs 

either by adjacency matrices, incidence matrices, or lists 
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of adjacencies. The matrices can be linearized either in 

row order or column order, and adjacency lists may be 

structured in several ways. Given an encoding x of a graph G 

in any of these forms, it is easy to transform x into an 

encoding of G in either of the other forms irt polynomial 

time. 

Language recognition problems involving integers 

can be encoded by representing integers in any radix notation, 

such as decimal, binary, or dyadic. In this context , unary 

notation is not "reasonable", since the length of the unary 

notation for a number grows exponentially with the length 

of the radix notations for it. In contrast, any two radix 

notations differ in length by only a constant factor, and 

can be translated one into the other in polynomial time. 

Logical formulas are conceptually trees with logical 

connectives at the internal nodes and logical variables 

(atoms) at the leaves. To encode such formulas as strings 

over a finite alphabet, variables can be distinguished by 

integer labels in radix notation, and the trees can be 

linearized by either prefix, postfix, or infix notation. 

Again it is not hard to see that there are polynomial-time 

algorithms for transforming a formula from any one of these 

forms to any other. 
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3.1.1.3. Cobham's Thesis 

Paragraphs 3.1.1.1. and 3.1.1.2. have discussed the 

ways in which P and 1LP are insensitive to the computing 

model used, the input alphabet, and the particular way in 

which combinatorial problems are encoded as language 

recognition problems. This shows that there is a polynomial­

time analog of Church's Thesis from recursive function 

theory. Perhaps the title "Cobham's Thesis" could be given 

to the statement that giving a polynomial-time algorithm 

for the recognition (acceptance) by any time-bounded computer 

of some "reasonable" encodir1g of a comb ina to rial problem 

into strings over any finite alphabet constitutes a proof 

that the problem belong's to p cTJ..P) . AI though Cobham 

never made exactly this statement, his pioneering paper 

[Cobham 1965) was the first to put forth the major ideas 

contained in it. 

These observations are well known, and it has becom·e 

customary in the literature to use rather informal arguments 

to show that certain computations can be performed in 

polynomial time. As a consequence of Cobham's Thesis, 

informal arguments will be used in this thesis. There will 

be few specific references to Turing machines, and alphabets 

will grow to whatever size allows convenient expression of 

the problems considered. Encodings into finite alphabets 

will often be left unspecified. As with Church's Thesis 

all informal arguments that appeal to Cobham's Thesis could 

be made precise, but only at the expense of a great deal of 

tedious, confusing, and irrelevant detail. 
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3.1.2. Polynomial-Time Reducibilities 

If Lis a language, then an L-oraole maohine is a 

one-tape (deterministic or ~ondeterministic) Turing machine 

with an additional write-only query . tape and three special 

states: TEST, YES, and NO. Whenever the machine enters the 

TEST state with x on its query tape, the next state is YES 

if XEL and NO if xiL. In either case the query tape is 

erased, and the machine assumes its next state in a single 

step, as if the machine's query about the membership of x 

in L were answered by an "oracle" with full knowledge of L. 

The meanings of recognition and acceptance by oracle 

machines in polynomial time are obvious. 

Let L' and L" be languages. Then language L' 

reduoes (in poLynomial time) to L" (written L'sp£") if 
T 

some (deterministic) L"-oracle machine recognizes L' in 

polynomial time. Language £' transforms (in polynomial 

time) to L" (written L'sPL") if there is some function f m 

from fl:;} such that for every xdO,l}*, XEL' if and only 

if f(X)€L 11
• Note that L's.PL" implies L'sPL". 

m T 

Since $p and .,P are transitive and reflexive, the 
T m 

p p p p p p 
relations - and m , defined by L':: (::: )L" if L's. (s )L" 

T m . m T T 

and L"sp(sp)L', are equivalence relations. Denote by 
T IT) 

deg~(L) (deg;(L)) the equivalence class of L with respect 
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to =PC =p). called the polynomial T-degree (m-degree) of L . 
T m 

It is easy to see that (The superscript 

P, representing polynomial - time reducibilities, will be 

dropped whenever the resulting ambiguity causes no cortfusion.) 

If C is a class of languages and ~ is a transitive and 

reflexive relation on languages, then language Lis C-hard 

with respeat to ~ if for every L ' in c, L'~L. Language L is 

C-aompZete with respeat to ~ if LEC and L is C-hard with 

respect to o: If L is C-complete with respect to ~, L' EC , 

and Lo:L', then L' is C-complete with respect to ~. In fC~;ct, 

deg~(L) is the subclass of all languages that are c-complete 

with respect to o: 

Since L ' ~L " implies L '~L" m , 
T 

Thus, if 

L is C-complete with respect to m' then L is also C-complete 

with respect to s. The terms nf..hard and "f'l..P-aomplete will 
T 

be assumed to mean · with respect to s, and ?LJD-hard (complete) 
T 

by transformation will mean with respect to m· It is an open 

question whether s differs from s on 17JO,although it was 
m T 

shown in (Ladner et aZ. 1974] that they differ on the class 

of exponential-time-recognizable sets. 

Meyer and Stockmeyer [Meyer & Stockmeyer 1972) defined 

a related reducibility-like notion for the purposes of 

building a "hierarchy" of classes above P and i7.P 
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(see section 2.4). Since it is not clear whether their 

relation is transitive, the more neutral notation RNP is 
T 

used. Language L' is Meyer-Stoakmeyer derived from L" 

(written L'RNPL") if there is a (nondeterministic) L"-oracle 
T 

machine that accepts L' in polynomial time. 

3. 2. P vs 7).JJ AND COOK'S THEOREM 

The importance of studying flP-complete languages 

stems from the following observation. 

LEMMA. 3. 2. a. 

The classes P and /l.f' are identical if and 

only if some 'l/f-co~plete language is in f=' . 
Proof 

If f and erif are identical, then every language 

in f is 7if-complete, since 12fl= tf=degr(¢). 

in .f 
Conversely, suppose language L is nf>-complete and 

Then, since L~ ~,there is a Turing machine M 

that recognizes Lin polynomial time. Since Lis nP-complete t 

then given any language L'~ np, there is an L-oracle machine N' 

that recognizes L' in polynomial time. A deterministic 

polynomial-time recognizer for L' can be constructed from M' 

by replacing calls to the oracle by calls to M. Since this 

construction can be done for every L '~ i)_JJ, f and nF> 
are identical. ~ 3.2.a. 
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3-COLOURABILITY: [Garey et aL. 1974] graphs that are 

3- colou rab1e 

PLANAR 3-COLOURABILITY: [Garey et aL. 1974] planar 

3-colourable graphs 

PLANAR DEGREE 4 3-COLOURABILITY: [Garey e t aZ. 1974] planar 

graphs of node degree no 

greater than four that are 

3- col ourab1 e 

DIRECTED HAMILTON CIRCUIT: [Karp 1973] Hami1ton~an directed 

graphs 

UNDIRECTED HAMILTON CIRCUIT: [Karp 1973) Hamiltonian graphs 

0-1 INTEGER PROGRAMMING: see [Karp 1973] 

·SET PACKING: see [Karp 1973) 

SET COVERING: see (Karp 1973] 

3-DIMENSIONAL MATCHING: see [Karp 1973] 

JOB SEQUENCING: see [Karp 1973) 

REGISTER ALLOCATION: see [Sethi 1973] 

It appears that most combinatorial problems with 

obvious nondeterministic polynomial-time algorithms and no 

known deterministic polynomial-time algorithms can be shown 

to be nf-complete. The five main exceptions to this 

general rule are GRAPH ISOMORPHISM (pairs of isomorphic graphs)~ 

PRIMES (integers that are prime), NONPRIMES (composite 

integers), LINEAR INEQUALITIES (pairs where the first is 

an integer matrix c and the second is an integer vector d 

such that Cx?::.d has a rational solution), and the complement 

of LINEAR INEQUALITIES. Each of these problems is in /lJD; 
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for all except PRIMES, which was proven by Pratt [Pratt 1975], 

and the complement of LINEAR INEQUALITIES, which relies on 

duality theory, the "guess and verify" algorithm is readily 

apparent from the statement of the problem . None of these 

problems, however, has been shown to be 'YUP-complete, and 

none is known to have a deterministic polynomial-time 

recognition algorithm. In this respect, PRIMES - NONPRIMES 

and LINEAR INEQUALITIES and its complement are particularly 

interesting, since they are complementary pairs. They are 

the only known natural pairs of complementary languages where 

both members of the pair are known to be in ~~ but not known 

to be in 
.p 
' · v • As the results of the next section will show, 

if either PRIMES, NONPRIMES, or LINEAR INEQUALITIES were 
''l J) 

proven to be 'l t..!l-complete, then the complement of ever>y 

language from Ilf would also be in '/lf>. 

3.3 . POSSIBLE CLOSURE OF ~~ UNDER COMPLEMENTS 

Since it is defined in terms of deterministic 

recognition devices, the class f is closed under 

complements. A deterministic recognizer for a language 

becomes a recognizer for its complement when the rfiles of 

its ACCEPT and REJECT state~ are interchanged. Similarly, 

the class P is closed under finite union, intersection, 

and difference of languages. 

On the other hand, it is unknown whether 17.fJ is 

closed under complements . A proof that 12JP is not closed 
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under complements would settle the f V 8 7l.fJ question in 

the negative. If nf· were closed under complements, 

however, a number of other surprising results would follow, 

all based on the following lemma . 

LEMMA 3.3.a. 

If ~ is closed under complements, then the ~eyer ­
Stockmeyer . "hierarchy" [Meye·r & Stockmeyer 1972] (see section 

2 .4.) consists of at most the two classes f and /7.._P. 

Proof 

If ruP is closed under complements ~ then r.i=rri=1Lf 
If it can be shown that closu r e of ~UO under complements 

implies r. ~+ 1=r.~, the result follows by induction . 

Suppose Lc:E~+l and r.~=n{J. Then there is a 

language L'c:E~ such that some nondeterministic £'-oracle 
7, 

machine M accepts L in polynomial time. Since nf> =r."I? is 
7, 

·assumed to be closed under complements , there are 

nondeterministic polynomi al acceptors M' for L' and 

M" for .,£'. A nondeterministic polynomial-time acceptor M0 

for L can now be constructed from M, M', and M". Machine M0 

is identi c al to M except when M ente rs th~ TEST state. It 

then nondeterministically chooses to simulate either M' or 

M" with M's query tape contents as input. If M' ACCEPT's, 

then M0 enters M's YES state, and if M" ACCEPT's, then M0 

enters M's NO state. Since M, M', and M" are polynomial -

time-bounded, M0 runs in polynomial time also. By 

construction M0 accepts L, s o L c: ILJD . Since this construction 
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can be carried out for arbitrary LEE~+l' E~+1 =r~. Then by 

induction on i it can be shown that for i~l, 

~ 3.3.a. 

As a consequence of this lemma, closure of <1fl.f 
under complements would imply that such problems as 

NON-ISOMORPHIC GRAPH PAIRS, TRAVELING SALESMAN, MAXIMUM 

CLIQUE, TAUTOLOGIES, and BOOLEAN MINIMIZATION, wh ich 

obviously fall somewhere in the Meyer-Stockmeyer "hierarchy" 

but are not known t o be in nP, are all members of nf. 

3.3.1. Verification Systems 

It woul d be surprising to find that all of these 

problems from the higher levels of the "hierarchy" are in 

nf, f?ecause membership in 7/..fJ is tantamount to possession 

of a polynomial-time "guess and verify" algorithm. There 

is no intuition that suggests the existence of any system 

in which there is a polynomial-time-verifiable "guess" that 

would "prove" that two graphs are not isomorphic, some 

salesman's tour is minimal, or some Boolean expression has 

no shorter equivalent. 

The intuitive idea of a "guess and verify'.' .al gorithm 

can be formalized very neatly. If Lis a language, then a 

(polynomial-time) verification syetem for L is a function 

FE!{f which maps {0,1}* onto L. IfF is a verification 

system for L and F(w)=x, then intuitively w is the "guess'.t 

and the (polynomial-time) computation of F(w) is the 
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uverification" that XEL. If F(w)=x, then w is called a 

derivation of x in the system F. 

Possession of a verification system is not sufficient, 

however, to guarantee that language L belongs to nP This 

is because, although the verification can be performed in 

time bounded by a polynomial in the length of the guess, 

the length of guess itself may not be bounded by any 

polynomial in the length of the string being verified. In 

fact, a language L has a verification system if and only if 

L is recursively enumerable. 

3.3.2 . Polynomial-Bounded Verification 

Systems and Membership in 1lJO 
· If F is a verification system for L, then F is said 

to be poZynomiaZ(-Zength)-bounded if there is a polynomial p 

such that for each string xEL there is a string w such that 

iw~p(ix) and F(w)=x. That is, F is polynomial-bounded if 

there is a polynomial upper bound on the lengths of shortest 

derivations of strings in L. 

LEMMA 3.3.2.a. 

Language L is a member of nf if and only if L 

has a polynomial-bounded verification system . 

Proof 

Suppose L£.1?JD· and let M be a .p(n)-time -bounded 

acceptor for L. Without loss of generality, it may be 

assumed that whenever M makes a move, there are no more than 

two possible successor states. A machine can be converted 
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to this form without increasing its running time by more 

than a constant factor. A polynomial-bounded verification 

system F for L can then be described in terms of the machine 

M' that computes F. Given input x#y (suitably encoded in 

{0,1}*), M' simulates M on input x. Whenever M makes a 

nondeterministic move, M' consults the next symbol of y to 

determine which choice to make. If M halts in the ACCEPT 

state, then M' outputs x, and if M fails to halt before y 

is exhausted, then M' outputs a, some fixed (short) member 

of L. It is clear that if M' accepts x in p(tx) steps, then 

there is a y of length no greater than p(tx) such that 

F(x#y)=x. Also, M' can be constructed so that it always 

halts in time bounded by q(ty), where q is a fix~d (low-degree) 

polynomial. This is enough to ensure that ·F is a polynomial -

bounded verification system for L. 

Conversely, suppose F is a polynomial-bounded 

verification system for L. Then a nondeterministic 

polynomial-time acceptor for L nondeterministically writes 

the string w on its tape, computes F(w) in polynomial time, 

compares F(w) with the input string x, and, if the comparison 

is successful, accepts the input. Thus Le?£40. ~ 3.3.2.a . 

This lemma confirms the intuitive feeling that 

"guess and verify" as formalized by polynomial-bounded 

verification systems accurately characterizes the computing 

power of nondeterministic polynomial-time acceptors~ 
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3.3.3. Polynomial-Bounded Verification Systems 

and Closure of 1lP Under Complements 

As lemma 3. 2. a. shOlvS ,. the W-complete languages 

are canonical forms of the f vs 1lP question, since if L 

is 1Uf-complete, then f=J'IP if .. and only · if Lt.P . It 

turns out that the complements of the ~-complete 

languages have a similar relationship to the question of 

the closure of nfJ under complements. 
. . 

LEMMA 3 • 3 . · 3 • ·a • 

If L is W-complete, then 12f is closed under 

complements if and onl.y if -.L€12fJ. 

Proof 

If L is 1lf-complete, then Le1LP. Thus if 1/P 
is closed under complements, then ,£e?LQD . 

The proof of the converse is similar to the proof 

of lemma 3.3.a. Suppose Lis ?Z~complete and -.Lt.~. 
Let L' be any language in ?l~. If i~ can be shown that 

-.L 1 e ~' then 7/.R must be closed under complements. 

Since L and -.L are in 1lJC, there are polynomial­

time acceptors Mo and M1 for L and -.£ respectively. Since 

L is nP- complete and LIE f?Jl.P, there is ~ £-oracle machine 

M2 that recognizes L' in polynomial time. A polynomial-

time acceptor M3 for,£' can then be constructed from Mo, 

M1 , and M2 by the method used in the proof of lemma 3.3.a. 

Machine M3 is identical to Mz, except that ~hen Mz enters 

the TEST state, Ma nondeterministically chooses to simulate 
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either N 0 or M1 with M2 's query tape contents - as input. If 

Mo accepts its input, then M3 continues in M2 's YES state, 

and if M1 accepts, then M 3 enters M2 's NO state. This 

simulation continues until M2 halts. If Mz rejects its input, 

then M3 accepts; otherwise, M3 does not halt. It is clear by 

this construction that M3 accepts ~L' in polynomial time, so 

that ,L 'E1/.f. !rll 3.3.3.a. 

COROLLARY 3.3.3.b. 

1lJDis closed under complements if and only i f for 

some (also for every) 17..f- complete language L there exists 

a polynomial-bounded verification system for ,L. 

This corollary is an immediate consequence of lemmas 

3.3.2 . a. and 3 .3. 3.a . It says that one way to attack the 

question of whether or not 1LJO is closed under complements 

is to determine whether or not the complement of some 

nf -complete language has a polynomial-bounded ve·rification 

system. 

3.4. SUMMARY AND DISCUSSION 

The question of the closure of 1/.f under complements 

is an important one, both for its relevance · to the f vs 77f 
question and for its own intrinsic interest. One promising 

approach to this question is through polynomial-bounded 

verification systems. Verification systems are conceptually 

simple, and have an intuitive appeal. They lead to a 

natural characterization of ~(lemma 3.3.2.a.) and to 

an alternate form of the question of the closure of /1f? 
under complements (corollary 3.3.3.b.). 
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As a consequence of corollary 3.3.3.b., the ·question 

of closure of ~ under complements is reduced to the 

investigation of verification systems for the complement 

of any particular '7l.f-complete language. An obv~ous choice 

for this language is TAUTOLOGIES of the propositional calculus. 

The many systems that logicians have proposed for proving 

tautologies are obvious candidates for polynomial-bounded 

verification systems. In fact, almost all of these proof 

systems can be easily made into verification systems, by 

regarding the proofs · as strings over some alphabet and having 

the verification system map a proof into the formula proved. 

If some string does not code a valid proof, the verification 

system maps it into some fixed tautology such as pv,p. For 

most proof systems it is easy to see how to check a string 

to see that it codes a valid proof and find the formula 

proved in polynomial time. All that remains is to check 

the verification systems derived from these proof systems 

to see if they are polynomial -bounded . 

Although no polynomial-bounded verification system 

for TAUTOLOGIES has been found in this way, a number of 

interesting results have been obtained. First, a number 

of proof systems have been proven not to be polynomial­

bounded, and thus can be eliminated from further consideration. 

Second, many of the remaining systems have ~een compared, 

and simulation results have been obtained which show that 

one system is polynomial-bounded only i f another system is 

polynomial -bounded. Thus, attention should b·e concentrated 

-' ,. , '' , ._._ ., ... ,-.,_.,,._,,.,.,_.,_-"""\lt'....,.,.~..wott.,'I...,Y~~·~.I.''I~~~~~!f.:~_'.~~~Vtllttl~rta!~~~-o!Cio.·.20 .......... .,...._,..,..,,. ............... .,. ... _ _ ~,.,. ,.~ .. -~-.,--·---·· 
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on the second sys tern, since it is "at least as powerful" 

as the first system. 

Proo f systems for the propositional calculus will 

be surveyed in chapter 4., and chapter S. follows with the 

lower bound and simulation results. 

.. .. ., 
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4. PROOF SYSTEMS FOR THE PROPOSITIONAL CALCULUS 

This chapter surveys the major types of systems 

that have been prop9sed for proving theorems in the 

propositional calculus. Some of the systems described here 

are specific to the propositional calculus, but others are 

derived from systems that were proposed for the predicate 

calculus. Since the propositional calculus is a subsystem 

within the predicate calculus, any proof system for the 

predicate calculus contains within it a proof system for 

propositional logic. 

Of the systems reported here, some are designed to 

prove tautologies, some are to be used to prove inconsistent 

formulas, and still others can be used to prove both valid 

and inconsistent formulas. All of these systems can be 

regarded as proof systems for tautologies if a proof that 

the negation of a formula is inconsistent is accepted as 

a proof that the formula itself is a tautology. 

The first section of this chapter describes a 

language for the propositional calculus and gives the 

standard definitions and basic results of the theory. The 

next section contains subsections describing each of the 

major types of proof systems that have been proposed for 

propositional logic. The chapter closes with a description 

of how these systems can be made into verification systems 

and some c.oncluding remarks. 

-51-
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4.1. PROPOSITIONAL CALCULUS 

Let B={T,F}. The symbols T and F represent the 

truth values, or propositional constants, true and false, 

respectively . A truth function of n variables is a function 

f:Bn~B, sometimes called an n-ary truth function. 

The basic objects of propositional calculus are atoms 

(propositional variables), which will be denoted by lower-

case letters : p, q, r, etc., and propositional connectives. 

Each connective * has associated with it a nonnegative 

integer n*, called its arity, and an n*-ary truth function 

t*, called its sem.antic function . When the meaning is clear 

from context, the symbol for the connective * is sometimes 

used to denote the semantic function f*. 

A formula is a finite, rooted, ordered, labelled tree 

that either consists of a single node whose label is an 

atom or has some connective * (called its principaZ connective) 

labelling its root and n* formulas (called its principal 

subformulas) as its maximal proper subtrees. Any subtree 

of a formula (including the formula itself) is called a 

subformuZa. Formulas will be denoted by upper-case ietters: 

A, B, c, etc. If A is a formula, then the set of subformulas 

of A is denoted by sub(A), and the set of subformulas of A 

which are atoms, called the atoms .of A, is denoted by at(A); 

Sets of formulas will be denoted by upper-case Greek letters: 

r, 6, e, A, etc. Both sub and at may also be applied to 

sets of formulas. 
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If a is a set of · atoms, then a truth assignment 

is a function T: GL+B. If n is the cardinality of 

GL , then there are zn distinct truth assignments to LL . 
Given any ordering of ll =<~ 1 , .. . ,pn>' there is a one-to-one 

correspondence between truth assignments to a and n-tuples 

from Bn given by T+-+<T(p 1 ) , ... _,-r(pn)>. It will be convenient 

to assume that any set of atoms has a natural ordering 

(lexicographic, for instance) so that this correspondence 

can be exploited. 

The truth function expressed by formula A is an 

~-ary truth function fA, where n is the cardinality of 

at(A)=<p 1 , •.• ,pn>. The function fA is defined inductively 

on the subformulas of A as follows: 

1) If Cis pj, then fc(x 1 , .•• ,xn)=xj 

2) If the principal con~ective of C is * and the 

principal subformulas of Care s1 , ... ,B *'then 
n 

* fc(xl, .•• ,xn)=f (fBl(xl, .•• ,xn), ••• ,fB *(xl, ••• ,xn)). 

n 

If T is a truth assignment to some set of atoms ~ 

then T gives a function from formulas A for which at(A)s a 
into B, defined by 't'(A)=fA(T). Thus, truth assignments 

extend to formul~s in a natural way. 

Truth assignment T satisfies A if T(A)=T, and 

faLsifies A if T (A) =F. Formula A is sa tis fiab 'le (.also 

aonsistent) if there is a truth assignment that satisfies A, 

and A is fa'lsifiabZe if there is a truth assignment that 
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falsifies A. If A is not satisfiable, then A is said to 

be unsatisfiab le (also inconsistent). If A is not falsifiable, 

then A is valid {also a tautology). A formula must be either 

satisfiable or falsifiable, and a formula that is both 

satisfiable and falsifiable is called contingent . Note that 

A is valid if and only if fA is the constant function T 

( i .e. every truth assignment makes A true). Dually, A is 

inconsistent if and only if f A i s the constant function F 

(and every truth assignment makes A false). 

A set of formulas .r logica lly implies formula A 

(denoted rF=A) if every truth assignment to at(r u{ A}) that 

does not falsify any formula in r satisfies A. Note that 

this definition says that for f;$ (the empty set), ¢f=A 

(usually shortened to F=A) if and only if A is a tautology. 

Formulas A and B are l ogical ly equ ivale nt (denoted A-B) if 

A f=B and Bf=A. 

If A1 , ... ,Ak are formulas and q1 , ... ,qk are distinct 

atoms, then the substitution a 
Al, ••• ,Ak 

; 

ql, •.• ,qk 
is the mapping 

from formulas to formulas such that a(B) (usually written 

Ba) is the formula obtained by (simul,taneously) replacing 

all occurrences of each q. in B by the corresponding A .• 
~ ~ 

The result of this substitution is necessarily a formula, 

since a formula can appear anywhere that an atom can appear 

in a formula. The formula Ba is said to be an instance of 
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B (under a). The application of a substitution to a set of 

formulas results in the substitution being applied separately 

to each formula. If r is a formula or set of formulas, then 

a renaming for r is ·a special kind of substitution 

rl, ... ,rk 
p = , where {r1 , ... ,rk} are distinct atoms disjoint 

ql, ... ,qk 

from the set (at(r)-{q1 , .. . ,qk}) . If pis a renaming for A, 

then there is a suitable reordering of the arguments of fA 

such that fAp=fA (reordered). 

The connectives most commonly encountered are 

, (negation), v (disjunction), & (conjunction), ~ (implication), 

and .:: (equivalence'). For completeness, all nontrivial 

connectives of arity no greater than two will be introduced. 

The two nullary connectives are T (where fT=T), and F 

(where fF::;:f). The unary connective is,, where ,CT)=F and 

,CF)=T. The other three unary truth functions are the two 

constant functions (which can be represented by T and F) 

and the identity function. The .binary connectives and the 

table of values for their semantic functions are given in 

table 4.1.i. Notice that ten of the possible sixteen binary 

truth functions are present. The six missing functions are 

the two constant functions (which can be represented by T 

and F), the two projection functions, and the tl'IO negated 

projection functions (which can be represented using ,) . 

-.. -..-.. --·--·--,.,.~-. ------
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X1 xz * : v c - & ¢ 

T T T T T T T F F F F F 

T F T T F F F T T T F F 

F T T F T F F T T F T F 

F· F F T T T F T F F F T 

} 
TABLE 4.1.i. 

Binary Connectives and their Semantic. Functions 
·~ 

I 
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It will also prove convenient to introduce four 

connectives of arity greater than two. For each n~O the 

n - ary connectives vn' En' " <l!n' and sn have the following 

semantic functions: 

for n ~ l: 

vn (xl, . . . ,xn) = F if and only if xl= .. . =xn~=F. 

E (xl' . .. ,x ) = F if and only if the number of X .=F is odd . n n 1,. 

& (x1 , .. . ,x ) = T if and only if xl= ... =xn=T. n . n 

S (x1 , •.. ,x) = T if and only if the number of X . =T is odd. n n 1,. 

Vo=So=F 

Eo=&o=T. 

Note in particular that Vz=v, Ez==, &z=&, Sz=1, and 

and S can be represented by iterated formulas n 

in v, =, &> and ~ respectively. For example, 

V (x , •• • ,x ) = v (x1 , v (x2 , .. . v (x 1 ,x ) . .. ) ) . Since the n n n- n 

semantic functions for v, :: , &, and~ are commutative and 

associative, the order of the arguments and their 

parenthesization are irrelevant. Thus V, E, &, and S 
(subscript n will be dropped whenever this causes no confusion) 

are well-defined \o~hen applied to sets. 

A set K of connectives is adequate if for every truth 

function e there is a formula with only connectives from K 

that expresses e. It can be shown that, for connectives 

of arity no greater than two, there are 26 minimally adequate 
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.sets of connectives (I, +, -.v, -.c, ,:::>, .,&, -."$, -.¢, Ti>, T¢, 

v=~, and &=~) and 4 maximally inadequate sets of connectives 

Formulas in nullary, unary, and binary connectives 

are customarily represented by strings in a fully-parenthesized 

infix notation. For example, 

, 
I 
p 

I 
¢ 

~ 
q 1' 

& 

, 
I 
p 

is represented by (((-.pv-.q):::>,(q¢r))&((-.p~r)=-.(q+q))). 

A literal (represented by lower-case Greek letters: 

~' ~' etc.) is an atom p or the negation of an atom -.p. The 

complement of ~ (denoted ~) is -.p if s is p, and it is p if 

s is -.p. A disjunction is a formula whose principal 

connective is vn' and a conjunction is a formula whose 

principal connective is &n· A clause is a set of literals, 

where the implied connective is disjunction. The implied 

connective for a set of clauses is conjunction. A set of 

clauses is sometimes said to be in conjunctive normal form 

(CNF). Every formula is logically equivalent to some formula 

in conjunctive noTmal form. 

I 
Jiibe'ft!il!!l!lililililtliiiSil' llliiiiililiiiiiiD!iMii*"iiiiW"iliiiie'i:iiriliiiiiiiiij !iiiiiii2imtiiiiiiiiiliii0i0;;;;;;;;;:~==='"~~--- --~--------· . 
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The following basic facts about formulas will prove 

useful: (''iff" abbreviates "if and only if11
.) 

1. l==A iff ,A is inconsistent. 

2. Al==B iff I=A=> B . 

3 . .,.,A-A. 

4. If r F=A, then ro I= A<r . 

5. If fi=B 1 , .. . ,ff=Bn, and {B 1 , ... ,Bn}I=A, then fi=A. 

6. If r f:.;A , then r u {B} I= A. 

7. AI=T iff I=; A. 

8. AF.=F iffA is inconsistent. 

9. A
1

, ••• ,A I=B iff I=(& (A
1

, ••• ,A )=>B). n n n 

4.2. PROOF SYSTEMS 

Any · formula is either valid, inconsistent, or 

contingent, and the purpose of proof systems is to determine 

in which of these three classes a given formula lies. Since 

A is valid if and only if ,A is inconsistent, any procedure 

which distinguishes either tautologies from falsifiable 

formulas or unsatisfiable formulas from satisfiable ones is 

adequate to perform this three -way partition of formulas. 

S~ch a procedure can be built using a proof system for 

verifying valid or inconsistent formulas aqd truth assignment 

evaluations for verifying falsifiable or satisfiable formulas. 

Most proof systems presented in the literature on 

mathematical logic operate on restricted classes of formulas, 

such as formulas containing only certain connectives, or 
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formulas of certain restricted forms (e.g. sets of clauses). 

To show that such a system has general applicability, then, 

one must show that the restricted · class of formulas is 

adequate to express all truth functions, and one must also 

show how to translate an arbitrary formula into an equivalent 

one in the restricted class. References in the following 

subsections describing the major families of proof systems 

indicate only where descriptions of these systems can be found 

in the literature, and do not necessarily cite original sources. 

4.2.1 . Frege-type Systems 

One of the most important classes of proof systems 

is built around the ideas in a system of Frege [Frege 1879) . 

In systems of this type, certain formulas of simple form, 

called axioms, can be recognized as tautologies by insp~ction. 

Then certain rules are used to derive other formulas from the 

axioms and previously derived formulas. The rules are such 

that if the original formulas are valid, then the derived 

formula is also valid. If the axioms and rules of such a system 

are chosen properly, then every tautology will have some 

derivation. In this case , the system is said to be compZete. 

A proof that some formula A is a tautology is a derivation of 
A from the axioms according to the rules of the system. 

There are many proof systems in the literature that 

follow this general outline. They can all be treated 

together, however, under the general concept of Frege system, 

which is given a precise definition below. 
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A ru~e of inference is a pair <f,A>, written R=f~A, 

where r is a (possibly empty) finite set of formulas and A 

is a fo rmul a . Ru 1 e R is s aid to 'be a r u ~ e in K i f A and the 

formulas in r contain only connectives from the set K. Rule 

R is sound if f!=A. By fact 4. at the end of section 4.1., 

if R is sound, then rcr I=Acr, for any substitution ·a. If R 

is sound and r=¢, then all substitution instances of A are 

tautologies, and R is often called an axiom(scheme). If 

R={A 1 , . .. ,Ak}~B is a rule of inference and c1 , ... ,ck,D are 

formulas, then Dis inferred from c1 , ... ,Ck by R if there 

If R is sound and Dis inferred from c1 , . .. ,Ck by R, then 

c1 , ... ,Ckf=D. 

An inference system is a pair I=<K,d(>, where K is 

a set of connectives, and Jt is a finite set of sound rules 

of inference in the connectives K. A derivation in I of 

formula B from the set of formulas r is a sequence 

D=<A 1 , ... ,An> of formulas inK such that for each i, lsisn~ 

Ai is inferred from formulas in fu{A 1 , .•• ,Ai-l} by some rule 

in R , and A =B. n The not at ion r 1- IA via D means D is a 

derivation of A from r in inference sys tern I, and r 1-IA means 

there is a D such that r 1- IA via D. When I is clear from 

context, ff-A will be used for fi-IA. 
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Since F= is a transitive relation and the rul es of I 

are sound, it follows that r t=A whenever r I- IA. System I 

is complete if ~IA for every tautology A in the connectives 

K. Sys tern I is imp Z. iaationaZ Zy comp Ze te if r ~ 
1

A for every 

r and A in the connectives K for which f~A. 

If D is a derivation, then Da is the sequence of 

formulas obtained by applying a to each formula in D. It 

is useful to observe that, since rules of inference are 

transparent to substitution, if fl-rA via D and if a is a 

substitution in K, then fai-IAa via Da. 

A Frege system is an implicationally complete 

inference sys tem F = <K ,/R > , where K is adequate. An 

s-Frege syst e m (Frege system with substitution) is a Frege 

system F=<K,~> whose derivations allow inferences according 

to the rules in (as in a Frege system) and also according 

to the substitution rule: i f a is a substitution in K, then 

Aa can be inferred from A. Note that the substitution rule 

is not even sound, in general, so that an s-Frege system is 

not implicationally sound. (For example ,p is obtained 

from p by the substitution rule, but is certainly not a 

logical consequence of it.) In a derivation of a tautology 

from f=$, however, all formulas in the derivation are 

tautologies. Since . Ao is valid whenever A is valid, then, 

the substitution rule does give valid inferences in this 

special case. Therefore s-Frege systems will be used only 

for deriving tautologies from no hypotheses. 

l_._ ... ,.. ....... -----· ·· -- --······· ··--···~----·-----~,. f.Cd - . ' ~ ~ 7'tr $Ct4CIIbtct\IW .. _. 
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The notion of a Frege system is intended to describe 

the essential characteristics of the propositional fragments 

of the deductive systems found in most textbooks on 

mathematical logic. Although Kleene calls such systems 

"Hilbert- type sy sterns", the first was probably Frege ~ s 

original system [Frege 1879], which had six axiom schemes 

and the rule modus ponens:{p,(p~q)}~q. A very common system 

de·scribed by Mendelson [Mendelson 1964] is the system M=<K ,~ > , 

where K={, . ~ }, and /L={~Cp~Cq~p)) ,+((p~Cq~rn~CCp~q)~Cp~r))), 

+((,p~,q)~(q~p)) ,{p,p~q}+q}. Other Frege systems can be 

found in [Hilbert & Ackermann 1950], [Kleene 1952,1967], 

[Mendelson 1964), and [Shoenfield 1967]. 

The idea behind s-Frege systems is that once a theorem 

has been proven, substitution instances of it can be used as 

hypotheses (effectiyely, as additional axioms) to prove 

further theorems. Most logic texts use this technique in 

their informal development of propositional theories. 

Although there is an effective procedure for eliminating all 

uses of the substitution rule in a Frege system derivation 

(by re-deriving each substitution instance of a theorem), 

this procedure could potentially cause an exponential increase 

in the length of the resulting derivation. 

Since the set of connectives for a Frege system must 

be adequate, and since the system must be complete with 

respect to those connectives, Frege systems have the kind 

of general applicability described in the beginning of 

section 4.2. There are mechanical procedures for translating 
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any given formula into a logically equivalent formula in ~ny 

adequate set of connectives. With such a procedure for 

translating formulas into its connectives, then, a Frege 

system becomes a complete proof system for all formulas. 

4 . 2.2. Natural Deduction 

A consequence of the implicational soundness of Frege 

systems is the Deduation Theorem: if f ,Al-B) then ff."A=>B", 

where "A=>B" is any formula logically equivalent to (A=>B) in 

the connectives of the Frege system. In the ·development 

used in most logic texts, the deduction theorem is difficult 

to prove, and is used to show the completemess of the system. 

The important thing to note about this _theorem, however, is 

that it provides a new kind of inference rule. This rule · 

allows one to infer something about the derivability of a 

certain formula from a certain set of formulas by showing 

a (possibly easier) derivation of a slightly different formula 

from a slightly different set of hypotheses. Thus, there is 

the potential, at least, for much shorter derivations by 

appealing to this rule. 

This observation has led to the development-of proof 

systems from Frege systems and the deduction theorem which 

appear to yield more "natural" proofs (see (Kleene 1967], 

[Fitch 1952], [Thomason 1970]). These systems, which are 

often called natural deduatio~ systems, can all be cast in 

the following more general framework. 
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A line is a pair L=f~A, where r lS a finite set of 

formulas and A is a formula. Under any truth assignment, L 

takes on the same truth value as C&(r)~A), so that the 

concepts of satisfiability, validity, logical consequence, 

etc., for lines are well-defined. Substitutions apply to 

lines in the natural way, and if~ is a set of formulas, then 

the restriction of L to the environment ~ is the line 

~L=(~uf)rA. Substitutions and restrictions can also be applied 

to sets of lines. If A is a set of lines, L is a line, r is 

an environment (set of formulas), and a is a substitution, 

then observe that AF=L implies that rAai=fLo. A rule in a 

natural deduction system is a pair R=A~L, where A is a set 

of lines, and Lis a line. RuleR is sound if Ai=L. 

Line L' is inferred from the set of lines A' by rule R if 

there are a substitution a and an environment r such that 

A' =fAa anJ L'=fLo. A natural inference system is a pair 

N=<K,O(>, where K is a set of connectives, and ~ is a 

finite set of sound natural deduction · rules . The definitions 

of derivation , completeness, and implicational completeness 

for such systems are analogous to those for Frege systems, 

with lines taking the place of formulas. A proof of the 

validity of A is a derivation of the line ~A. A natural 

deduction (ND) system is an implicationally complete 

natural inference system with an adequate set of connectives. 

By analogy to s-Frege systems, a-ND systems are defined to 

be ND systems whose derivations also allow applications 

of the substitution rule . As with s-Frege systems, s-ND 
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systems are only used ·in derivations with no hypoth~sis lines. 

One way of deriving ND systems is by adding the 

deduction theorem to a Frege system. If F is a Frege system, 

then if each formula A in each rule of F is replaced by the 

line ~A, a set of ND rules is obtained. To obtain a complete 

ND system, add the rules prq -+ ~"p:;,q" (deduction theorem), 

+prp, and prq + p,r~q. To see that this system N is 

implicationally complete, suppose r11-A 1 , .•. ,rni-An f= 6.1-B. 

derivation D in the system F (which is implicationally 

complete) such that "&(r1 )::>A 1", ... ,"&(fn):;,An" 1-F "&(l~):;,B" 

via D~ where the conjunctions and implications are suitably 

represented in the connectives of F. In particular, 

Then, using the rules copied from F, a derivation D' can 

be constructed by changing each formula C in D into the line 

1-C. For l~i~n, the derivation D. can be constructed by 
1-

repeated application of the deduction theorem rule, so that 

r.~A. I-N 1-"&(f.):;,A." via D .• Let DJ be a derivation such 
1- 'Z. 1- 1- 'Z. 

that p,"p:;,q" I-F q via D:;,, so that C,"C:;,B" 1-F B via D:;,~:~· 

Then, by changing each formula A of D:;,C,B to the line r,ct-A, 
p,q 

a derivation f) is obtained, where f ,CI-C , r ,CI-"C:;,B" I- f ,C~B 

via 8. By the last two rules , r,c~c can be derived in a 

single step, and f,CI-"C:;,B" can be derived from ff-"C:;,B" in a 

single step, giving a derivation D of r,c~B from ff-"C:;,B 11
• 
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Using this idea repeatedly, a derivation on of 6~8 from 

"&(6) =>8 '• can be obtained. Putting this all together, the 

derivation D1 .. . DnD'D" is a derivation of d~B from 

Another way to derive ND systems is to devise two 

rules for each connective: one for introducing it in the 

consequent formula of the line concluding the rule, and one 

for eliminating it. For example, the deduction theorem 

gives a rule for =>-introduction and modus ponens is 

:>-elimination. The following table gives possible 

introduction and elimination rules for some common 

connectives. 

connective 

, 

v 

& 

introduction 

t-p -+ t-pvq 

t-p -+ t-qvp 

pt-q ..... t-p =>q 

t-p, t-q ..... t-p&q 

pt-q, qt-p -+ t-p:q 

elimination 

1-p, 1-p:::>q ..... 

1-p&q ..... 

t-p&q ..... 

t-p:q, t-p ..... 

t-p:=q, t-q -+ 

1-q 

t-p 

t-q 

t-q 

1-p 

Some authors consider the anteaedent r of the line 

L=f~A to be a sequence, rather than a set, of formulas. In 

their formulations of natural deduction systems, rules only 

operate on formulas at the tail of this sequence. This 

convention can often save some writing in pencil-and-paper 

use of the system, since environment formulas, which usually 
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do not change from one line of a derivation to the next, need 

not be recopied in each line of the derivation. This saving 

is obtained, however, at the expense of a restriction on the 

allowed form of derivations. 

Again, as with Frege systems, the existence of 

procedures for translating formulas into equiva~ent ones in 

any adequate set of connectives insures that any ND system 

has applicability to all formulas . 

4.2.3. Sequential Calculus and Tableaux 

The logical next step (although historically it came 

earlier) in successive generalizations of Frege systems is 

to allow sets of formulas to the right of t he r-sign as well 

as to the left. The symmetry of these systems leads to 

tableau methods that provide a systematic method of 

searching for a derivation. According to [Kleene 1967], the 

first of the se systems was introduced by Gentzen in 1932 and 

1934-35, with some preliminary work having been done by 

Hertz in 1929. Since then refinements and modifications to 

Gentzen's system have appeared in the work of Beth (1955) 

Hintikka (1955), Schutte (1956), and Kanger (1957) . . These 

refinements culminated in the very elegant "analytic tableau" 

method of [Smullyan 1968]. The two types of systems that 

will be described here are a generalization of the Gentzen-

type systems as described in [Kleene 1967] and Smullyan's 

analytic tableaux. The intermediate systems are mostly 

notational variants of Gentzen systems, and could easily be 

formalized as such. 
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4.2.3.1. Gentzen-type Systems 

A sequent is an ordered pair S=6~r of sets of 

formulas. (Note: Kleene uses ~ in place of r and a 

horizontal - line in place of~. The present notation is used, 

however, for uniformity with the closely related ND systems.) 

Under any truth assignment s . takes on the truth value of 

C&(6)~V(r)), so that the concepts of satisfiability, validity, 

logical consequence, eta., for sequents are well-defined. 

The empty sequent "t-" is always false, and is not allowed. 

where the A. and e. are variables whose values range over 
-z.. -z.. 

sets of formulas and 6 and r are particular sets of formulas. 

An instance of such a scheme is obtained by applying a 

substitution a to the formulas in 6 and r and then 

consistently replacing each of the variables by a set of 

formulas. For example, the sequent 

(rvt),s,(p::~q),(p::~r)f-((p~q)&(p~r)),(rvt),s is an instance of 

the scheme r ,p ,qr (p&q) ,r. The set J of sequent schemes 

Zogiaa"LZ.y impZ.ies schemeS (written~ F=S) if every 

instance of J logically implies (in the usual sense) the 

corresponding instance of s (i.e. under the same substitution 

and replacement of_ variables). 

A sequent rule is a pair R= .J~s, where J · is a 

set of sequent schemes -and Sis a sequent scheme. RuleR 

is sound if J I=S. A sequent inferenae system is a pair 

G=<K,tf(> where K is a set of connectives and If{ is a 

finite set of sound sequent rules in the connectives K. 
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The notions of derivation, completeness, and implicational 

completeness for sequent inference systems are defined in 

an analogous way to Frege systems, with sequents taking the 

plac~ of formulas. A derivation of the sequent ~A is a 

proof of the validity of A, and a derivation of At proves 

A inconsistent. Finally, a sequent system is an 

implicationally complete sequent inference system S~<K,dt > , 

where K is adequate. 

Gentzen's system, as described in [Kleene 1967), 

had two rules for each connective: one for introducing it 

on the right, or aonsequent, side of a sequent· ("introduction"), 

and one for introducing it on the left, or antecedent, side 

(
11elimination"). Although such rules could be devised for 

any connectives, the rules for the ~ive connectives Kleene 

considered are given below. 

connective introduction rule 

, {il,pr r} ... ill-,p,r 

v {M·p ,q ,r} -+ M· (pvq), r 

:::> {ilppl-q,r} ... ·M· (p=>q) ,r 

& { il~ p , r . M-q ,r} ... ill- (p &q) , r , 

- {il,pt-q,r . il,ql-p,f} -+ ill- (p :q ) , r , 
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connective elimination rule 

, UH·p ,f} + f1,,pl-f 

v {6,pl-f 6,ql-f} + 11 , (p v q ) 1- r 

{61-p,r 6,ql-f} + 11, (p=>q) 1- r 

& {6,p,ql-f} + 11 , (p &q) 1- r 

{6,p,qt-r 61-p,q,r} + 11, (p :=q) 1- r 

With the addition of the axiom rule, +6,p~p,r, any 

set of pairs of these introduction and elimination rules 

(or the appropriate rules for o~her connectives) gives a 

complete sequent inference system for the connectives 

concerned. If the set of connectives is adequate, then the 

system is called a basia Gentzen system. The fact that 

basic Gentzen systems are ~ot implicationally complete arises 

from the fact that introduction and elimination rules are 

anaZytia. That is, every formula in any sequent on the lef~ 

side of a rule also occurs (possibly as a subformula) in the 

sequent on the right side of the rule. Thus, no sequent can 

be derived which does not contain as subformulas all of the 

formulas in the sequents from which it was derived. 

Two rules which do.not make the system implicationally 

complete, but nevertheless seem to allow for shorter 

derivations in some examples, are the thinning rules: 

thinning introduction: 61-f + 6t-p,r 

thinning elimination: M· f + 6,pt-f. 

Systems with an introduction and an elimination rule for each 

connective, the axiom rule, and the two thinning rules will 

be called Gentaen systems with thinning. 
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An analytic Gentzen-like system for deriving 

inconsistent sets of clauses~ called the Gentzen system for 

sets of clauses, can be defined as follows. The axiom rule 

of this system is ~6,~,~r (where ~ is any literal), which 

replaces the axiom and ,-elimination rules of basic Gentzen 

systems. The conjunction elimination rule is 

clauses. Note that if s. consists of a single clause c, then 
t. 

&Cc) is the same as C itself. The disjunction elimination 

are clauses. The disjunction VC~) is considered to be the 

same as ~. for any literal ~- A derivation in this system 

of the sequent S~ constitutes a proof of the inconsistency 

of the set of clauses s. The system is complete in the sense 

that every inconsistent set of clauses has a proof. This 

system may also be augmented to include the thinning 

elimination rule. 

Basic Gentzen systems become implicationally complete 

with the addition of the aut rule: 

{6~p,r ; A~pr0} ~ 6,Arr,e. 

This rule is not analytic, since p appears on the left but 

not on the right. Basic Gentzen systems with the cut rule 

added, called Gentzen systems with cut, are examples ot 

sequent systems. Note that these systems do not need the 

thinning rules, since the same effect can be achieved using 

the cut rule. 



1 

' 

\ 

( 
! 

l 
! 

' 

I. 

i 
J 

\ 

r 
l 
J 
I 

! 
I 
I 
i 

I 
' 

-73-

In [Kleene 1967] sequents are pairs of sequences 

(rather than sets) of formulas, so rules must be introduced 

to allow such structural operations as reordering lists, 

introducing multiple copies of formulas, and eliminating­

duplicate copies of formulas. Such operations detract from 

the ·basic elegance of Gentzen systems, and will not · be 

discussed. 

In [Kleene 1967], derivations in Gentzen systems are 

trees with sequents at the nodes. Two sequents are adjacent 

if the second comes from the first (and possibly others) by 

the application of one rule. The tree format means that 

(in principle, at least) if a sequent S is used more than 

once in a derivation, then separate copies of the derivation 

of s must be supplied for each use of s. This obvious 

wastefulness is eliminated by letting derivations be sequences, 

rather than trees, of sequents. 

4.2.3.2. Analytic Tableaux 

Although it may be wasteful to re-derive a sequent 

each time it is used, a tree format for derivations in basic 

Gentzen systems allows for economies of a different sort. 

In derivations in Gentzen systems, formulas must be copied 

over many times as other formulas are being built up using 

the introduction and elimination rules. Smullyan 

[Smullyan 1968] reduced this copying with his method of 

analytic tableaux. Information about the sequents is 

distributed along the branches of the derivation tree, and 
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at any step the only formulas that must be written down are 

those that have changed from the previous step. 

Smullyan's system uses the connectives ~,&,v, and~, 

although it is not hard to see how to extend it to include 

-any other connectives. According to Smullyan, an . analytia 

tableau for a formula F is a rooted labelled binary tree 

constructed as follows: 

1. F is placed at the root. 

2 • For any node c in the tableau, 

a) If c is .,.,s, then B may be appended to the 

end of any branch (a branah is a path from 

the root to a leaf) through c. 

b) If c is of type a: 

i.e. if c is A&B ' Ctl is A, and Ct2 is :B; 

or c is , (AvB), Ctt is ,A' and Ct2 is ,s; 

or c is ,(A~B), C1} is A ' and Ct2 is ,s 

then either ex 1 or Ct2 may be appended to the 

end of any branch through c. 

c) If C is of type 8: 

i.e. if c is - ,(A&B), s 1 is ,A, and th is .,s ; 

or c is AvB , 81 is A' and 82 is B; 

of c is A~B , 81 is ,A, a,nd 82 is B 

then any branch through C may be extended by 

adding bqth s1 and s2 as new branches. 

3. Any branch that contains both a formula c and its 

negation , C is said to be alosed. A tableau is 

alosed if every branch of it is closed. 
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As an example, a closed tableau for (,p~q)&,(pvq) is: 

(-,p~q)&,(pvq). 

I 
,p~q 

~ 
-r-rp q 

I I 
p , (pvq) 
I · I 

,(pvq) . ,q 

I 
1p 

a formula F is unsatisfiable if and only if there is a closed 

analytic tableau for F. 

There is a direct correspondence between analytic 

tableaux and derivations in basic Gentzen systems. It is 

not hard to see that Smullyan ' s a-rules are derived ,from 

Gentzen's &-elimination, v-introduction, and ~-introduction. 

while the B-rules come from &-introduction, v-elimination, 

and ~-elimination . . The rule for double negations replaces 

both -,-introduction and ,-elimination . . The definition of a 

clos~d branch corresponds to Gentzen's axiom rule. With 

these correspondences, it is not hard to see how a closed 

analytic tableau for A corresponds to a basic Gentzen 

derivation of the sequent A~. 

Analytic tableaux for sets of clauses are constructed 

as follows: 

1 . The CNF formula is placed at the root. 

2. A single branch is constructed from the root, 

containing each of the clauses. 
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3. For any clause C={~ 1 , ... ,~n}' any branch of the 

tableau may be extended by adding all of ~ 1 , ••. ,~n 

as new branches. 

4. Any branch which contains a literal ~ and its 

complement ~ is aZbsed. 

Analytic tableaux provide an elegant proof system 

that is satisfying to apply on simple examples. This 

e-legance comes mostly from the restriction of the system to 

tree-format derivations, however, and as the results of 

Chapter 5 will show, this restriction leads to very in 

inefficient derivations in certain cases. 

4.2.4. Consensus and Resolution 

An operation called aonsenaua was introduced by 

Quine [Quine 1955] as a method to help find the minimum 

rlisjunctive normal form for a formula. It was adapted by 

[Dunham & North 1962] as a computer method for establishing 

the validity of formulas in disjunctive normal form. 

The dual of consensus is resolution, which was 

introduced by Robinson [Robinson 196Sa] as part of a proof 

method for the predicate calculus. It is simplest to regard 

a aZauae to be a set of literals, where the implied 

connective is disjunction. The notation C~ is used to mean 

the clause (Cu{~}), an~ CD means (CuD). The empty clause 

is denoted by 0 and, consistent with the convention for Vo, 
it has the truth value F. Two clauses are said to alaah if 
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one contains exactly one literal whose complemint is in the 

other. If two clauses clash, the~r resolvent is defined 

to be the clause obtained by removing the clashing pair of 

literals from their union. That is, the resolvent of c~ and 

D~ i~ CD. The resolvent of a pair of clauses is a logical 

consequence of their conjunction. A resolution derivation D 

of a clause c from a set of clauses s (denoted Si7rC uia D) 

is a sequence of clauses, each of which is either a clause 

from S or a resolvent of two previous clauses in the sequence. 

If Dis a resolution derivation of C from s, then SF=C. 

Robinson's completeness theorem says that if S is inconsistent· 

then s~ o. Thus, resolution is a complete system for proving 
r 

the inconsistency of formulas in conjunctive normal form. 

Since there is an effective procedure .to translate any formula 

into a logically equivalent one in CNF, then, resolution can 

be used as a general proof system. 

Resolution derivations can be regarded as trees or 

as directed acyclic graphs {dags). In either case, the nodes 

are labelled \vith clauses, and the two edges into any clause 

C come from the two clauses (called the parent clauses) 

which clashed to form C as their resolvent. If C~ and D~ 

clash to form the resolvent CD, then the edge from c~ to CD 

is labelled ~' and the edge from D~ to CD is labelled~-· In 

the dag formulation, there is one node for each clause in 

the linear-format derivation, but in the tree formulation, 

the restriction of out-degree no greater than one requires 

that the entire derivation of each clause must be repeated 
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each time the clause is used. If there is a path in a 

derivation from C to D, then C is an ancestor of D and D is 

a descendant of C. If C is a parent of D, then D is an 

immediate descendant of c. The leaves (clauses with no 

ancestors) are the original clauses, and the roots (clauses 

with no descendants) are the derived clauses. 

4.2.4 .1. Restricted Forms of Resolution 

Various attempts at devising efficient resolution­

based decision procedures (i.e. procedures for finding 

derivations) have led to a number of restrictions to the 

resolution rule that still allow the resu.lt.ing proof 

procedure to be complete. 

The first of these appeared before resolution 

[Davis & Putnam 1960), but is actually a restricted resolution 

procedure. In resolution terminology, the Davis-Putnam 

procedure works as follows: Given a set of clauses S', let 

s=s 1 , and 

Choose an atom p that appears in s. Form all 

possible resolvents of clauses that clash on 

the literals p and p. If 0 is formed, S' · is 

inconsistent. If not, add the new resolvents 

to s and delete from s all clauses that contain 

p or p. If s is empty, s 1 is consistent. 

Otherwise repeat this procedure for a new atom 

p. Continue until S 1 is found to be either 

consistent or inconsistent. 

A 
4~-~Mm~~~~~~~~~mR~~------------------
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The procedure is guaranteed to terminate, since at each step 

all occurrences of some atom p are removed from s. The 

number of new clauses generated at any step could potentially 

be very large, though. The subsumption rule can be added to 

the Davis-Putnam procedure to cut down this proliferation of 

clauses somewhat. 

If clause C1 is a subset of C 2 , then C1 is said to 

subsume C2 • Since C2 is a logical consequence 6f C1 , C2 

can be discarded. The subsumption rule then states: delete 

from S any clause that is subsumed by some other clause in 

S. Inco rporation of the subsumption rule into the Davis­

Putnam procedure can lead to much shorter proofs. 

The Davis-Putnam procedure produces resolution 

derivations of a very restricted form. A Davis-Putnam 

derivation is completely determined once the original set 

of clauses and the order of elimination of the atoms are 

specified. When the derivation is viewed as a dag, the 

sequence of atoms (literals with ,'s removed) labelling the 

edges along any path is a subsequence of the elimination 

sequence. Furthermore, since every permissible resolvent 

must be formed, Davis-Putnam derivations often contain 

clauses which make no contribution to the derivation o f 0 

(i.e. are not ancestors of 0). 

A relaxation of these restrictions was given by 

Tseitin [Tseitin 1968}, who defined a resolution derivation 

to be regular if, when it is viewed as a dag, no path contains 
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the same edge label twice or any literal from the clause at 

the end of the path as an edge label . That is, a derivation 

is not regular whenever some literal is removed from· a clause 

in passing from a parent to resolvent, and then that same 

literal is re-introduced into a descendant clause . Every 

Davis-Putnam deri vation (either with or without subsumption) 

is regular. Conversely, there are many. regular resolution 

derivations that cannot be generated by the Davis-Putnam 

procedure, either with or without subsumption. 

The regularity restriction is a ·natural one, and 

would intuitively s eem to lead one toward shorter derivations 

rather than longer ones. As Tseitin himself puts it 

[Tseitin 1968, p.ll8] 

" The regularity condition can be interpreted as 
a requi rement for not proving intermediate 
results in a form stronger than that in which 
they are later used. (If A and B are disjunctions 
such that A=B, then A may · be · considered · to be 
.the stronger assertion of the two; if the 
derivation of a disjunction containing a 
variable ~ involves the annihilation of the 
latter, then we can avoid this annihilation, 
some of the disjunctions in the derivation being 
replaced by "weaker" disjunctions containing ~. 
In addition to the appearance of~' the 
disappearance of other variables is possible in 
the course of such a rearrangement.)" 

As the results of Chapter 5 will show, the construction 

described by Tseitin for removing irregularities from a 

derivation can be used to remove all irregularities from a 

tree - form resolution derivation without any increase in the 

size of the de rivation. The situation for linear or dag-form 

derivations is less clear, though, since in this case Tseitin's 

i· 
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method of eliminating irregularities could produce greatly 

lengthened derivations. On the other hand, it remains an 

open question whether or not there exists an inconsistent 

set of clauses whose short~st regular resolution derivation 

is longer than its shortest non-regular derivation. If not, 

then as far as lengths of derivations are concerned, 

regularity would be no restriction at all. 

In connection with efforts at predicate calculus 

theorem proving, numerous resolution strategies have be~n 

devised which, at the propositional calculus level, amount 

to restrictions on the allowed form of resolution derivations. 

These strategies include unit preference (Wos et at. 1964]~ 

set of support [Wos et al. 1965]~ semantic · resolution 

[Slagle 1967), linear resolution [Loveland 1970], and linear 

resolution with merging [Anderson & Bledsoe 1970]. Also of 

interest is Robinson's hyper-resolution [Robinson 1965b], 

based on a generalization of the resolution rule. 

Perhaps the most successful of these restricted 

resolution theorem provers for the propositional calculus 

is Cook's Method I [Cook 1972b]. The method, which is 

motivated by the method of semantic trees (see subsection 

subsection 4.2.5.), can best be described by~ program . 

The input to this program is a set of clauses s. The 

program uses a stack of literals L~<~ 1 , ••• '~n> and auxiliary 

variables S 1 and S 2 for sets of clauses, c for a clause, and 

~ for a literal. In addition, in order to be completely 
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specified, Method I requires a literal selection strategy ~ 
and a resolution selection strategy fiG. A "pseudo-Algol" 

program for Method I might look like this: 

begin 
if Oe:S then S is unsatisfiable; 
n+-0; 
repeat 

end 

n +-n+l; I 
~n +- choose according to oC_ any literal from s such 

that neither E; nor ~ · is in L; n .n 
S1 +{clauses Ce:SI (VE;e:C)~eL}; 
if sl~¢ then begin 

E;n +- ~n; 
S2 +{clauses C e:SI (V~e:C)~e:L}; 
while S 2 .e<f> do 

C +- choose according to ~ any resolvent of some 
clause in S 1 with some clause in s 2 ; 

if c=O then S ·is unsatisfiable; 
n +- maximum integer j such that ~ .eC; 

.J 

end 

~n +- ~n; 
S +- Su{C}; 
s1 +- {c}; 
s 2 +- { c 1 a us e s C e: s I ( V ~ E C) ~ e: L } 

end 

until n = the number of distinct atoms in s; 
S is satisfiable 

A partial truth assignment to a set r of formulas 

is a map TI:at(r)-+{T,f,U} CU is for "undefined"). The map TI 

can be extended to sub(f) by the recursive equations 

n(r)=T, TI(F)=f, 

T if TI(A)=F 

F if 'IT(A)=T 

U if n(A)=U 

TI(A•B) = TI(A)*TI(B), where TI(A)*n(B) is given by 

table 4.l.i., if 'lT(A)-U and 'lT(B).eU, 
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and if just one of n(A),n(B)~U, then rr(A)*n(B) is Tor F if 

this can be determined without knowing the value of the 

other~ and otherwise rr(A)*rr(B)=U. For example, if* is & 

then F&U=F, U&F=F, but T&U=U&T=U&U=U. Partial truth 

assignment rr 1 is an extension of rr2 if rr1(p)=~r 2 (p) whenever 

If rr is a partial truth assignment, and f is a truth 

·function, then f(rr) is the truth function obtained by fixing 

the arguments of f to the values specified by rr. The 

arguments to f(rr) are the variables to which rr assigns the 

value U. The function f(n) is called the restriation of f 

by n. Partial truth assignment rr satisfies ·formula A if 

fA(rr) is ident~cally T, and faZsifies A if fA(rr) is 

identically F. 

A truth function f depends on its ith argument if 

there is a partial truth assignment rr such that rr(p.)QU, 
oz. 

rr(p .)~U for j~i, and f(rr) is not constant. 
J 

The stack L in the Method I program can be regarded 

as a partial truth assignment to the atoms of S (the one 

which makes each literal in L true). Each addition to L is 

an at tempt to extend this partial truth assignment tO'\<Jard a 

truth assignment that satisfies S. Cook's literal selection 

strategy is designed to move in the desired direction as 

rapidly as possible, by satisfying the most crucial clauses 

at each stage. 
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For any set of literals c , let C denote the set of 

literals whose complements are in C (note that C is not 

equivalent to the negation of C in general), and let S\C 

· denote the set of clauses obtained from S by first deleting 

all clauses containing literals whose complements are in C 

and then deleting from what remains all occurrences of 

literals from c . Any truth assignment to a t(S) which makes 

each literal in C false (i.e. makes each literal in C true) 

satisfies S if and only if it satisfies S\C. Consequently, 

S\C is unsatisfiable if S I=C, where C is regarded as a clause. 

In particular, the truth assignment represented by L 

can be extended to a satisfying truth assignment for s if 

and only if $\L is satisfiable. Cook's literal selection 

strategy is first to isolate from S\L those clauses whose 

number of literals is minimum. Then let p be the atom with 

the most occurrences in this further reduced set of clauses. 

The literal selected will be p or ,P> whichever occurs most 

often in this last set · of clauses. Ties are to be resolved 

arbitrarily. Cook suggests that the resolution selection 

strategy should ·be: choose the shortest permissible resolvent. 

With these selection strategies, Method I has been 

extensively tested and compared with other resolution 

strategies. These tests show that Method I produces 

derivations that are at least as short as those produced by 

any other strategy in almost all cases. The method very 

seldom generates clauses that are not later used to derive 0. 



~- ;, 

I I 

J 

- 8 5-

4.2.4.2. Extended Resolution 

Tseitin introduced a new ~peration to be used in 

conjunction with resolution, which he called extension 

[Tseitin 1968]. He showed that in certain cases extension 

can be used to give much shorter derivations than can be 

obtained without it . 

. The extension operation works as follows. Let S be a 

s~t of clauses, let a, B, and y be literals such that neither 

a nor a occ~rs in s, and let * be any binary connective. The 

extension of S with respect to a, ·$, y, and * consists of the 

addition to S of the clauses that make up the conjunctive normal 

form for the formula Ca=CB*y)). The literals a and & are said 

to be introduced into S by this extension. (If B or y did not 

occur in s before the extension, they are said to be added to 

s, but they are not introduced.) (Note: Tseitin considered 

only the case where * is I, which is sufficient, but the 

generality here seems more natural.) The extended set of 

clauses is satisfiable if and only if the original set s is 

satisfiable. An extended resolution derivation of clause C 

from the set of clauses S (notation: Sl- C) consists of a er . 

sequence of extensions of S followed by a r~solution derivation 

of C from this extended set of clauses. 

THEOREM 4.2.4.2.a. 

If s is a set of clauses with DiS and C is a clause, 

then SF=C if and only if there is an extended resolution 

derivation D such that s !-ere via D and no literal in C is 

introduced via extension in D. 
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Suppose Sl- c. LetS' be the extension er . 

of S from which C is derived by resolution alone, and let T be 

an arbitrary truth assignment that satisfies s. (If no T 

satisfies s, then s~c trivially.) Then T can be extended to 

~truth assignment T' that satisfies S' as follows. If s was 

extended by adding the clauses equivalent to (a=CB*y)), then T' 

·.assigns the same truth value to a that. T assigns to (B*Y). This 

step-by-step extension ofT toT' parallels the step-by-step 

ex tens ion of s to s'. By the soundness of resolution, s' t==c, so 

T' satisfies C. But since T and T' assign the same values to 

literals that occur in s, T must also satisfy c. Finally, since 

T is an arbitrary truth assignment that satisfies s, st==c. 

ii) Completeness. Suppose s I=C. Then (S\C) t-0. Let D 

be a resolution derivation of 0 from S\C, and let D' be the 

derivation obtained from D by restoring the literals of C to the 

clauses from which they were deleted. Thu~, D' is a resolution 

derivation from S of some clause C'~C. Let C-C'={~1 , ... ,~n}' 

and let a 0 be some literal in C', so that C'=C"ao (If C'=O, 

then let C"=D and let a 0 be one of the parent clauses of C.). 

Then, let s0=s, and for l~isn, extend si-l to si by adding the 

clauses a.~. 1 , a.~., ~.a. 1 ~., where a. is a new literal. Note 
~ ~- ~ ~ ~ ~- ~ ~ 

that adding these three clauses is the same as "defining" 

a.-(a. 1 v~.). Now, for i=l, ... ,n, resolve C"a. 1 with a.~. 1 ~ ~- ~ ~- 1,. ~-

to obtain C"a., giving ann-step derivation D" of C"a from 
1.. n 

(sn-S)u{C"a 0 } . Then, for i=n, .. . ,1, resolve 

C"ai~i+l'" .~n with iiai-l~i to obtain C"ai-l~i" . . ~n' 
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If C'=O, then D' with its last step removed is a derivation 

of ~O and a 0 , so that D'D"D 3 is a derivation of ~O and 

from S . One more step gives a derivat i on of n 

a derivation of c from s . In both cases, an extended 
n 

resolution derivation of C from s ha~ been construct~d. 
~ 4.2.4.2.a. 

In the sense of this theorem, then, extended 

resolution has a kind of implicational completeness. The 

extension rule allows the introduction of new literals to 

be used essentially as abbreviations for arbitrary formulas 

in the original variables. Results about these formulas can 

be derived by manipulating the abbreviations, often in many 

fewer steps than the same results could be derived directly. 

The ideas inherent in extension can be used to 

convert an arbitrary formula into a set of clauses in a much 

more efficient way than straightforward application of 

del'-1organ's laws [Bauer et aZ. 1973] [Tseitin 1968]. Given 

any formula A, associate with each distinct subformula B 

whose principal connective is not , a unique atom p8 (atoms 

of A are associated with themselves) . If B is ,c and the 

·literal y is associated with c , then associate ~ with B. 

In this way each subformula B has associated with it some 

literal ;B. For every subformula B=(C1*C2) whose principal 
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connective is binary, let cllB) be the set of clauses which 
B . 

are equivalent to (p =CYl*Yz)), where Y1 and Yz are the 

literals associated with C1 and C 2 , respectively. Finally, 

let def(A) be the union (conjunction) of cl(B) over all 

binary subformulas B of A. It can be shown by induction on 

the number of connectives of A that a truth assignment t 

satisfies def(A) if and only if for every subformula B of A, 

t(~8 )=t(B). Thus def(A) F=~A if and only if !=A. Consequently 

def(A)u{?} is an unsatisfiable set of clauses ·if and only 

if A is a tautology. This set of clauses can be derived in 

time (and space) proportional to the length of A, whereas 

the CNF for ,A could have a length which is exponential in 

the length of A. For this reason, the method described here 

is preferred. 

A resolution derivation (without extension) of 0 

from def(A)u{CA} is called a derivation of A by resolutio~ 

with limited extension, and is denoted r-1eA. An extended 

resolution derivation of ~A from def(A) is called an 

extension derivation of A, and is denoted 1-eA . 

Note that there is nothing in this development that 

precludes the use of these ideas with formulas containing 

connectives of arity greater than two. The only change 

required is to define cl(B) for formulas B whose principal 

connective has arity greater than two. 
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4.2 .5. Other Proof Systems 

The most primitive proof system is the method of · 

truth tables. Given a formula A with n atoms) a t~uth tabte 

for A is a table of truth values with n+l columns and zn rows. 

The first n columns contain the 2n truth assignments to 'the 

n atoms of A, one assignment per row (The atoms of A are 

assumed to have some natural order, and one atom is assumed 

to head each of the first n columns.). The entry in the last 

colurr~ of each row is the truth value assigned to A by the 

truth assignment given in the first n columns of that row. 

Formula A is valid if the last column of its truth table is 

all T's, inconsistent if the last column is all F's, and 

contingent otherwise. 

If conventions are made for a standard ordering of 

all atoms and a standard ordering for truth assignments, then 

a truth table may be reduced in size by the omission of all 

but the last column. This simplified t~uth table consists 

of a list of the truth values assigned to A by each of the 

possible truth assignments to A, given in their conventional 

order. But even this simplified table has a length which 

is exponential in the length of A in cases where the length 

of A is proportional to the number of atoms in A. 

One way to shorten truth tables somewhat, in certain 

cases at least, was suggested by Kleene [Kleene 1967]. The 

idea behind Kleene's method is that a truth value can often 

be assigned to a formula on the basis of only a partial 

truth assignment. For instance, the formula (q:;,(p&:ro)) is 
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true whenever q is false, regardless of the values of p and ~. 

A r e duced truth table for n-atom formula A is again a table 

with n+l columns. Each of the first n columns is labelled by 
" an atom of A, and the ·last column is (implicitly) labelled by 

A. The first n columns of each row contain a partial truth 

assignment sufficient to assign a value to A in the last 

column of that row. A partial truth assignment is specified 

by giving truth values in each of the first j columns (for 

some l~j~n) and leaving the remaining columns blank . The 

table must contain enough rows so that each of the possible 

2n truth assignments is an extension o~ some row in the table, 

and the rows must be arranged in .alphabetical order (blank 

comes before T, which comes before f, for example), . so that 

this condition can be easily verified. 

The method of semantic trees relaxes the restriction 

of a single ordering on the atoms throughout the analysis, 

by allowing the values of different atoms to go unspecified 

in different parts of the analysis of some formula A. 

Semantic trees were discussed in [Robinson 1968] and 

[Kowalski & Hayes 1969) as a general method for analyzing 

mechanical proof procedures for the predicate calculus. The 

special version presented here is useful as a proof system 

for the propositional calculus. 

A semantic tree for a formula A is a finite rooted 

binary tree, with the pair of edges leading out from each 

nod~ labelled p and •P respectively, for some pEat(A), and 

such that no branch (i . e . path from root to a leaf) has a 
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pair of complementary literals on it. A branch determines 

a partial truth assignment n by the conditions: n(p)=T if 

p labe~s some edge on the branch, n(p)=F if ~p is on the 

branch, and n(p)=U otherwise! The branch whose partial truth 

assignment is n is closed for A if n(A)~U. A closed semantic 

tree for A is a semantic tree for A with every branch closed 

for A. 

It should be clear from the above discussion that 

truth tables are a special form of reduced truth tables, and, 

except for differences in notation, both are special cases 

of semantic trees. Thus, semantic trees are the most general 

form of these. primi~ive kinds of proof systems. 

At the other end of the scale, powerful formal 

mathematical theories, such as Zermelo-Fraenkel set theory 

and various formalizations of number theory, can be used as 

proof systems for propositional formulas. It may be that 

these theories give shorter proofs of some families of 

formulas than any of the other proof systems described in 

this chapter. The extreme generality of these systems makes 

them very difficult to analyze, however, and nothing more 

will be said about them here. 

4.3. PROOF SYSTEMS AS VERIFICATION SYSTEMS 

Any of the proof systems described in this chapter 

can be made to fit the formal definition of verification 

systems by representing the proofs in the system by strings 
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on some finite alphabet, and by having the function F take 

a proof into the formula proved. If string w does not code 

a proof, then define F(w) to be some fixed standard provable 

formula, for example (pv,p) if the system proves tautologies 

in the connectives v,,, 

Making any particular proof system into a verification 

system, therefore, entails two requirements. First, an 

alphabet and encoding for proofs must be given. Second, it 

must be shown that the function F of the resulting 

verification system can be computed in polynomial time. In 

general, most reasonable· encodings will lvork, so the most 

straightforward encoding is usually the best. 

As an example, let E= < K,~ > be a Frege system. The 

a 1 ph abe t f o r the en cod in g is { p , 0 , 1 , ( , ) , T , F , , , v , c J ::. , = , & , I , 

~~~,¢,~}. Atoms are encoded by p subscripted by a string 

of 0 's and 1 's. Formulas are represented in fully 

parenthesized form, as indicated in section 4.1. A derivation 

is represented by concatenating the representations of the 

formulas that make up the derivation. Since formulas are 

fully parenthesized, this string can readily be parsed into 

its constituent formulas. 

The function F that maps w into A must be computable 

in time bounded by a polynomial in the length of w. In order 

to -determine if w codes a well-formed proof in the system E, 

w must be parsed into a sequence of formulas, each formula 

must be examined to see that it is a well-formed formula in 
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the connectives K (which amounts to no more than a parse of 

a string according' to a context-free grammar), and then it 

must be verified that each formula is inferred from previous 

formulas by a rule in R. The first two of these operations 

can clearly be performed in polynomial time. In order to 

check that formulas follow according to the inference rules, 

the parsing information on each formula is used . . With this 

parsing information, it is not hard to decide if a formula 

is an instance of another formula (the right-hand side of 

a rule). For each rule for which the given formula is an 

instance of the right-hand side, the previous formulas in 

the derivation are searched for the corresponding instances 

of the left-hand-side formulas. If the search succeeds for 

any rule, then the given formula is proper~y derived. from 

previous formulas. Since the number of rules to try for 

each formula is finite, this entire verificat i on can be done 

in polynomial time. Finally , the time to output either the 

last formula in the sequence (if the proof is well-formed) 

or the standard tautology (if it is not) is clearly 

small. Thus, the function F can be computed in polynomial 

time, and so is a verification system for the set of strings 

that encode ·tautologies in the connectives K. 

4.4. SUMMARY AND DISCUSSION 

This chapter has described all of the important proof 

systems that have been proposed in the literature for proving 

formulas in the propositional calculus . It has also been 
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briefly indicated how each of these systems can be analyzed 

as a verification system. According to corollary 3.3.3.p. 

if one of these verification systems is a polynomial-bounded 

verification system for the complement of some set in /LP, 
then nf> is closed under complements. ConVersely, if each 

of them can be shown not to be polynomial-bounded, this will 

add more evidence to support the widely-held speculation 

that "l2P is not closed under co·mplements, and thus , P~71.f. 

It is the aim of this thesis, and the next chapter 

in particular, to investigate these proof systems to see what 

can be said about whether or not any of them are polynomial­

bounded verification systems. The great number of systems 

to be evaluated (an i nfinite number, in fact, since the 

family of Frege systems is infinite) would make that task 

unmanageable, however, without a way of comparing the 

complexity of proof systems. What is needed is a way to 

prove results about verification systems of the form: if 

system F is polynomial-bounded then system G is also 

polynomial-bounded. The major results of chapter 5 are 

results of this type. 

! . 
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5. STUDIES OF PRooF SvsTEM CoMPLEXITY 

In this chapter proof systems from chapter 4 . are 

analyzed. The goal of this investigation is to determine if 

any of these systems are polynomial-bounded verification 

systems for tautologies. Some systems have been proven not 

to be polynomial-bounded, and here it is shown by means of 

polynomial-time-bounded simulations that the complexities of 

many of these systems are related. 

The chapter begins with two examples of such simulations 

and a formal definition of simulation. The next section 

summarizes th~ simulation and lower-bound results, indicating 

which were known before and which are new. After that are four 

sections that give the details of results for Frege systems, 

natural deduction, sequent and tableau systems, and resolution 

and related systems. 

5.1. SIMULATION 

The complexity of proof systems can be compared by 

showing how one proof system "simulates" another. Suppose 

that F and G are proof systems for the same set of formulas 

and that there is a uniform procedure A such that, given any 

proof P in system F, A transforms P into a proof P' which in 

system G is a proof of the same formula that P proves in 

system F. It can then be said that by using procedure A, 

system G is "simulating" system F. If it is furthermore 

true that the length of P' is bounded by some polynomial in 

-Q~-
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the length of P, then the simu·lation is "efficient". To within 

a polynomial, then, G is "at least as powerful" as F. IfF is 

polynomial-bounded, then G is also polynomial-bounded, or, to 

view it the other way, if G is not polynomial-bounded, then F 

cannot be. 

5.1.1. Two Examples 

This subsection gives two examples of cases where one 

proof system simulates another. They are presented here in 

an informal, intuitive way in order to motivate the formal, 

and somewhat technical, definition of simulation, which is 

given in the following subsection. In the first example it 

is shown how one Frege system can simulate another, and the 

second example shows how a Gentzen system with cut can be 

simulated by extension . 

5.1.1.1. Two Frege Systems 

Recall system M from subsection ·4.2 . 1. [Mendelson 1964] 

uses for its propositional language the connectives , and ~. 

His proof system has 3 axiom schemes: 

(p~ (q~p)) 

CCp~Cq~r)J~CCp~qJ~cv~r))) 

C (,p~.,q)~Cq~p)) 

and the rule modus ponens: 

The system is sound and implicationally complete (over all 

formulas in , and ~) and thus is an example of a Frege system . 
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A system that superficially looks much different was 

used by [Shoenfield 1967). The conne~tives for Shoenfield's 

systems are ~ and v, and there is only one axiom scheme: 

Shoenfield's four propositional inference rules are 

P ~ (qvp) 

(pvp) ~ P 

(expansion rule) 

(contraction rule) 

((pvq)v~) ~ (pv(qv~)) 

(pvq),(,pv~) ~ (qvr) 

(associative rule) 

(cut rule). 

Although seemingly very different in character from 

Mendelson's system, Shoenfield's system, being sound and 

implicationally complete, is also a .Frege system. 

It is not apparent that there is any relationship 

between proof lengths in these two systems. To begin with, 

the systems use different connectives, and, thus, it is not 

even clear what formulas to consider when comparing proof 

lengths. The most straightforward method of attack is to take 

Using these equivalences, a formula in one set of connectives 

can be transformed into an equivalent formula in the other set 

of connectives, without significantly changing its structure 

or appreciably increasing its length. For example, 

(pv,((qv,r)v(,pv,(qv,r)))) becomes (,p~,(,(~q~,r)~(,,p~,(,q~,r)))) 

and ((p~Cq~r))~(Cp~q)~(p~r))) becomes 

(,(,pv(,qvr))v(,(~pvq)v(,pv~))). 

Let t(F) be the translation of formula F by this method. 

It is important to note that t(F) has the same subformula 
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structure as F. Connectives v and ~ have been interchanged, 

and a , has been inserted in each binary subformula. The 

length of t(F) is less than twice the length ofF, since the 

number of ,'s inserted is no more than the number of v's or 

~·s already present. 

Now suppose D is a derivation of F in system M. Then D 

is a sequence of formulas in the connectives , and ~, such that 

each formula in the sequence is either an instance of one of 

the three axioms or follows from previous rules by the rule · 

modus ponena, and such that the last formula in the sequence 

is F. A derivation D' in system s of t(F) can be obtained by 

a mechanical translation of D. Furthermore, the length of D' 

will be proportional to the length of D. 

To obtain the skeleton of D', each formula in Dis 

translated into an equivalent formula in , and v. This 

produces a sequence of valid formulas in Shoenfield's 

connectives. To "flesh out" this skeleton, each formula is 

preceded by a sub-derivation which "simulates" in system S 

the inference rule from system M that was used to derive the 

original formula. The number of steps of this sub-derivation 

is determined by the inference rule being simulated, and the 

lengths of the formulas involved are proportional to the 

lengths of the formulas being simulated. Thus, the total 

length of D' is proportional to the length of D. 

For example, Mendelson's first axiom (p~Cq~p)) 

translates into (,pv(,qvp)) in Shoenfield's connectives. 

·i 

i ' 
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Since this formula is a tautology, and since system S 

is complete, there is a derivation ( say D 1) of (,pv(.qvp)) ax 

in system s. Figure S.l.l.l.i. gives one possibility forD 1 , . ax 

a derivation of 9 lines, containing 16 occurences of the atom p 

and 7 occurrences of q. 

A derivation in system M may contain any instance of 

this axiom, such as (A~(B~A)). In systems this becomes 

(,t(A)v(,t(B)vt(A))), and a derivation of this translated 

formula can be obtained from Daxl by substituting t(A) for p 

and t(B) for q. Since the length of D 1 and the number of 
ax 

occurrences of p and q in D 1 are fixed and since translation ax 

no more than doubles the length of a formula, the total length 

of this simulating derivation (D 1t(A) t(B)) is bounded ' by a 
ax p q 

constant (independent of A and B) times the length of the 

original formula (A~(B~A)). Figure S.l.l.l.ii. is an example 

of this substitution where A is (,,p~p) and B is (q~(p~r)). 

Note that each formula in fig. S.l.l.l.ii. is obtained from 

the corresponding formula in fig. S.l.l.l.i. by substituting 

t(A) for p and t(B) for q, and that the result is a proper 

derivation in systemS. 

Mendelson's other axioms can be handled in the same 

way. The modus ponena rule can also be simulated by similar 

techniques. Since the modus ponena rule (p, (p~q)~q) is ., ~ound 

(a requirement of Frege system rules) , q is a logical consequenee 

of p and Cp~q). Also,· since systems· is implicationally complete 



. . , 
-100-

line number formula origin (rule and lines) 

1 ( ,pvp) axiom 

2 (,,pv,p) axiom 

3 (pv ,p) cut - 1,2 

4 ( , q v (p v , p ) ) expansion - 3 

5 (,,qv,q) axiom 

6 ((pv,p)v,q) cut - 4,5 

7 (pv ( ,pv,q)) associative rule - 6 

8 (( 1 pv,q)vp) cut - 7,1 

9 (,pv(,qvp))=t(p~Cq~p)) associative rule - 8 

FIGURE S.l . l.l.i. 

D 
1

: Systems simulation of Mendelson's axio~ (p~(q~p)) 
a a: 
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formula ·orig'in 

(,(~ 11pvp)v(,,,pvp)} axiom 

(,,(,,,pvp)v,(,,,pvp)) axiom 

((,,,pvp)v,(,,~pvp)) cut - 1,2 

(,(,qv(,pvr))v((,,,pvp)v,(,,,pvp))) expansion- 3 

(,,(,qv(,pvr))v,(,qv(,pvr))) axiom 

(((,.,,pvp)v,( ... ,,pvp))v,(,qv(,pvr))) · cut- 4,5 

((,,,pvp)v(,(,,,pvp)v,(,qv(,pvr)))) associative - 6 

((,(,,,pvp)v..,(,qv(,pvr)))v(,,,pvp)) cut - 7,1 

(,(,,,pvp)v(,(,qv(,pvr))v(,,,pvp))} associative - 8 

FIGURE S.l.l.l.ii. 

An instance of D 1 ax 
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(another requirement of Frege systems), it must support a 

derivation of q from the hypotheses p and t(p~q). Such a 

derivation, designated D , is shown in figure S.l.l.l . iii. mp 

To simulate the derivation of B from A and (A~B), the required 

derivation is obtained by substituting t(A) for p and t(B) for 

q into the last five lines of D mp (The formulas obtained by 

substituting into the first two lines must have already appeared 

earlier in the simulation.) 

By this method of translating formulas from D and 

preceding each translated formula by a sub-derivation of that 

formula, the derivation D' can be constructed. This derivation 

will be a legal derivation in systemS of t(F) . Furthermore, 

the length of D' is no more than some constant times the length 

of D. All that was needed in order to show this result was 

1) tt(A) ~a·tA, 2) t(A:)=t(A)t~B), 3) system M is sound, 

4) system s is implicationally complete, 5) any substitution 

of a derivation is also a derivation, and 6) of all the 

immediate consequences of a formula . (A~B) by modua ponena ·~ only 

one (namely B) is not a subformula of the other parent formula . 

These facts (except 6) remain ~rue when the r6les of systems 

M and s are interchanged, so that system M can simulate system 

S in the same way. (Although the derivation may grow in length 

more than linearly, growth is still bounded by a polynomial.) 

I But this is not quite enough to show that system M is 
I 
t 

polynomial-bounded if and only if system S is polynomial­

bounded. The problem ·arises because not every formula in ,,v 
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formula origin (rule and 1ines) 

p =t (p) hypothesis 

(,pvq)=t(p=>q) hypothesis 

(qvp) expansion 1 

(,qvq) axiom 

(pvq) cut - 3,4 

(qvq) cut - 5,2 

q =t (q) contraction - 6 

FIGURE S.l.l.l.iii. 

Simulation of modus ponens · by systems 
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is the image under the t function of some formula in ,,J 

(i.e. because tis not onto). For example, (p~(qv,p)) is such 

a formula . There are several ways this problem can be handled. 

One way 1s to translate the given formula twice. This 

gives a formula that is equivalent to the given formula, but with 

every left subformula double-negated. For example, (pv(qv,p)) 

becomes (,,pv(,,qv,p)), which is the image of ( ,pJ (,qJ,p)). It 

must then be shown that the double negations can be removed 

without adding too much to the length of the derivation. 

Other ways involve various methods of changing the 

translation between connectives so that every formula is the 

image of some formula under translation. For the simple example 

here, where a one-to-one correspondence can be maintained 

between v and J, the simplest solution is to turn the translation 

functions around, so that they remove negations whenever possible. 

Thus, t'(AJB) = {(,t(A)vt(B)) if A does not be~gin \'li-th]· Now 
(t(C)vt(B)) if A is ,c 

every formula in ,,v is the image under t' of some formula in 

,,J , but the t' function no longer is transpar~nt to substitution. / 

That is, it is no longer true that t'(A 8 ) = t'(A)t'(B). ~fuat is 
p p 

true, however, is that if B does not begin with ,, then 

It is also necessary to note that although the t' function may 

now shorten some formulas, it does not shorten them much. In 

particular, ~A<21t'(A), so that the translated formula is more 

than half as long as the original. 
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With this new translation function, the simulation of 

system M by system s can proceed as before, except that each 

axiom and the modus ponens rule of system M will be simulated 

by several "standard" derivations in system s. For example, 

corresponding to (p~(q~p)) there will be derivations 

(pv(,qv,p)), and (pv(qv.p)). The translation of any instance 

of this axiom will be an instance of one of these four formulas t
1
• 

so taking the proper instance of the proper derivation gives a 

derivation of that translated formula. The other axioms are 

handled the same way, with axioms containing n atoms getting 

no more than 2n different simulating derivationst
2

• Two 

simulations of modus ponens are required: a derivation bf q 

from p and .pvq (as before), and a derivation of q from ,p and 

pvq. (The two cases where q is negated are instances of the 

above two, but neither of the above two is an instance of the 

other.) Any instance of modus ponens, when translated, becomes · 

an instance of one of these two cases. 

tl 
Note that in this case, the first formula is an instance 

of the second, and the third is an instance of the fourth, so 

that only two really distinct derivations are required. 

t2 In fact, the minimum number of simulating derivations is 

no greater than zk, where k is the number of atoms that appear 

both as left subformulas of ~ and some other way (i.e. negated 

or as a right subformula of~). 
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Now it should be clear that the arguments given earlier 

about simulation of system M by system S still carry through . 

But now the t' function is onto, so that if system M is 

polynomial -bounded, then system S is also polynomial-bounded. 

To see that this is so, assume that system M is polynomial­

bounded. That is 1 given any tautology F in ,,~ , there is a 

derivation DofF whose length is at most p(iF). Now let A' 

be any tautology in ,,v , and let A be a formula in ,,~ such 

that t'(A)=A'. By construction of the t' function, tA<ZtA;. 

Since system M is assumed to be polynomial -bounded, let D be 

a derivation of A of length no more than p(tA). Translating 

D by the method described above yields D', a derivation of 

t'(A), whose length is at most a•tD, where a is a constant 

depending only on the proof systems. Thus, D' is a derivation 

of A ' in systems, and the length of D' is bounded by a•p(ZtA'), 

which is a polynomial in the length of A'. Therefore, systems 

is also polynomial-bound~d. 

The same technique can be used to show that system M 

is polynomial-bounded if system S is polynomial-bounded. 

Moreover, since the translations and simulation of system M 

by system s are linear, if both systems are polynomial-bounded, 

then the polynomial bound for system s can have no higher 

degree than the bound for system M. 

Finally, it should be noted that this particular method 

of translation was successful only because v's and ~'s could be 

interchanged on a one - for -one basis. Other special techniques 

are needed to handle the cases where the simulating system has 
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more connectives than the system being simulated (e . g. Ho~ can 

a translation from ,,v to ,,v,& be made onto?), or where the 

system being simulated has = or ~ and the simulating system 

does not (i.e. No formula in ,,v that is equivalent to 

5.1 . 1.2 . Extension va Gentzen Sy~tems 

This section is an expansion ~f an idea found in 

[Tseitin 1968]. 

Recall from paragraph 4 . 2.3.1 . that abasia Gentzen 

system is a complete analytic sequent inference system with 

two rules for each connective, and that a Gentzen system with 

aut is a sequent system obtained from a basic Gentzen system 

by adding the cut rule. Also recall from paragraph 4.2.4 . 2. 

that a derivation of A by resolution with limited extension 

is a resolution derivation of 0 from def(A)u{~A}, and that an 

extension deriva tion of A is a derivation of ~A from def(A) 

by extended resolution. In this section it will be shown that 

resolutinn with limited extension can simulate basic Gentzen 

systems and extension can simulate Gentzen systems with cut. 

Let A be a tautology, and le t D be a derivation of A 

by a Gentzen system (with or without cut). Using the method 

of constructing def(A) from A as described in paragraph 4.2 . 4.2 . , 

construct the set of clauses def(D) (def(D) is the union of 

def(B) over all formulas B that appear in D.). Note that 

def(D)=def(A) unless D contains some subformula that is not 

a subformula of A . This latter case can only occur if D 
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includes applications of the cut rule, since basic Gentzen 

systems are analytic. In any case, observe that def(A)~def(D) 

(since A appears in D), and that the clauses in def(D)-def(A) 

(if any) can be obtained by the extension rule. 

Now with each sequent A1 , .. . ,Am+B1 , .•. ,Bn in D associate 

AI ~ 8 1 8 n the clause ~ . . . ~ ~ ... ~ Refer to figures 5.1 . 1 . 2.i. 

and 5.1.1:2.ii . for two examples. Both show simulations of 

Gentzen derivations of ((p~,q) ~(q~,p)) (neither of which is 

minimal). The first Gentzen derivation is cut-free, while the 

second derivation contains an application of the cut rule. 

Sequents are numbered for reference, and the corresponding 

clauses in the resolution proofs have corresponding numbers 

with primes. 

Note that certain sequents have no co_rresponding cla~ses. 

These fall into two classes . First are the sequents that· 

result from applications of the , - introduction and ,-elimination 

rules. The clause corresponding to such a sequent is identical 

to the clause corresponding to i t ·s parent, and thus does· not 

need to be rederived. An example of this is sequent 9. of 

figure 5 . 1.1.2 . ii., whose associated clause is Epq, the same 

clause that is associated with sequent 8. (Other examples of 

this situation are sequents 2. and 5. of figure 5.1.1..2.i. and 

sequent 3. of figure 5.1.1.2.ii . , but in these cases, the 

parent sequent itself has no associated clause.) The other 

way a sequent can have no associ~ted clause is for that sequent 

to be an axiom. In this case, the associated clause would 
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1. q 1- -.p,q 4. p,q f- p 

,-elim -.-intro 

2 • .... q,q t- "'P 5. 

=>-intro =>-intro 

3. 6. 1- p,q=>-.p 

:>-intro 

8. 

def(A) 

--------------~---~~--------------------r;l.(p=>,q) al.(q=>,p) al(A)' 

r Epq ~P b? ~-~-p--q--3-' -. [§] 6' ·I ap j' r.--a-E-a-~ aa" a 

.-- Daz/ 
7';~ 

8'.@] 

0 

FIGURE S.l.l.Z.i. 

Simulation of Basic Gentzen System by Resolution 
with Limited Extension 
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2. 4. p 1- ,q,p 

,-elim 

1. ,p,q 1- "'P 3. ,q,q 1- ,p 8. P::J,q,p 1- ,q 

"'~:~ \,-intra 

6. -,pv,q,q 1- -,p 9. p::J,q 1- ,p t ,q 

::J-intro v- intro 
·~- . 

7. 

::J -intro 

Extension Simulation 

,,, 
! 

' . 

FIGURE S.l.l.2.ii. 

Extension Simulation of Gentzen System with Cut 
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contain a contradictory pair of literals. Every other sequent 

has an associated clause. 

These clauses (enclosed in boxes in the figures) form 

the skeleton of a resolution derivation of ~A (~A is a in the 

examples.) from def(D). The skeleton is 11 fleshed out" with 

the addition of intermediate resolvents, using the appropriate 

clauses from def(D). For example, the clause 5c corresponds 

to the sequent p~,q r q~~p. The descendent of this sequent 

is r(p~,q)~Cq~,p). This sequent is derived by applying 

~-introduction to the formula A, and the corresponding clause 

is a. Using the clauses from cZ(A), this resulting clause is 

derived from the original clause in two resolution steps. 

Note that the presence of other formulas would not interfere 

with this resolution derivation (it would just add extra 

literals to the clauses). Aiso, it does riot matter what 

formulas B and C the literals b and c represent, so long as 

a represents s~c. As a result, ~-introduction is always 

simulated by two resolutions. Similarly, each of the other 

basic Gentzen system rules can be simulated by two resolutions 

{or three in the cases of ~-elimination and introduction). 

The cut rule is the same as resolution except that it uses 

sets of formulas, rather than sets of literals, as clauses. 

Thus, every application of the cut rule gives rise to exactly 

one resolution. (See sequent 11 . and clause 11'. in figure 

5. 1. 1 . 2 . ii. ) 

The clauses corresponding to sequents all of who.se 

parents are axioms (or come from axioms by ,-introduction or 
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,-elimination) appear already in def(D), or are subsumed by 

clauses in def(D) . (e.g. clauses 3' . and 6'. in fig. i, and 

6'. and 8'. in fig.ii). To see why this is so, assume, for 

instance, that sequent A,c~B~r is not an axiom, but is derived 

by ~-elimination from the axioms 6rC,r and 6,Brf. Since these 

last two sequents are axioms, it must be true that CeA and Ber. 

Therefore, the clause associated with 6,C~Brr must contain 

~c~c~B~B, which is one of the three clauses included in def(D) 

as cl(c~B): ~c~B~C~B, ~c~s~c, ~c~B~B. The same type of 

argument applies to all basic Gentzen rules for binary 

connectives. If a sequent is derived by the cut rule from 

two axioms, then that sequent itself is an axiom, so the cut 

rule need never have been applied. 

Finally, since the clauses at the leaves of this 

derivation may subsume some of the clauses corresponding to 

sequents with axioms for parents, the derivation may need to 

be pruned (by removing extraneous literals from some clauses) 

to make it a proper resolution derivation. The result is a 

resolution derivation D' of ~A from def(D), whose length is 

proportional to the length of D. If D included no applications 

of the cut rule, then def(D)=def(A)·, so adding one resolution 

to D' gives a resolution derivation of 0 from def(A)u{~}. 
This establishes the simulation of basic Gentzen systems by 

resolution with limited extension. On the other hand, if D 

included applications of the cut rule, it is still true that 

def(A)sdef(D), and that def(D) can be obtained from def(A) by 

repeated applications of the extension rule. Therefore D' 
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along with those extensions gives an ex tended resolution 

derivation of ~A from def(A), establishing the simulation of 

Gent zen syst.ems with cut by extension. 

5.1.2. A Formalization of Simulation 

The preceding two examples are typical of the results 

of this thesis . They each show that if shortest proof lengths 

in one system are bounded by a polynomial, then shortest proof 

lengths in another system are also bounded by a polynomial. 

The method of proof is a sort of "simulation", in which 

provable objects (tautologies, unsatisfiable sets of clauses, 

valid sequents, eta . ) from the second system are translated 

into not-too-much longer provable objects in the first system, 

and then proofs in the first system are translated into the 

second system, again without increasing the length by more 

than a polynomial. These ideas are formalized in the following 

definition of "simulates", which applies to arbitrary 

verification systems, as defined in subsection 3.3.1. 

Let F1 be a verification system for L1 and let F2 be 

a verification system for Lz. Thus, F 1 :{0,1}*0 ntgL 1 , 

{ }*onto ~ F 2 : 0 , 1 ----..::;;. L 2 , and F 1 , F 2 t. V tf' • System F 2 simulates F 1 if 

there exist functions g:L 2 +L 1 and h:{O,l}*xL 2 +{0,1}*, and 

polynomials p,q such that VxE{O,l}* and VyEL 2 · , tg(y)~p(ty) 

th(x,y)~q(tx,ty), and F2 (h(x,y))=y whenever F1 (x)=g(y). If 

g,hEJ?~ (which is the case for all simulations in this thesis), 

the stronger notion p-simuZates will be used. (Note: g needs 

only to be computable in polynomial time for inputs in Lz.) 

11 r·~ --L~s 
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Intuitively, g is the function that translates formulas 

f~om L2 to Lt, and h ·translates derivations. (I~ L2sL1 and g 

is the identity function, then the simulation is said to be 

direato) The definition says that F2 simulates F 1 if there 
;: 

is a way of translating strings (formulas) and a way of 

translating derivations (proofs) such that by first translating 
~ string, then finding a derivation of tha~ string in system 
F1..; ~d · fin.al.ly translating that · derivation, one obtains a 

· derivation -of the original string in system f2 

J. 

r. . 

~£ Pz is polynomial-bounded, then F 2 trivially simulates 

any other~~- The function h(x,y) simply ig~ores x and gives 

a shortest derivation of y in the. system F 2 • The function g 

is unimportant, as long as ·it is polynomial-length-bounded. 

Thus. if Lz..'SLl, F2 .directly simulates Fr: in the same trivial 

way (with g the identity function). Therefore, a corollary 

of the fact that F2. cannot (directly)' simulate F1 is the fact 

that Fz camnot be -polynomial-bounded. 

If F2 cannot directly simulate F1, it may sti~l be 

·true that P~ simulates F1, however, if F1 is also not 

polynomial-bounded. For this simulation, the function ~ 

translates .a stringy into another stringy', of approximately 

the same length as y, such that the shortest derivation of y' 

in system Pt is "very long". Then the computation of h(x,y) 

returns· a shortest derivation of y in system F2 , provided 

that z is "long enough" so that the length of this derivation 

is no greater than q(tx,ty),' for some polynomial q. When the 

"simulatesu definition is applied to g and h, the string x will 

~~-~-· -·--·--··-,. ·--·-·---- --- ' "" 
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always be "long enough", because x must be a derivation of 
y' in system F1 

This simulation involves a very unnatural use of the 
trans~ation function g , and it only applies in the 
uninteresting case where F1 and F2 are both known not to be 
polynomial-bounded. For this reason, the strongest type 

of negative result that can reasonably be expected is of 
the form: there is no simulation of F 1 .bY F 2 in which g 

is of a certain restricted type. In fact, the negative results 
in this thesis all restrict g to be the identity function. 

The following lemma establishes the most important 

property of simulations between verification systems. 

LEMMA 5.1.2.a. 

If F 1 and F 2 are verification systems such that F 2 

simulates F 1 , then F2 is polynomial-bounded if F 1 is polynomial-

bounded. 

Proof 

Suppose F 1 is a verification system for L 1 , F 2 is a 

verification system for Lz, and there exist g, h, p, q as in 

the definition of "simulates". Also, assume r is a polynomial 

upper bound on lengths of shortest derivations in system F 1 ~ 

Define pt:L 1+{0,1}* so that F' is the first (in 

lexicographic order by length) derivation of y in system F1. 

Then, VyEL 1 , !F' (y}~r_(!y) and F1 (F-' (y));=y. 

Given any XEL 2 , let d(x)=h(F'(g(x)),x). Then, 

!d(~}=!h(F'(g(x)),x)~q(!F'(g(x)),!x)~q(r(!g(x)),!x)sq(r(p(!x)),lx 

Also, F2 (d(x))=F 2 (h(F'(g(x)),x))=x because F1 (F'(g(x)))=g(x). 

Thus, d(x) is a derivation of x in system F 2 ., and the leng ·h 
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of d(x) is bounded above by a polynomial in the length of x. 

Therefore, F2 is polynomial-bounded. 005.1.2.a. 

An immediate consequence of this lemma is that if F 2 

simulates F1 , then to prove that F 1 is not polynomial-bounded, 

it suffices to prove that F2 is not polynomial-bounded. 

Another important property of (p-)sirnulation is that 

the relation is transitive. 

LEMMA s·.1.,2. b. 

If Fz (p-)simulates F 1 and F 3 (p-)simulates F2 , then 

P3 (p-)simulates F1. 

Proof 

Let g1, h1, p1, q1 be from the first simulation, and 

let g 2 , hz, pz, qz be from the second. Define g3(x)=g1(gz(x)), 

and h 3 (y,x)=h 2 (hl(y,gz(x)),x), so that igJ(x)~pl(pz(ix))=p 3 (ix), 

and ih 3 (y,x)~qz(ql(iy,pz(ix)),ix)=qJ(iy,tx). Now suppose 

F1 (y)=g3(x)=g1Cgz(x)). Then, by simulation of F1 by Fz, 

F2 (h 1 (y,g 2 (x)))=gz(x), and by the simulation of F 2 by F3, 

F3 (h 2 (h 1 (y,gz(x)),x))=x. That is, FJ(hJ(y,x))=x whenever 

F1 (y)=g3(x). This establishes that <g3,h3> gives a simulation 

of F1 by F3. If gl,gz,hl,hz~:.tP;;;., then ga,h3E{Y;}, so that 

F 3 (p-)sirnulates Ft. IXIS.l.2.b. 

5.1.3. Notation and Terminology for Simulations 

In order to facilitate the description of various 

simulations of proof systems for the propositional calculus, 

it is convenient to introduce several different measures of 

"size" for formulas and proofs. 
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The length of a formula A (denoted tA) is the length 

of some standard encoding of A over the alphabet {0,1}. Atoms 

and connectives are distinguished by binary labels. Note that 

for any standard encoding there is a constant o such that for 

any formula A containing m occurrences of atoms and n 

occurrences of connectives of arity no greater than k, 

k zk 
!A~o·(m•log(m)+n•2 ). (Remember that there are 2 possible 

connectives of arity k.) The length of a set or sequence of. 

formulas (such as a derivation) is the sum of the lengths of 

the constituent formulas. 

The number of occurrences of atoms in formula A is 

denoted by ~aA, and the number of occurrences of connectives 

in A is denoted by ! 0 A. Both !a and !a can be applied to sets 

and sequences of formulas. 

n 
then !a= ~ tA., taa 

i=l '[, 

If a = 
Al, ... ,An 

p1, ... ,pn 
is a substitution, 

n a = Z: t A ... 
i=l 1, 

If D is a derivation in some proof system, then the 

number of steps of D (denoted !
8 D) is the number of occurrences 

of formulas, sequents, clauses, eta. (as appropriate) in D. 

If A is a formula, sequent, clause, eta. in D or a hypothesis 

of D, then the degree of A in D (denoted d(A)) is th~ number 

of immediate descendants of A in D. The degree of a derivation 

is the maximum of the degrees of its constituent formulas, 

sequents, clauses, eto. (including hypotheses). If D has 

degree 1, then D is a tree derivation. 
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5.2 , SIMULATION AND LOWER BOUND RESULTS 

The simulation and lower bound results reported in 

this chapter are summarized in figure 5.2.i. Each solid box 

in the figure contains a single proof system or a collection 

of proof systems such that each system in the collection 

p-simulates every other system in the collection. Each dotted 

box contains a family of proof systems such that each adequate 

set of connectives gives rise to a different system. It is 

not known if all of the systems in a dotted box can simulate 

one another. The figure is arranged with the most powerful 

systems (i. e . those with potentially the shortest proofs) at 

the top, and weaker systems near the bottom. 

The fi gure shows several systems that were not described 

in chapter 4. Extended Frege systems (box 2 . ) are defined in 

subsection 5.3 . 2. by combining ideas from Frege systems and 

extended resolution. Regular versions of a number of systems 

(boxes 2. , 7., 9., 11., and 17.) are defined by analogy with 

regular resolution. Regular Gentzen systems (Boxes 9. and 11.) 

are discussed in paragraph 5.6.4.2. Extended tree resol~tion 

(box 3.) is merely extended resolution where the derivations 

must be trees. The final new system is Galil's system of 

enumeration dags (box 13.), which is described in paragraph 

5.6 . 1.4. 

A downward arrow connecting solid boxes in the figure 

a. y indicates that every system in box a . p-simulates 

b. D 

:·. 
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every system in box b. A downw·ard arrow between two dotted 

. ?'~ .. --, 

a. a • 
L..-·- J 

boxes· · ~ indicates that every system in box a. p-simulates · 
r---, 

b • I t 
L-- ·.J 

the system in box b. for the same set of connectives. The arrow 

in the figure from box 5. to box 8. indicates that the Gentzen 

system with thinning for sets of claus~s p-simulates the 

Gentzen system with thinning for formulas in the connectives 

{~,v,&} . The simulation relationship inside of boxes is always 

the same. W~thin solid boxes all. systems p ~simulate · each other, 

while inside each dotted box, the only known simulati_ons are 

the trivial ones: if K 1 5K 2 ~ then the system for the connectives 

K1 p-simulates the system for the connectives ~2· 

· upward arrows in the figure i ndicate negative results 
. . 
. -

about simulations. An upward dashed arrow 
~·· Q· 
b. 0 . indicates 

·that no system in box b. can ·directly simulate any system in .box 

The figure contains two upward arrows that need special 

explanation. The arrow from box 20. to box 8. indicates -that 

for each adequate set of connectives K, the system of analytic 

tableaux for K cannot -directly simulate the Gentzen system with t.hlnning 

forK. The upward arrow from box 7. to box 4 . indicates that 

for certain sets of connectives K (see paragraph 5 . 6 . 2.2. for 

details), the system of regular resolution with limit ed 

' ex tens ion for formulas in the c onnectives K cannot directly simulate 

any system 1n the equivalence class with Frege systems. 

. .. 



\ 

I 

can be d~duced from 

figure 5.2.i. by using the fact that (p-)simulatio.n is a 

transitive relation. For example, s-Frege systems p-simulate 

every other sistem shown, because there is a chain of downward 

arrows connecting box 1. to each of the other boxes in the 

figure. Any _upward chain made by following dashed arrows in 

the forward direction and solid arrows in the backward 

direction and including at least one dashed arrow indicates 

that it is unlikely that the lower system simulates the upper 

one. For example, it is unlikely that any system of analytic 

tableaux (box 20.) can simulate resolution (box 12.), because 

if one could, then analytic tableaux for sets of clauses (box 19.) 

could simulate the Davis-Putnam procedure without subsumption 

(by a chain of simulation arrows through boxes 20., 12 . , 14., 

and 15.). But by theorems S.S.3.b-c . . this could not be -a 

direct simulation, and thus it would be in a sense "unnatural" . 
. ··----

.If there is neither a downward chain nor an .upward ~hain 

containing at least one dashed arrow from system A to ~ystem B, 

then it is not .. ~nown whether system A can simulate system B. 

Examples of this sort abound in figure S.-2.i. It is not known 

if regular resolution simulates resolution, nor if· resolution 

simulates any Frege system. It is not even known if regular 

resolution can be simulated by the (seemingly much more primitive ) 
. . 

Davis-Putnam procedure with subsumption, nor if the Davis~Putnam 

procedure (with or without subsumption) can simulate any of 

the systems of analytic tableaux. 
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The double solid line separates systems that are 

provably not polynomial-bounded (below the line) from systems 

that have not been shown not to be polynomial-bounded (above 

the line) . The line goes through boxes 7., 9 ., and 11., 

indicating that some of these s ystem~ have been proven not to 

be polynomial-bounded, while others have not. The dividing 

line is drawn by theorem S.6.2.2.d., which says that one of 

these systems is not polynomial~bounded if its se t of 

connectives contains any two of {,,=,~}. 

Proof systems and arrows in the figure are labelled 

with the number of the result where the indicated fact is 

proved. For example, the fact that any two Frege systems 

p-simulate each other (box 4.) is proved in subsection 5.3.1. 

The theorems leading to this result are lemmas and theorems 

5 . 3.1.2.a. through 5.3.1.2.f. and 5.3.1 .4.a. through 5.3.1.4.i. 

Where a result was known before, the originator of the result 

is credited. For example , the p-simulation of regular 

resolution (box 14.) by enumeration dags (box 13.) was first 

shown by Galil, and the result is reproduced here as 

theorem 5.6.1.4.b. When an arrow is unlabelled, the indicated 

result is trivial. For example, the systems in box· 2. 

p-simulate the systems in box 4 . because Frege systems are a 

special case of extended Frege systems. Similarly, the general 

system of any type p-simulates the regular system of the same 

type, because regular derivations are just a special form of 

general derivations. 
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The most interesting new results are those relating 

to boxes l., ? 
~ . , and 4. in figure 5.2.i. In subsection 5.3.1. 

it is proved that any two Frege systems p-simulate one another, 

no matter what connectives they use or what rules they have . 

Sections 5.4. and 5.5. show that natural deduction systems and 

sequent systems, both seemingly more powerful than Frege 

systems, are actually p-simulation equivalent to Frege systems 

and to each other. The idea of extended Frege systems is 

introduced in subsection 5.3.2., where it is shown that these 

systems p-simulate one another and all systems p-simulation 

equivalent to Frege systems. Then, in subsection 5.6.3. it is 

shown that extended Frege systems are p-simulation equivalent 

to the systems of extension and extended resolution. 

Subsection 5.3.3. discusses s-Frege systems, showing that these 

systems are at least as powerful (to within a polynomial) as 

any other system in figure S.Z.i. 

The only new lower bound result is embodied in theorems 

5.6.2.2.d. and S.6.2.2.e., where Tseitin's lower bound for 

r egular resolution is extended to certain systems of regular 

resolution with limited extension. Theorem 5.6.2.2.e. is 

particularly interesting, because it shows that Tseitin's 

techniques cannot be used for Frege systems and their allies . 

Most of the other results shown in figure 5.2.i. are 

either already known or are more-or-less obvious. 

Theorem 5.6 . 4.l.a. is interesting, because it shows that, 

while resolution with limited extension is no less powerful 

than conventional cut-free Gentzen systems (theorem 5.6.4.2.a.), 
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a slight generalization of these systems (the Gentzen system 

for sets of clauses) is no less powerful than enumeration dags 

and regular resolution. This means that the two main families 

of systems in the neighbourhood of the double solid line, 

cut-free Gentzen systems and extension-free resolution-based 

systems, are interrelated, and probably have similar bounds 

on proof lengths. 

5.3. FREGE SYSTEM SIMULATIONS 

In this section various simulations between Frege 

systems are established. The most important results are in 

subsection 5.3.1., where it is·shown that any two Frege systems 

can simulate ' each other. Subsection 5.3.2. introduces the idea 

of extended Frege systems, and shows how they simulate ordinary 

Frege systems and each other. The final subsection of this 

~ection is 5.3.3., where it is shown that s-Frege systems 

simulate extended Frege systems and each other. 

5.3.1. Frege Systems without the Substitution Rule 

Recall from subsection 4.2.1. that a Frege system is 

an implicationally complete system F=<K,~>, where K is an 

adequate set of connectives and ~ is a finite set of . sound 

rules of inference in the connectives K. 

The proof that any two Frege systems simul~te each 

other will proceed in a series of easy stages. Paragraph 5.3.1.1. : 

introduces the notion of 11direct translation", and discusses 

some of the useful properties of direct translations. 

Paragraph 5.3.1.2. proves in a series of stages that if there 
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are direct transl~tions between the connectives of two Frege 

systems, then those systems simulate each other. Indirect 

translations and their properties are discussed in paragraph 

5.3 . 1.3. Finally in paragraph 5.3.1.4. it is shown that two 

arbitrary Frege systems simulate each other . 

5.3.1.1. Direct Translation 

In order to compare Frege systems that operate on 

formulas with different sets of connectives, a way must be 

found to relate formulas with different connectives. At least 

three such methods are employed in this thesis, the first of 

which is called direat translation. 

Let K l and K2 be sets of connectives, and for i=l,2 

let Y.. be the set of formulas in the connectives 
'l-

k . 
A~==*~ (pp ... ,p ) ' 

*~ 
-{ l 'l-} For l~j:>.k.' let where 'l-

K,- *·,••••*· •. n=n 
'l- 'l- 't 't -z. -z- n 

The formulas {A~Il ~j~k . } are called the primitive formulas of 
'l- 'l-

K. • 
'l-

If t:K1+K2 and a = 
Bl, ... ,Bn 

ql, ... ,qn 
is a substitution in K 1 , then 

t(a) = 
t(B1) . . . t(Bn) 

ql . .. qn 
is a substitution in K2. The function 

t:K 1 +K 2 is called a direat translation from K 1 to K 2 if there 

exists a polynomial p(n) such that for all formulas BEKz and 

for all substitutions a in K 1 , 

1) t(B)-B, 

2) it(B) ~p(iB), and 
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3) t(Ba)=t(B)t(a), provided that a does not change 

the . "distinguished" a tom p o. (The use of p o wi 11 

become clear later.) 

As an example, the first translations between {,,v} and {,,~} 

in paragraph 5.1.1.1. (not the ones that were onto) are examples 

of direct translations. 

Property 3 places several restrictions on a direct 

translation t. The first of these is that for any atom p, 

t(p)=p. This is true because p=p£, so that by property 3, 
p 

t(p)=t(p~)=t(p)t~p), which can only hold if either t(p)=p ·or 

p does not occur in t(p) . Property 1 insures that this second 

alternative cannot occur. The .second consequence of property 3 

is that t is complete~y determined by {t(A{) jlsjskl}. That is, 

if t(A{)=i'(A{) for lsjsk 1 , then for every B€K1, t(B)=t'(B). 

This fact is easily proved from property 3 by induction on the 

number of occurrences of connectives in B. 

*{ 
also imply that for l~jsk1 and for lsisn 

Properties 2 and 3 

p; occurs at most 
-z, 

once in t (A{). To see that this is so, let a 
A Jl. 

= and let 
P.' 

n times 
.~ 

B = ( .•• (A q a) ... ) a. 

one occurrence of p .. -z, 

t. 

Then tB = (n+l)~A{-ntp., since A{ contains 
-z, 

n times 
. -~ 

By property 3, t(B)=( ... (t(Aq)a') ... )a', 

t (A{) 
where a' = p. 

-z, 
If p. occurs r times in t(Aq), then p. 

t. -z, 
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l n+l n+l 1 occurs r times in t(B), so that lt(B)~r · . But by 

1 

f 

property 2, 1t(B):::;p(1B):::;p((n+l)1A{-n1p.):::;p((n+l)·a). where 
1-

c=1A~. This gives rn+l:::;p((n+l)·c), which must be true for fixed 

p, r, and c, and for arbitrarily large n. This can only be 

true if r:::;l. 

This last consequence of property 3 has two further 

consequences. The first is that if p is any atom in B, then 

the number of occurrences of p in t(B) is no greater than the 

number of occurrence~ · of p in B. This is proven by induction 

on the number of occurrences of connectives in B. The second 

is that if c = l~J~k 1 lt(A{)} then for any formula B€K 1 , 

1t(B):::;c•1B. This is also proven by induction on the 

substructure of B. Therefore, property 2 in the definition 

of direct translation could be strengthened without any· loss 

of generality to: 2') there is a constant c such that VBeK 1 , 

1t(B)sc•1B. 

The composition of two direct translations is a direct 

translation. That is, if t1 is a direct translation from K 1 

to K2, and t2 is a direct tranlsation from K 2 to Ks, then t 3 

defined by t3(B) = t2Ctt(B)) is a direct translation from K 1 

to K 3 • This is true because t3(B)=t2Ct1(B))-t 1 (B)-B, 

1t 3 (B)=1t 2 (t1(B)) :::;c2·1tt(B) :::;c z•cl•1B, and 
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There are several other properties of direct translations 

that will be used later. First is the obvious fact that if t 

is a direct translation from K 1 to K 2 , and if K 1 '~K 1 , then the 

restriction of t to formulas in K1' is a direct translation 

from K 1 ' to K 2 • Also, if t1 is a direct translation from K 1 

to Ka and t2 is a direct· translation from K 2 to K 3 , then t 1 

and t2 can be combined to give a direct translation from K1 uK 2 

to Ka. Consequently, if there is a direct translation from 

K 1 to K 2 , then there are direct translations both ways between 

K1UK2 and K2. 

Direct translations are very useful when they exist, 

but there is not always a direct translation from any one given 

set of connectives to any other. For example, there is no 

direct translation from {,,v,=} to {,,v}. The following 

development establishes one set of circumstances that guarantee 

the existence of a direct translation . 

If K i s any adequate set of connectives (with no 

restriction on the arities of the connectives), then there 

exists a direct translation .from Ko={r,F,,,v,c,~,&, 1,~,¢,~} 

to K. A careful and complete proof of this fact is rather 

tedious, so only a sketch will be given here . Since K is 

adequate, there are a tautology T and an unsatisfiable formula 

F that can be expressed in terms of the connectives K. 

Furthermore, T and F can be chosen so that the only atom in 

them is the "distinguished" atom p 0 • These will serve as the 

direct translations of T and F respectively, and will also be 

used when needed to give constant truth values . 
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A truth function (or a connective) f is called monotone 

if T1~T2 implies f(TI)~f(Tz), where T~T, F~F, F~T, and T1STz 

if and only if Vj T1(j)sT 2 (j) (T 1 (j) is the jth component of 

then-tuple of truth values T 1 ). It is easy to show that the 

composition of monotone functions is monotone, and that there 

exist tr~th functions that are not monotone. then, since K 

is adequate, K must contain a non-monotone connective. From 

this connective and the formulas T and F, a direct translation 

for ,p can be constructed. 

A truth function (or a connective) f is called even if 

f can be represented by a formula in the connectives {r,F,,,=,t}, 

and it is odd if it is not even. It is easy to show by induction 

on the representing formula that the number of T entries in the 

truth table for an even function is even. Note that the eight 

odd binary connectives are all in Ko. Again, it can be shown 

that the composition of even functions is even, and that there 

are truth functions that are not even, so that K must contain 

an odd connective *· It can then be shown that * along with 

T and F can be used to give a direct translation of one of the 

eight odd binary connectives. Since each of the eight odd 

binary connectives can be represented in terms of each of the 

others plus ,, direct translations for the other seven odd 

binary connectives can also be obtained. 

Although the existence of direct translations from Ko 

to any adequate set of connectives K is interesting for its 

own sake, there are several important consequences of this fact 

as well. The first of these is that if t is a direct translatio 

from K 1 to Kz and if K 2 is adequate, then there is a direct 

translation. t' from K 1 to Kz such that VBEK1, Vp. occurring in 
~ 
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B (except p 0 ), the number of occurrences of p. in t'(B) equals 
1., . 

the number of occurrences of p. in B, and ~t'(B)~~B. If K 1 1., 

contains some connective * that does not depend on all of its 

arguments, then t(*(p1 , ... ,p *))may not contain all of 
n 

{p 1 , .. . ,p *}. The translation t' puts back those dropped atoms 
n 

without cha.nging the truth function represented, This is done 

by using translations of formulas in K 0 • For example, if 

t(*(p1 , ... ,p *)) contains all of the atom$ of {p1 , ... ,p *} 
n n 

except pi' then t'(*(p 1 , ... ,p *)) could be the direct translation 
n 

of (t(*(p1 , ... ,p ))&(p.vr)). In this way it can be insured * 1., n 

that no occurrences of atoms are lost and that len~ths of 

formulas are never decreased by direct translations . 

The final property of direct translations is that if 

K 2 is adequate, and t is a direct translation from K 1 to K 2 , 

then there is a direct translation t' from K 1 to K 2 that is 

one-to-one. The trick here is to use translations of formulas 

in Ko to attach a unique "tag" to the translation of each 

primitive formula of K 1 , so that the translation may be uniquely 

reversed. Suppose T1 , . .. , Tk~ are distinct tautologies in the 

connectives K 2 built up using the distinguished atom p 0 • Then 

for each i + let t'(* 1 (p)) be the direct translation (from 

i + 
K0uK 2 to K2 ) of (t(*I (p))&Ti). Since these "tags" are 

distinct, it can now be proven by induction on the substructure 
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of B 1 and B 2 , that if t'(Bl)=t'(B 2 ) then B 1 =B 2 • Note that this 

construction does not conflict wit b the previous one, so that 

if K2 is adequate and t is a direct translation from K 1 to K2, 

it may be assumed without loss of generality that there is a 

constant c such that all of the following hold: 

1) t(B)-B 

2) £.Bs£.t(B)sc•R.B 

3) t (Bcr) =t (B) t (cr) , provid ~d cr does not subs t 1 tute for 

p o, and 

5.3.1.2. Frege Systems and Direc «::Translations 

In order for one Frege system to simulate another, a 

way must be found to extend the i. <leas of translation of formulas 

from the previous paragraph to the translation of inferences. 

The example in paragraph 5.1.1.1- showed how · this can be done 

in one particular example, and t 1--1.is paragraph shows how it is 

done in general. 

The method used here is c:;:;:a. bit different from the method 

that was used to show simulation~ between Mendelson's and 

Shoenfield' s systems. This meth <::>d applies to any pair of Frege 

systems F 1 =<K 1 ,~1 > and F 2 =<K 2 ,~ 2 > for which there are direct 

translations t 1 from K 1 to K 2 an.. d. -t; 2 from K 2 to K1. To show 

that P2 simulates P 1 , tautologie s in K 2 must be translated int 

K1 (via t 2), and derivations in system F 1 must be translated 

into derivations in system F 2 (V" ia some function h) in such a 

way that for any tautology A in the connectives K 2, 

and for any derivation D of t 2 (A-:) in system E1, h(D,A) is a 
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derivation of A in system F2. The derivation h(D,A) is 

constructed in two parts. The first is a translation of 

derivation D that gives a derivation of t 1 (t2(A)), and the 

second is a derivation of A from t 1 (t 2 (A)). The construction 

of the first part is described in lemma 5.3.1.2.a., and the 

second part is in lemmas 5.3.1.2.b.-d. These lemmas are tied 

together in theorem 5.3.1.2.e., the main result of this 

paragraph. 

LEMMA 5 • 3 • 1. 2 • a . 

a Frege system, and t is a direct translation from K 1 .to K 2 , 

then there are constants a1 and a2 such that whenever 

ri-I
1
A via D, there is a derivation D' such that: 

1) t(r) I-F
2 

t(A) via D', 

2) Q. 8 D ' s a 1 • Q. 8 
D , and 

Proof 

Let JC1 = {R 1 =6 1~B 1 , ... ,Rk=6k~Bk}. Since the rules 

of ~1 are sound, 6.f=B. , and since t(B)~B, t(6.)F=t(B.), for 
t. t. t. t. 

lsisk. Then, since F2 is implicationally complete, there are 

derivations Di such that t(6 .)1- F t ( B.) via Di, for l~isk. 
t. 2 t. 

max 1-Di 
a 3 = lsisk ' and a,. = max 1-aD i. 

ls:isk 

Also, let as be a constant such that Q.t(B)sa 5 •Q.B . The required 

derivation D' is constructed from D by replacing each formula 
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is the set of formulas from which c is inferred in D. In 

particular, suppose that C is inferred from 6c by substitution 

t(6. )t(ac)=t(6. ac)=t(6c). If D' is constructed in this way, 
'~-c '~-c 

then t(f)f-F
2
t(A) via D'. Also, t 8 D' = L: i 8 D and iD' = L: 9-D CeD C' CeD C' 

not specify a substitution for any atom not in 6. u{B. }, 
1-c t-c 

i 
Then~ !DC = 9-D Ct(aC) ~ 

is one greater than the number of formulas in D of which C is 

an immediate ancestor. Then, since kc~d(D)+l, 

¥-· (d(D)+l) • (iD+tr) ~ a2 •d(D) • (iD+.tf). OOS.3.1.2.a . 

As was pointed out in the example of paragraph 5 . 1 . 1.1., 

a result like lemma S.3.1.2.a. is not enough to insure that 

system F 2 can simulate system I 1 , because t need not be onto. 
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In that example, it was possible .to make t onto, but in general 

this may not be possible. The following three lemmas give an 

alternative way of solving this problem. The method used is 

to "undo" the translation t by means of another translation 

and further inferences in system F2. These further inferences 

are described in lemmas 5 . 3.1.2.b . and 5.3.1.2.c., and their 

use in conjunction with a translation from K 2 to K 1 is described 

in lemma 5.3.1.2.d . 

LEMMA 5 • 3 • 1. 2 . b . 

If K is adequate and t' is a direct translation from 

K to K , then there are an inference system I < K,~> and constants 

b 1 and b 2 such that for every formula A in the connectives K 

there are derivations D1 and D~ such that: 

Proof 

1) A f- I t ' (A) via D 1 , 

2) t'(A) f--I A v i a D 2 , and for i=1,2, 

. (J 

4) tD . :;;; b 2 • t A • tA , and 
t. 

5) d(D.)=l. 
t. 

Since K is adequate, there is a formula ~(p,q) in the 

connectives K such that E(p,q) ~ (p=q). Let b3•t~(p,q) 

b 4 =ta~(p,q), and let bs be the constant such that tt'(A)~bs•!A. 

* v For each connective *EK, let A =*(p1 , ... ,p *) (e.g. A =(p 1 vp 2 ), 

n 

the rules 



·.,:. 

i 
l 

1 
l 
l 

1 
1 

- l3 4-

1) -..ft(p,p), 

z) { E (p, q) , p} -+q, 

3) {E(p,q),q}-+p, and 

4) for each connective *: 
ql .. . q * 

{E(pl,ql), ... ,~(p ,,q )}-rt(A*,B* n ). 
"" * pl ... p n n * n 

Since E represents equivalence and t'(A)~A, these rules are 

clearly sound, so that I= < K, rR > is an inference system. For 

any formula A in the connectives K, let DA be a derivation of 

~(A,t'(A)) in the system I, defined inductively as follows: 

1) if A is an atom p, then DAis E(p,p), by rule 1, and 2) if 

B 
A 8 1 * A is *(B1 , ... ,B .), then D is D ... D n !(A,t'(A)), the last . 

n 

formula of which follows according to rule 4* under the 

B1 ... B *.t'(B1 ) ... t'(B *) 

substitution o = n n Note that 

where b 6 = b 3 +b~(l+b 5 ). Let k be the maximum arity of any 

connective in K, so that ~aA~k~cA. This implies that 

rule 2) and let D2 be DAA (which follows by rule 3) • Then, 

A ~I t' (A) via D 1 ' t '(A) I-I A via D 2, and for i=l,Z, 

~sD . l+~sDA l+(k+l)·~aA ~ ::; 

" 
s; a b 1 ~ ~ A, \Y"here bt=k+Z, 
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R.D. s i 8 D.•(length of longest formula in D.) s 
~ ~ ~ 

OOS.3.1.2.b. 

LEMMA 5 . 3.1.2.c. 

If F= <K , Jt> is a Frege system , and t' is a direct 

translation from K to K, then there are constants o 1 and o2 

such that for every formula A in the connectives K there are 

derivations D 1 ' and D2' such that: 

Proof 

2) t'(A) 1-p A via D2', and for i=l,2 

3) R. 8 D . ' s o 1 • i 
0 

A , and 
~ 

4 ) tD . ' s a 2 • t a A • tA • 
~ 

Since K is adequate, lemma 5. 3 .1. 2. b. applies, ·so let 

I, b 1 , b 2, A, D1, and D2 be as stated in that lemma. By 

lemma 5.3.1.2.a., with I1=I, F2=F, and t the identity function, 

there are derivations D1' and D2' such that: 

1) A I-F t' (A) via D1 ', 

2) t ' (A) 1- F A via D 2 ' , and for i = 1 , 2 , 

s a 2 • 2 • 9.,D. ·1 
'l. 

s 2 • a 2 • b 2 • i a A • R.A 

005 . 3. 1. 2. c . 
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· LEMMA 5.3.1.2.d. 

a Prege system, t 1 is a direct translation from K1 to K 2 , and 

t 2 is a direct translation from Kz to K1, then there are 

constants e 1 and ez such that whenever tz(r) 1-I t 2 (A 0 ) via D 

there is a derivation D" such that: 

1) f t-F Ao via D" 

Proof 

Let e3 be a constant such that it 2 (A) ~e 3 ·~A. Then, 

by lemma 5.3.1.2.a., there is a derivation D', where 

Let f={A 1, ... ,Ak}. Then, since t1ot 2 is a direct translation 

from Kz to Kz, by lemma 5.3.1.2.c. there are derivations 

1) t 1 ( t 2 (A o }~ 1- F A o via DO , 

2) A. 1-p t1Ctz(A.).) via D. (l:;;i~k), 
~ ~ ~ 

3) i 8
D. 
~ 

~ 
a a1ot A. 

~ 
(O :;;i~kL and 

4) R.D. 
{J 

~ a 2 • t A • • R.A •• 
~ ~ ~ 

Then, if D"=D 1 . .. DkD'D
0

, r I-F A via D ". Also, 
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9.-D" :5 c 2 • 9. 
0 

A 1 • 9.-A 1 + ••• +a 2 • i c A k • 9.-A k +a 2 • e 3 • ( 9.-D +if) • d (D)+ c 2 • i c A o • 9.-A o 

:5 e 2 •[(tD+if)•d(D)+9.af·if+iaAo•iA 0 ], where e 2 =c 2 +a 2 •e 3 • 

1Xl5.3.1.2.d. 

The groundwork has now been laid so that the main 

result of this section can be proved. 

THEOREM 5.3 .1.2.e. 

is a direct translation from K 1 to K 2 , and t 2 is a direct 

translation from K2 to K1, then F2 p-simulates F1. Furthermore, 

if F 1 is polynomial-bounded by a polynomial of degree r, then 

F2 is polynomial-bounded by a polynomial of degree no more 

.than 2r. 

Proof 

Let g=t2;, and let h(D,A)=Du if I-F
1 

t 2 (A) via D, 

(where D" is the derivation described by lemma 5.3.1.2.d.), 

and if it is not true that I-F
1 

tz(A) via D, then let h(D,A)=O. 

By lemma 5.3.1.2.d. (with r empty), I-F
2 

A via h(D,A), and 

9.-h(D,A) :5 e 2 •(9.D+9.A) 2
• Also, F 2 (h(D,A))=A whenever P 1 (D)~t2(A). 

Thus, system Fz simulates F1. Also, note that gef:Jr, and a 

close look at the proof of lemmas 5.3.1.2.a-d. shows that 

he f:;} also. Therefore F 2 p-simulates F 1 • ~S.3.1.2.e. 

Theorem S.3.1.2.e. leads _immediately to the following 

corollary. 

; . 
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COROLLARY 5.3.1.2.£. 

Let c be any class of adequate sets of connectives such 

that there exist direct translations between any two sets in C. 

Then, any two Frege systems with connective sets from c can 

p-simulate each other. 

Examples of such classes c are: 

1) all adequate subsets of K 0 ={r,F,~,v,c,~,&, I ,p,¢,~}, 

2) all adequate subsets of K 0 u{=,7} that contain either 

= or ~' a~d 

3) all adequate subsets of KoUK that include K as a 

subset (where K is any set of connectives). 

5.3.1.3. Indirect Translation 

Direct translations between certain pairs of adequate 

sets of connectives do not exist. For example, there is no 

direct translation from {,,v,=} to {,,v}. In particular, there 

is no formula in the connectives {,,v} that both is equivalent 

to (p:=q) and contains only one occurrence of each of p and q. 

Therefore, the requirements for direct translations are too 

strict, and one of them must be dropped. The first two 

requirements are essential, and dropping the third requires 

giving up a great deal of convenience in working with these 

translations. 

Let K 1 and K 2 be sets of connectives, and let K1 and K2 

be the corresponding sets of formulas. A function t:K 1 ~K2 is 

·called an i ndireat translation from K 1 to K 2 if there is a 

polynomial p(n) such that for all formulas BEK 1 , 
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1) t(B) ~B, and 

2) tt(B) ~p(tB). 

Note: For the indirect translations considered in this thesis, 

the condition t£~ is also satisfied. 

All direct translations are also indirect translations, 

and it was Spira who first showed the existence of an indirect 

translation between sets of connectives where no direct 

translation is possible [Spira 1971]. Spira's method may be 

extended to show the existence of indirect translations from 

any set of connectives to any adequate ~et of connectives. 

But since direct translations exist from Ko to any adequate 

set of connectives, the indirect translations of interest are 

those translations from other sets of connectives to K 0 • 

Let K be an arbitrary set of connectives, let K be the 

set of all formulas in the connectives K, and let k be the 

maximum arity of connectives in K. Thus, K is a set of trees 

whose maximum branching degree is k. A particular indirect 

translation from K to Kl={r,F,,,v,&} will be described here 

and used throughout this and the following paragraph. 

Let A be any formula in K. If no atoms occur in A or 

if A contains one atom occurrence, then let t(A) be either 

r, F, p, or ,p, whichever is equivalent to A. If A contains 

n>l occurrences of atoms, then let C be the subformula of A 

that contains nearest to ~n occurrences of atoms. (Ties are 

resolved according to some arbitrary set of rules such as: 

if A has a subformula of size }n+x and another of size }n~x, 
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choose the one of size in+x; and if A has several subformulas 

of size s, choose the leftmost.) The number of occurrences 

of atoms in C must be between k~l and ~:l. This is true 

because if D is a subtree of A with more than ~:1 . occurrences 

of atoms, then since the degree of the root of D is at most k, 

one of the subtrees of D must contain more than ~ occurrences 

of atoms. 

Let B be the formula with one occurrence of the new 

atom p such that A=Bc. Then, not counting p, the number of p 

occurrences of atoms in B is also between k~l and ~:q. Note 

It is clear from this construction that t(A)-A. To 

show that there is a polynomial p such that tt(A)~p(tA), let· 

f(n)=max{tat(B)ItaB~n}. ·clearly, f(l)=l, and f is nondecreasing. 

k•n For n>l, it is certainly true that f(n)s4f(r+r), which leads 

to the solution 

z · 
k+l 

logz~ Zk 
f(n)~n ~n , 

because of the following lemma. 

LEMMA 5.3.1.3.p. 

This last inequality holds 

For integers k~2, (k+l)k~zkk. 
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Proof 

By the binomial theorem, 

k k k . 
(k+l) = E ( .)k-z­

. 0 1--z-= 

Zkk 
k-2 . 

= + r (~)k-z-
. 0 'l--z-= 

~ Zkk 

From this it can be concluded that ~ 
1 

~ z"K , 

}, which ~mplies that 2k+l s 2k . 
Zogz"T 

1815. 3. 1. 3. a. 

so that 

For k=2, this 

gives an upper bounq on f(n) of n~. Pratt [Pratt 1974) has 

shown by a more careful analysis that f(n) is in fact 

O(nZog 3 lO), or about O(n 2 · 095 ), which nearly equals 

Khrapchenko's lower bound of n 2 [Khrapchenko 1971]. Pratt's 

analysis is specific to the case k=2, but a similar analysis 

for k>2 would probably yield upper bounds nearer to k n • 

Finally, since tt(B) is bounded by some constant times 

tat(B)·~B, the bound (admittedly very loose) tt(B)sa•(tB) 2k+l 

is obtained. 

. .. 
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5.3.1.4. Frege Systems and Indirect Translations 

K be an arbitrary adequate set of connectives, and let ~=KuK 1 • 

Let k be the maximum arity of connectives in ~. By corollary 

5.3.1.2.£. all Frege systems in the connectives ~ and K can 

p-simulate each other. Thus, in order to show that any two 

Frege. systems can p-simulate each other, it is sufficient to 

show a Frege system with the connectives K 1 and another system 

with the connectives ~ that p-simulate each other. 

Let F= <K .£ > be a Frege system, and let P=<~ ,f<v > be 

the Frege system obtained from F by the addition of sufficient 

new rules to make I implicationally complete. See, for exampl~, 

the proof of lewna 5.3.1.2.b. Let t be the indirect translation 

from ~ to K 1 as described in paragraph 5.3.1.3. A Frege system 

F 1 =<K 1 ,~ 1 > can be obtained from Shaenfield's system for {,,v} 

with the addition of rules for {r,F,&} as in the proof of 

lemma 5.3.1.2.b. Also, let Fo=<Ko,dto> be an arbitrary Frege 

system in connectives Ko. Finally, let l(p,q) and 1(r~s) be 

formulas in the connectives K 1 such that. ~(p,q.)-(p=:q) and 

I(r,s)'""(r=>a). For example, ~(p,q) could ·be ((p&q)v(,p&,q)), 

and 1(r,s) could be (~rvs). The notation defined here will 

be used throughout paragraph 5.3.1.4. 

Lemmas 5.3.1.4.a-d. will show hmo~ P p-simulates F 1 • 

LEMMA 5 • 3 • 1. 4 • a • 

There are an inference system I~<~,~> and constants 

a1 and a2 such that for every formula A in the connectives ~, 

there are derivations D1 and D2 such that: 
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1 

Proof 

1) A 1- I t (A) v ia D 1 , 

2) t (A) 1- I A via D2, and for i=l,2, 

3) t 8 D. 3k s a 1 • (tA) , 
'Z. 

4) 9..D. $; a 2 • ( 9..A ) 5 k + 1 , 
'Z. 

5) d (D.) 
'Z. 

= 1. 

-
LetR contain the following rules: 

1) -+ t(p,p), 

2) ~(p,q),~(q,r) -+ ~ (p, r) , 

3) ~(p,q) -+ · ~(,p,,q), 

4) ~(p,q),p -+ q, 

5) ~ (p, q) ,q -+ p, 

6) t(p,q),!(p,r)-+ 1(q,r), 

7) + 1(p,t(q,q)), 

B) .... 1(p,~(r,p)), 

9)-+ !(,p,t(f,p)), 

10) !(p,t(q,r)),~(q,s) -+ 1(p,t(s,r)), 

11) 1(p,t(q,r)),1(,p,E(s,r)) + E(r,((q&p)v(s&,p))), 

-
and for each connective *e~, dG contains the rules: 

*· -+ i-1 12) for each lsisn , and for each UE{T,f} and 

~ -+ -+ + -+ -+ ~(*(u,p.,v),t(*(u,p.,v))), and 
1- 'Z. 

13) 1(p,t(q1 ,rt)), ... ,!(p,E(q *'r *)) -+ I(p,~(*(q) ,*(~))). 1 

· n n 

All of these rules are sound, so that I is in fact an inference 

system. 
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Derivations D1 and Da both are built from a derivation 

D, where t- I ~(A, t (A)) via D. In fact, each is only one step 

longer than D, D1 using rule 4, and Dz using rule 5. Derivation 

D is constructed recursively on the number of occurrences of 

atoms in A. 

If A contains no atoms or one occurrence of an atom, 

then rules 1, 2, 3, and -12 .can be used to derive E(A,t(A)) in 

a number of steps bounded by twice the number of occurrences 

of connectives in A plus one. 

If A contains more than one occurrence of an atom and 

t(A) is ((t(Bl)&t(C))v(t(BE)&,t(C)), assume inductively that p p 

0 + d D , D , an D are derivations of ~(C,t(C)), ~(B~,t(B~)), and 

~(BE,t(Bf)), respectively . If there were derivations D++ of 
p p 

%Cp ,~(BPT,B)) and D-- of J(,p,~(BF,B)), then D++~ would be a 
p p 

derivation of i(C,~(Bl,A)), and D--~ would be a derivation of 
p p 

1(,C,E(BE,A)). Applying rules 6 and 3 to each of these formulas 
p 

plus ft(C,t(C)), gives i(t(C) ,E(Bl ,A)) and i(,t(C),~(Bf,A)) in 
p p 

3 steps. Two applications of rule 10 give 

and 1(,t(C),~(t(BE),A)), and one application of ru~e 11 yields 
p 

~(A, ((t(Bt)&t(p))v(t(B~)&,t(C))))=E(A,t(A _)), as .desired . . The 

total number of steps in this derivation is six plus the numb 
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o o + - ++C --c . of steps in D D D D D -D -. 
p p 

Derivations D0
, D+, and D are 

derived inductively, and derivations D++ and D are 

constructed, using rules 7, 8, 9, and 13, by induction on the 

number of occurrences of connectives in B, the total number 

of steps being bounded by some constant a times that number 

of connectives. 

_Let f(n) be an upper bound on the number ·of steps in 

the derivation D over all formulas A of length no greater than 

>r. 
k•n Then f(l)=l, and for n>l, f(n)~6+4•f(k+T)+Z•c•n. Using 

lemma 5.3.1.3.a., it can be shown that f(n)5.2·c·n 3k. Finally, 

note that each formula in D has length bounded by some const~nt 

Each formula in the entire derivation is used only ~nee, so 

d(D)=l. ~5.3.1.4.a. 

Lemma 5.3.1.4.a. leads immediately to the following 

lemma. 

LEMMA 5 . 3 . 1. 4 . b . 

There is a Frege system F=<~,~> and there are constants 

b 1 and b 2 such that whenever t(t.) t-Fi t(A) via D 1 there is a 

derivation D2 such that: (Note - D. is any set of formulas in K-I 

1 ) 11 1-~ A via D 2 , 

F 

2) ~8D2 5. b1o(~8DI+(~I1) 3k+(£A) 3k), and 

3) ~D2 ~ b2·(~D1+(t/1)Sk+l~(tA)Sk+l). 
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Proof 

Let dt= UG1 u R , where ~ is the set of rules from 

lemma 5.3.1.4.a. If ~={B 1 , ••• ,Bm}, then by lemma S.3.1.4.a., 

h d . . 1 m h h t ere are er1vat1ons D , .•. ,D sue tat for l~i~m 

• Di v-z.a , 

2) t 8 Di ~ at•(tBi) 3k, and 

3) . tDi ~ az. (tBi) Sk+l . 

Also, there is a derivation D0 such that 

t(A) ·1-_ A via D0 , tsDo ~ a1 ~ (tA) 3k, and tD 0 ~ a 2 • (tA) Sk+l ~ 
F 

S~nce Dt is already a derivation in the system F, the desired · 

1 m o · · · derivation D 2 is just D ••• D D 1 D , and the .lemma follows, 

~5.3.1.4.b. 

LEMMA 5 • 3 • 1. 4 • c . 

System F of lemma 5.3.1.4.b. p-simulates system F 1 • 

Proof 

Let g(A)=t(A), and let h(D1,A)=D2, if \-F
1 

t(A) via D1, 

where D2 is the derivation whose existence is guaranteed by 

lemma 5.3.1.4.b. (where~ is empty); and if it is not true 

that I-F
1 

t(A) via Dt, then let h(D1 -,A)=O. By lemma 5.3.1.4.b , , 

th(Dt,A) ~ bz(tDl+(tA)Sk+l) = q(tDl,tA), and F(h(Dl,A))=A · 

whenever F 1 (DI)=g(A). Also, tg(A)~e· (tA)Zk+l, and g,hEf::J.. 

Therefore F p-sirnulat~s F1. OOS.3.1.4.c. 

Since p-simulation is transitive, lemma S.3.1.4.c. and 

theorem 5.3.1.2.e. can be combined to give the following. 
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LEMMA 5 • 3. 1. 4 • d. 

Every Frege system F p-simulates F1 and F0 • 

That is, the adequate sets of connectives of arity no 

greater than two which do not include = or ¥. form a "core"p 

and any Frege system whose connectives are one of these "core" 

sets can be p-simulated by any other Frege system. What remains 

to be shown is that these "core" systems can p-simulate the 

others. 

The proof that F 1 p-simulates P will be similar to the 

development in paragraph 5.3.1 . 2., but since there may be no 

direct translation from~ to K 1 , some new arguments will be 

needed. In particular, the analog of lemma 5. 3.1.2.a. will 

have to work when t is an indirect translation, rather than 

a direct one. The analog for indirect translation of lemma 

S.3.1.2.b. has already been established by lemma 5.3.1.4.a. 

The proof of the analog of lemma 5.3.1.2.a . is rather involved, 

and will be built up by a series of stages. 

LEMMA 5 • 3. 1. 4 • e . 

There is an inference system I=<K 1 , fL .'> and there are 

constants e 1 . and e2 such that for any formula A in th~ 

connectives ~ and for any subformula E of A and formula G 

(with one occurrence of q) such that GE7A, there is a 
q 

derivation D such that 

1) 1-I ~(t(A),((t(Gl)&t(E))v(t(GE)&,t(E)))) ,_vi~[)·, 
. q q 

I 
i 
~ :..-..c_....;..,_.,_ 

0 
I 
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4) d(D)cl. 

Proof 

The idea of the proof is to recursively build a 

derivation D of E(t(h),((t(GT)&t(E))v(t(GE) &,t(E)))). Clearl.y, q q . 

if A contains no more than a certain small finite number n 0 of 

occurrences of atom~, then if I contains a rule for each of 

the finite number of possible cases, t4e required derivation 

can consist of a single step. 

Let the number of occurrences of atoms in A be n>n 0 , 

and let c be that subformula of A such that A=BC and p 

t(A)=((t(B~)&t(C))v(t(B~)&,t(C))) • . If C=E. and. G=B~, then the 

requiTed derivation is the single-step instance of the rule 

E(p,p). Otherwise, there are three possible cases: 

1) E is a subtree (subformula) of c, or 

2) c is a subtree of E, or 

3) c and E are disjoint subtrees of A. 

E In case 1), c can be written as H1-, and G can ~e written as q 

B~. Pictorially, this is 
p 

G A 

Let D1 , D2
, and D3 be the following three derivations (derived 

recursively): 

•' 
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~(t(C),((t(H 1 l)&t(E))v(t(H 1 E)& , t(E)))) q q via 

~(t(cl),((t(Bl)&t(H 1 1))v(t(Bf)&,t(H 1 l)))) q p q p q 

~I ~(t(cE),((t(Bl)&t(H 1 E))v(t(BE)&,t(B 1 E)))) q p q p q 

Dl , 

via D2 
' 

and 

via D 3 . 

The desired conclusion of the derivation D is inferred from 

these three equivalences by an instance of the sound inference 

rule: R 1: 

. . ·i(~,((v&u)v(w&,u))),E(s,((p&v)v(q&,v))),~(t,((p&w)v(q&,w)))) 

+ l(((p&r)v(q&,r)),((s&u)v(t&,u))). 

Cases 2 and 3 pictorially ar~·: 

case 3 
"' 

j B G r A 
A 

E~ 

l 
Case 2 is similar to case 1' and gives rise to three recursively 

derived derivations, from which the conclusion of D can be 

inferred by an instance of rule Rz : 

~(u,((x&r)v(y&,r))),l(p,(s&x)v(t&,x))),E(q~((s&y)v(t&,y))) 

+ E(((p&r)v(q&,r)),((s&u)v(t&,u))). 

Case 3 gives rise to four recrusively derived derivations, 

from which the conclusion of D can be derived by an instance 

of rule R3 : 

E(p,((v&u)v(w&,u))),~(q,((x&u)v(y&,u))),E(s,((v&r)v(x&,r))), 

i(t,.((w&r)v(y&,r))) + E(((p&r)v(q&,r)),((s&u)v(t&,u))). 

•' 
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Therefore, the inference system I must contain rules 

R 1 , R2 , and R3 , rules for each of the cases when nsn 0 , and the 

rules +!(p,p). Each formula in D is bounded in length by 

some constant c • ! t(A), and d(D) =1, by this construction. 

To show a polynomial upper bound on the number of steps 

of D; it is necessary to consider two levels of recursion at 
.,_ 

once. -Let f(n)=ma~ {t8D[taA$n, and D is constructed by this 

method}. Then, f is nondecreasing, and if no=l, then f(l)=l. 

For n~Z it is necessary to consider a second level of recursion. 

This involves an analysis of a tota l of nine cases, one of 

w4ich will be analyzed here as an example. 

s 1 k •n If case 1 holds, th~n 1 D $f(I+T), because the number 

· · n · k•n 
of occurrences of atoms in C must be between f+r and k+f' by 

virtue of the fact that t is the indirect translation. The 

number of occurrences of atoms in ci and .GE, however, may be 
q q 

as l.a.rge as n-1, so a second level of· recurs ion must be 

considered for them. Since the formulas involved in derivations 

D2 and D3 are the same except for the interchanges of some r's 

and F's, they will have the same length . ·consider D2
, and 

assume that case 1 again holds, so that 

t(GI)=((t(B'I)&t(C'))v(t(B'E)&~t(C'))), where H1 I is a subtree q r r q 

of C'. Pictorially, this is 
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( 
I 

8 "<, 

l 

Recursively, this calls for three derivations D21 , D22 , and 

D23 where , 
I- I c.: ( t ( c t) , ( ( t (H 1 1 I) & t (H l I)) v ( t (B 1 1 E) & , t (B 1 I))) 

p q p q 

~I ~(t(Bl),((t(B'l)&t(B 11 l))v(t(B'E)&,t(H 1 tl))) via D22 , and p r p r p 

But now let n' be the number of occurrences of atoms in oi. 
q 

Then, since C' is chosen by the t function, the number of 

occurrences of atoms in C' is n' · k•n' between K+f and ~, and since 

k•n n'<n, this is less than f+I• Similarly, the number of 

I E n k•n occurrences of atoms in Bp and BP is between K+I and f+T' so 

that the number of steps in each of D21
, D22

, and D23 is no 

k•n greater than f(f+T). This implies that 

The analysis for the other eight cases is similar, the worst 

case being case 3.3 which gives 
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Therefore, any function g satisfying 

g(l)?;l, and 

k g(n) ?; 3+10g(k+Tn) (n~2) 

gives an upper bound for f(n). One such function is g(n)=n 4k, 

3 10 ( k )4k [~+lO·(~+ )4k]•n4k + 0 r+Tn = 'tK K T .L 
n 

s [~+10•((~)k)4]· n4k 

3 1 4 4k 
s [ro+lO· (z) J ·n (lemma 5.3.1.3.a.) 

Therefore, ~8D~(~A) 4 k, so that tD $ a·~t(A)·~8D ~ a•(tA) 6k+l. 

. LXJS.3.1.4.e. 

LEMMA 5. 3. l. 4 • f. 

Lemma S.3 . 1.4.e. still holds, even if the inference 

system I is replaced by Frege system F 1 • 

Proof · 

This is an immediate consequence of lemma 5.3.1.2.a., 

where the direct translation from K1 to Kt is the identity 

function. 005.3 . 1.4.f. 

Lemmas S.3.1.4.e. and 5.3.1.4 . f. form the crucial link 

in the simulation of system fr by system F1 . Now the simulation 

may proceed by analogy with the proof of lemma 5.3.1.2.a., 

with indirect translation here playing the r81~ that direct · 

translation played there. 
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LEMMA 5 • 3 • 1. 4 • g • 

There are constants g 1 and g 2 such that whenever 

r r-P A via D there is a derivation D' such that: 

1) t(r) ~F 1 t(A) via D' , 

2) ~8D' $ g 1 ·(~f+i'..D) 4k+l.d(D), and 

3) i'..D' $ g2·(~f+i'..D) 6k+Z.d(D). 

Proof 

The proof proceeds analogously to lemma 5.3.1.2.a. 

For each formula BinD, derivation D' has the formula t(B). 

For each inference rule R.e~~ where R.=A.~B., let Di be a 
~ ~ ~ ~ 

derivation in system P 1 such that t(6..) ~F t(B.) via Di . 
~ 1 ~ 

Now suppose that B is inferred from ~ in D by substitution a 

in ruleR .. Then, B=B.a, ~=6..a, and each formula in~ either 
~ . ~ ~ 

is a hypothesis of D or appears in D before B. Let n8=nit(a), 

so that t(6..)t(o) r-F t(B.)t(a) via DB. Unlike the case in 
~ 1 ~ 

lemma 5.3.1.2.a., insertion of DB in place of B is not 

sufficient to make D' the desired derivation. This is because 

t is an indirect (rather than a direct) translation, so that 

t(B .) t(o) is not necessarily the same formula as t(B.a) . In 
~ . ~ 

fact, what must be done is that t(B.a) must be derived from 
~ 

t(B.)t(a), and for each C.€6.., t(C.)t(a) must be derived from 
~ J ~ J 

t(C .a). 
J 

I. 
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This is where lemmas 5.3.1.4.e. and 5 . 3 . 1.4~£. come 

in. Remember that since F has only a finite number of finite 

rules of inference, B. (and each C.E~.) is one of a finite 
~ J ~ 

number of formulas for which these derivations must be 

constructed. Only the substitution a is allowed to vary 

arbitrarily. To derive t(B.a) from t(B.)t(a), a derivation 
~ ~ 

of ~(t(B.a),t(B.)t(a)) is constructed by recursion on the 
~ ~ 

number of occurrences of atoms in B . . Consider first the case 
~ 

where B . contains no occurrences of atoms. In this case 
~ 

B.a=B. and t(B.)t(a)=t(B.)=t(B.a), so that the desired derivation 
~ ~ ~ ~ ~ 

is just an instance of the standard derivation of the tautology 

E (p ,p). 

Suppose that B. contains at least one occurrence of 
~ 

the atom p, r is a new atom, and a substitutes C ~or p. Then , 
~ 

there is a formula B . with one occurrence of r such that 
~ 

~ D ~ C 
B.=B.~, and B.a=B .a-. 
~ ~r ~ ~ r By lemma 5.3~1.4.f., let D0 be a 

derivation of ~(t(B.a),((t(s.ai)&t(C))v(t(B.aE)&,t(C)))). 
~ ~ r ~ r 

Since 8.I and s.E contain one less occurrence of atoms than 
~r ~r 

B., assume as inductive hypothesis that there exist derivations 
~ 

re?pectiv~ly. From ~hese three eqqivalences (noting that 
' ' . 

8.ai. = 8.Ia), ~(t(B.a),((t(s.I)t(a)&t(C))v(t(B.E)t(a)&,t(C)))) 
~ r ~r ~ ~r ~r 

can be derived in a fixed number of steps. (In effect, equals 

1~-~tili~~ .. ~. -~!l5a!i!llfim!!:C\!&5~~~~· ~'1;1;~~~· --.;:..-=·ro;;:Jc'C';;:g,:.:;;;;;;r.:c"'"~~~~~t~ 
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have been substituted for equals.) But this last equivalence 

is the same as E(t(B.cr),((t(B.l)&p)v(t(B.E)&,p))t(cr)). 
~ ~r ~r 

Applying lemma S.3.1.4.f. again, let D" be a derivation of 

i(t(B.),((t(B.l)&p)v(t(B.E)&,p))) , so that D"t(a) is a 
-z, -z, r 'l-J' 

derivation of E(t(B.)t(a),((t(B .I) &p)v(t(B.E)&,p))t(a)). These 
-z, 'l-r 'l-r 

last two equivalences lead to a derivation of 2(t(B.a),t(B.)t(a)) 
'l- 'l-

in a constant number of steps. 

To analyze the length of this derivation, first observe 

that every formula in it is bounded in length by some constant 

e times it(B.o). Then, note that the number of steps in D" is 
'l-

fixed because B . is fixed, and that the number of recursion 
'l-

steps in derivations D+ and D- is also fixed, since at each 

level of recursion the formula into which a is being substituted 

has one less occurrence of atoms than at the previous level, 

and again since B . is fixed. Thus, the total number of steps 
'l-

in this entire derivation is bounded by some constant d times 

the number of steps in D0
• By lemma 5.3.1.4.£., this quantity 

is bounded above by d•e 1 •(iB .o) 4k. 
'l-

Putting this derivation together with similar derivations 

for Cjo for each CjE~i' and with DB, gives a derivation DB of 

t(B);t(B.a) from t(6.cr)=t(6), such that there are constants 
'l- 'l-

8 "' 4k d (independent of cr) g 1 and g 2 such that i DB s g 1 o(i~+~B) an 

6k+l iDB s g 2 • (i6+iB) . Putting together these derivations DB 

.. T:#t'd1 sf .... ' 
.. 
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for each formula B in D gives the derivation D' such that 

t (f) f- F 
1 

t (A) via D ' , 

8 4k+l 
R. D' ~ g 1 • (~r+2.D) ·d (D), and 

R.D' ~ gz•(R.f+R.D) 6k+Z.d(D), ®5.3.1.4.g . 

Lemmas 5. 3 .1. 4. g. and 5. 3 .1. 4·. a. can be combined to 

give the following. 

LEMMA 5 • 3 . 1. 4 • h • 

Frege system F 1 p- s imulates ~. 

Proof 

Since K 1 s~, g is the identity function. The function 

h is built using the constructions in lemmas S.3.1.4.g. and 

5.3.1.4.a. If f-_F A v ia D, then h (D,A) is D'D 2 , lvhere D' is the 

derivat i on (in system F1) of t(A) constructed by lemma 5.3.1 . 4.g. 

and D2 is the derivation of A f rom t(A) constructed by lemma 

S.3.1.4 . a. It is a routine matter to verify that g,hEIP:Jt and 

that F1 (h(D,A))=A whenever P(D)=g(A). 005.3.1.4.h. 

Combining this result with lemma 5.3.1.4.d. and the· 

transitivity of p-simulation, the main theorem of this section · 

is immediate. 

THEOREM 5.3.1.4.i. 

Any two Frege systems p-simulate each other . 
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S .i3. 2. · ·· Extended . Fr·eg·e·· By.s·.t ·em·s 

Cook has suggested (Cook 1975b] that althpugh the 

extension rule was introduced in conjunction with resolution, 

its use is really more natural with Frege systems. Let F=<K,~> 

be a Frege system, and let t(p,q) be any formula in the 

connectives . K such that l(p,q) ~ (p~q). Then, the extension 

Pule for F can be stated as follows: if p is any atom that 

does not appear in either the .hypotheses or the conclusion of 

a derivation D, and if p does not appear in any of the previous 

formulas in D, and if A is any formula not conta~ning p in the 

connectives K, then the formula 2(p,A) may be added to D. 

Stated another way, if rJFB via D then rj-eFB via D, and if p 

"' does not occur in f nor A nor B then iff, E(p,A) r FB via D 
e -

then r reFB via E(p ,A) D . 

. Clearly the extended Frege system : eF is implicationally 

complete, since all of the derivations of F are also derivations 

of eF. To see that eF is consistent, suppose that r,2(p,A)l=B. 

Since p has no occurrences in r, A, orB, it must also be ·true 

that r,2(,p,A) l=H. But l(,p,A) ~ ,t(p,A), so it must be true 

that r I=B ~ 

Since Frege systems are a special case of extended 

Frege systems, any extended Frege system p-simulates any Frege 

system. To see how extended Frege systems p-simulate one 

another, let F1= <K1,a:{.d> and. F2 <K2,dG2> be two Frege systems, 

and let t be a translation (either direct or indirect, as 

appropriate) from K1 to K2. The techniques of ~ubsection 5.3.1 . . 

can be used to show that the extension steps of a derivation 

.f can be simulated in a manner similar to the simulation of 
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inferences. To see how eF2 simulates eF 1 , suppose that 

r 1- F A via I:!.D, and 6 = E'l(pl,Al), ••• ,E'l(P PA) are the e 1 n n 

extensions used in D, so that r,6 I-F
1 

A via D. By lemmas 

5.3.1.2.a. and S.3.1.4.g. there is a derivation D', where 

t(r),t(A) I-F
2 

t(A) via D' and R..D' s p(if+iA+iD), for some 

polynomial p that depends only on F1, Fz, and t. Let 

6' = E2 (p 1 , t (A 1 )), • •• ·,Ez .(pn, t (An)) be the extensions in system 

eF2 corresponding to A. Applying lemma S.3.1.4.e. if t is 

indirect (if t is direct, the argument is much simpler), it is 

not hard to show that for l~i ~n there are polynomial-length­

bounded derivations D. such that ~ 2 (p., t (A.)) 1-F t (t 1 (p. ,A.)) 
'Z- 'Z- 'Z- 2 'Z- 'Z-

via D . . Combining these derivations with D' gives a derivation 
'Z-

D" , where t(r),fl ' I-F
2 

t(A) via D" and tD" ~ q(tr+t/:!.+iD), for 

some fixed polynomial q. This leads to t(r) 1- F t(A) via 6'D". 
e 2 

Finally, the translation t can be "undone" by the application 

of lemmas S.3.1.2.b. and/or 5.3.1.4.a., completing the proof 

of the main theorem of this subsection. 

THEOREM 5.3.2.a. 

If F 1 and F 2 are Frege systems, then the extended Frege 

systems eF 1 and eF 2 p-simulate each other. 

It was reported in an earlier paper [Cook & Reckhow 1974] 

that Frege systems can simulate extended resolution (which, as 

will be shown in subsection 5.6.3., is in the same p-simu~ation 

class as extended Frege systems), but that claim was withdrawn 

in the corrections to that paper. The argument used in that 
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paper is still valid, although the conclusions drawn from that 

argument must be changed. 

The argument was this. If r 1-eF A via 2(p,B)D, and 

2(p,B) is the tloutermost" extension in extended Frege derivation 

~ ~ B · 1!.(p,B)D, then r l-eF A via (1!.(p,B)D)p' since p does not occ·ur 

. . 
in r or A. But (E(p,B)D) 8 = E(B,B)D~. 

p p Thus, if I-F J(p,p) via Do, 

Cl B B B B then 1-F ts(B,B) via Do-p' so that f I- eF A via_ D 0::..V- = (DoD)-. 
p p p . 

Note that the number of extensions in (D 0 D)·~ is one less than 
p 

the number of extensions in l(p , B)D, and that only ~constant 

number of steps (the number of steps in D0 ) have been added. 

Applying this construction iteratively until ali extensions 

have been removed yields a derivation D' such that r 1-p A via D' 

extensions of E(p,B)D from outermost to innermost , then D' is 

B Bz Bl B1 Bz B 
Do_::, .. Do-Do-(. ; . (D-)- . . . ).2:. 

P P P P1 Pz Pn 

In order to show that F simulates eF, however, it must 

be shown that there is a polynomial p such that £D'sp(£D), and 

this is where the above argument fails. If for lsi~n, pi+l 

has two occurrences in B. (which certainly is possible), then 
1-

each occurrence of p1 in D will be replaced in D' by a formula 

n containing 2 occurrences of the atom p 1 . Since n may grow n+ 

.. 
' i 
( . 
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linearly with ~8 D, it must be concluded that ~D' need not be 

bounded by any polynomial in ~8 D' or ~D. 

The problem encountered here is similar to the problem 

from circuit theory of finding the smallest possible upper 

bound on the size of a formula that is equivalent to a given 

logical circuit. Equivalently, this is the problem ·of finding 

how much. increase in circuit size is necessary to go from a 

fan-out two circuit to a fan-out one circuit for the same 

logical function. There is a clear equivalence between formulas 

and fan-out one circuits. To see the relationship between 

circuits with fan-out greater than one and formulas represented 

in terms of extensions, consider the extension ~(p,B) and some 

formula A, containing several occurrences of p. The extension 

E(p,B) can be interpreted as giving the name p to the output 

f h . . f A . . f B b d b o t e c1rcu1t or B. c1rcu1t or A- can e constructe y p 

connecting the p output of the circuit for B to each of the 

p inputs to the circuit for A. The size of this circuit is 

the sum of the sizes of the circuits for A and B. 

Perhaps this argument shows that circuits are a more 

natural and more efficient way of representing logical functions 

than formulas are. If this is so, then extended Frege systems 

are perhaps mo!e natural than ordinary Frege systems. But 

this will not be known for sure until after the fan-out one vs 

fan-out two question is answered. 
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5.3.3. Frege Systems with Substitution 

Recall that an s-Frege system is a Frege system F=<K,~ > , 

to which has been added the substitution rule: if A is a formula 

in the connectives K, and a is a substitution in K, then Acr 

may be inferr ed from A. Also recall that the substitution 

rule is sound only if A is valid (or inconsistent), so that 

s-Frege systems do not admit derivations from hypotheses (unless 

all hypotheses are tautologies). Since Frege systems are a 

special case of s-Frege systems (for derivations without 

hypotheses), s-Frege systems p-s i mulate Frege systems. 

In this section it will be shown first that any two 

s-Frege systems p-simulate one another, and then that any 

s-Frege system p-simulates any extended Frege system . It seems 

unlikely that extended Frege systems can simulate s-Frege 

systems. Arguments supporting this conjecture are found in 

[Cook 197Sa]. 

let sF1 and sF2 be the corresponding s-Frege systems. If there 

is a direet translation from K 1 to K 2 , the arguments in the 

proof of lemma 5.3.1.2.a. go through unchanged if I 1 is 

replaced by s F1 and F2 is replaced by aF 2 • The only addition 

needed is to note that if, in D, aF 1 infers Ba from B, then 

sF2 can infer t(B)t(a) from t(B) in D'. Since t is a direct 
. 

translation, t(B)t(a)=t(Ba), so the simulation can continue 

as usual. Combining this observation with lemmas S . 3.1 . 2.b. 

and S.3.1.4.a . leads to the following. 

l
'l 

-~ ..::..-:~~~-h-·-·'r~~~~-~~.,....,"''l"'~--·--·.-··-· .. --.-·-----~--• ·-· 
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THEOREM 5.3.3.a. 

aF 1 and aF 2 are the corresponding s-Frege systems, and if 

either there are direct translations both ways between K 1 and 

The only difficulty with the above argument in the case 

where t is an indirect translation is that t(B)t~a) is not the 

same as t(Ba). Thus, to show that any s-Frege system 

p-simulates any other, it suffices to show the existence of 

a "short" derivation of ~(t(Ba),t(B)t(a)) in system F2 , where 

2(p ,q ) ~ (p:=q). 

LEMMA 5.3.3.b. 

If Kl={r,f ,,,v ,&}, t is the indirect translation from 

K to K1 , k is the maximum arity of connectives inK, an~ 

~(p,q) - (p:=q), then there is an inference system I=<K 1 ,~> 

and there are constants b 1 and b 2 such that for any formula B 

and substitution a in the connectives K there is a derivation 

D such that 

1) ~I ~(t(Ba),t(B)t(a)) via D 

2) ~sD $ bt·(~Bo)4k+l 

3) ~D s: bz • (~Bo) 6k+2 

4) d(D)=l. 

Proof 

The proof is based on a construction that recurses on 

the number of occurrences of atoms in B for which o makes a 

substitution. If B has no occurrences of atoms for which o 

makes a substitution, then Bo=B and t(B)t(o)=t(B), so that 

•' 
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t(Bo);t(B)t(a), and the required derivation is an instance of 

the rule ~~(p,p) . 

If B contains one or more occurrences of atoms, then 

let B' be the formula obtained from B by m~king every atom 

occurrence that o substitutes for a new distinct atom. That 

is, B ' is a formula with the atoms p 1 , .•• ,pn' each of which 

occurs exactly once in B', but not at all in B oro, and there 

q . q ..•• q. 

is a renaming o' = 
L-1 t-z t-n 

P1 Pz· · ·Pn 
such that B'o' = B. If 

c . . . . c . 
0 = 

c 1 .. . c ____ m and 8 = 
ql • • • qm 

o'o = t-1 t-n 
then Bo=(B'a')a=B'(a'o)=B'8. 

P1' .. pn ' 

Note also, that since the method of computing t(B) depends only 

on occurrences of atoms in a formula and not on whether some 

occurrences are the same atom, t(B)=t(B')o'. 

c . . .. c . 
Let a = 

t-1 · L-n-1 
a" = 

P1· • ·Pn-l 

and pn=p. Then, B=(B'a")~, Ba=(B'o)~, t(B)=(t(B')a")~, and 

t(B)t(a)=(t(B')o')t(o)=t(B')t(8)=(t(B')t(o))t(C). Since o p 

substitutes for n-1 occurrences of atoms in B', assume as 

induction hypothesis that a derivation D1 of 

~(t(B'o),t(B')t(o)) has been constructed. Th D t(C) . en, 1-- J.S a 
p 

derivation of ~(t(B'a)t(C) ,(t(B')t(a))t(C)), which is the same 
p p 

as ~(t(B'o)t(C) ,t(B)t(a)). By lemma S.3.1.4.e. there is a 
p 
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derivation D2 of 2(t((B'a)£),'((t((B'a)I)&t(C))v(t((B'a)E)&~t(C)))), p p p 

which is the sam~ formula as 

2(t(Bcr),((t((B'a)l)&p)v(t((B'a)E)&,p))t(C)). Also, by lemma 
p p p 

5.3.1.4 . e., there is a derivation D3 of 

E(t(B'a),((t((B'a)I)&p)v(t((B'a)E)&,p))), so that D3t(C) is a 
p p p 

derivation of E(t(B'a)t(C) ,((t((B'a)l)&p)v(t((B'cr)E)&.p))!i£1). 
p p p p 

Finally, from the concluding formulas of. D1t~C), p2 , and D 3 t~C), 

the formula E(t(Bcr),t(B)t(cr)) can be derived in one step by 

an instance of the rule 2(p,q),2(r,s),E(p,s) ~ 2(r,q). 

To determine the total length of this derivation, first 

observe that each formula in it is bounded in length by some 

8 G < )4k lemma 5.3.1.4 . e., R. . D2.+i D3- 2e 1 (iBcr . The number of levels 

of recursion to construct D1 is bounded by the number of 

occurrences of atoms in B, so that the final bounds become 

t 8 D ~ iB(1+2el(tBo) 4k) s b1•(R.Bo) 4k+l and R.D s b 2 •(R.Bcr) 6k+Z. 

OOS.3.3.b. 

This lemma can nmv be ~ombined v/ith the previous 

results to give the principal theorem. 

THEOREM 5.3.3.c. 

Any two s-Frege systems can p-simulate each other. 

Now that it has been established that any two extended 

Frege systems p-simulate each other and any two s - Frege systems 
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p-sim~late each other, to show that any s-Frege system 

p-simulates any extended Frege system it is sufficient to find 

one extended Jrege system and one s-Frege system that 

p-simulates it. 

LEMMA 5.3.3.d. 

If K is any adequate set of connectives, and Fo=<K,Je > 

is a Frege system, then there is a Frege system F= <K, fR..u d{ ' > 

and there are constants d1 and d2 such that whenever 

~eFo A via D, there .is a derivation D' such that 

1) 1- A via D ' , sF 

4) d(D 1
) s max(d(D),Z). 

Proof 

The idea of this proof is to let ~, expand to contain 

any rules that are useful to show how sF simulates eF 0 • If 

~ F A via D, this is equivalent to saying that there is a 
e o 

lsisn, pii{A}uj~l{Bi}' D=6.D 0 , and 6. 1-Fo A via D0 • Let C(p,q) 

and I(p,q) be formulas in the connectives K such that 

8(p,q) ~ (p&q) and 1(p 1q) - (p~q). Let 

11' = 8(c( •.. b(8(.~(p 1 ,B 1 ) ,t(p2 ,B 2)J ,fl(p3 ,B3)) •• • ) ,t(pn,Bn)). 

For each formula Bin Do, D' will contain the formula 1(11',B), 
tD tD' and for each rule R = A 1 , ... ,Ar> -+G in //\-, U"l will contain the 

rules !(p,A 1), ... ,!(p,Ar>)-+ 1(p,G), so that formulas in this 
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section of D' are in one-to-one correspondence with formulas 

in Do. What has been obtai ned so far is a derivation in F of 

number of steps as D0 • If this derivation is prefixed by 

derivations in P of I(~',~(p 1 ,B 1 )), ... ,!(~',~(pn,Bn)), and 

followed by a derivation in sP of A from 1(~',A), then the 

desired derivation D' will be obtained. 

To tackle the second problem first, let A" be the 

formula such that~'= 8(6",l(pn,Bn)) (i.e . 6" is the 

conjunction of the first n-1 extensions) . Then, since 

n "" , ,p n 
p itA} u • u l { B . } , .L ( ~ ,A)- = 

n J= J Pn 

.,p 
1(8(~ 11 ,E(p ,B )),A)__!!.= n n p n 

(p&q) =>C , (p & .. q) =>C I= p=>C, so that the inference rule . 

1(8(p,E(q,r)),s),1(8(p,i(,q,r))·,s) + J(p,s) is sound . 

Similarly, (for the case n=l), the rule 

't(~(p,q),r),J(s(,p,q),r) + r is sound. Thus, the formula 

1(6",A) is derived in two steps from the formula 1(~',A) in 

the system sF. Continuing in this way A is derived irr Zn 

steps: n substitution steps, n-1 instances ·of the first rule, 

and one instance of the second. 

The second proble·m is solved by the following lemma. 

LEMMA 5.3.3.e. 

If K is an adequate set of connectives and 8(p,q) and 

I(p,q) are formulas in the connectives K such that 

8(p,q) ~ (p&q) and 1(p,q) ~ (p=>q), then there is an inference 



.... 
. i 

I 

-167-

system 1< K,dt > and there are constants e 1 and e 2 such that if 

~o=po, and for l~i~n, ~- = C (~. 1 ,p.), then, for every O~i~n 
1- t.- 1-

there is a derivation D such that 

Proof 

1) t- 1 1(~ ,p.) viaD, n t. 

3) R.D s e 2 • n •· tJ ( ~ , p . ) , and 
n t. 

4) d(D)=l. 

Let E(p,q) be a formula in the connectives K such that 

E (p ,q) ~ (p::q), as usual. The set of rules f£ will contain 

rules for manipulation of conjunctions and implications as 

necessary. To begin with,~ contains the rules -+I(p,p) and 

I(C(p,q),q), from which I(~i'pi) can be derived in one step. 

The only oth~r rule oi needs is I(p ,q) -+ I(~(p ,r) ,q). With 

this rule, 1(~j+l'pi) can be derived from I(~j,pi) in a single 

step. Thus, n-i applications of this rule leads to the desired 

derivation D. ~5.3.3.e . 

With lemma 5.3.3.e. completed, the proof of lemma 

S.3.3.d . is now complete. ms.3.3.d. 

The groundwork has now been laid for the final theorem 

of this section on s-Frege systems. 

THEOREM 5. 3 • 3. f. 

Any s-Frege system p-simulates any extended Frege 

system. 

( . 

I 
I 

I 

. . 

; 
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5.4. NATURAL DEDUCTION 

Recall from subsection 4.2.2. the definition of natural 

·deduction systems. In such systems, the deduction theorem 

(If r,A~B, then r~A~B.) can be used ~s a rule of inference. 

In most logic texts, the typical proof of this theorem for a 

Frege system shows how applications of the deduction theorem 

rule can be removed from a derivation, one at a time, until 

the resulting derivation has no applications of the rule. The 

problem with this method from a computational point of view 

is that each time an application of the deduction theorem -~ule · 

is removed, the resulting derivation could be as long as about 

double the length of the original one. Thus, if there are 

many nested uses of the rule, the final deiivation could be 

exponentially longer than the original. A better way of 

turning a natural deduction derivation into a Frege system 

derivation is given in the proof of lemma 5.4.d. 

In order to facilitate the proof of that theorem, it 

will be useful to introduce some new tools, in the spirit of 

lemma 5.3.3.e. Let K be any adequate set of connectives, and 

let ~(p,q), I(p,q), and ~(p,q) be the usual three formulas in 

the connectives K such that C(p ·,q)- (p&q), I(p,q) ~ (p~q), 

and E(p,q) ~ (p=q). Note that since K is adequate, there is 

a direct translation from {&,~} to K, so that C(p,q) and 1(p,q) 

each only need one occurrence of p and one occurrence of q. 

Let T be some fixed (short) tautology in the connectives K, 

and define a sequence of conjunctive formulas Co,(l,•·. such 

that ( 0 =T, and for n~l, CnCp1 , . .. ,pn) = 8((n_ 1 (pl'' .. ,pn-l)'pn). 

' ! 
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The following lemmas provide the means for manipulating these 

conjunctive formulas. 

LEtvfM.A 5.4.a. 

There is an inference system I1=<K,~ 1 > and there are 

is any permutation of <l, ... ,n>, then there is a derivation 

Drr such that 
n 

1) 1--
11 

E(C Cp
1

, ••• ,p ),C (p , .•• ,p )) via Drr 
n n n rr 1 rrn n 

3 ) R.D rr ~ a 2. • n 2 
" R. C (p 1 , • • • , p ) , n n n 

5) no atom occurs more than a 3 times in any formula 

Proof 

The idea of the proof is to let dt 1 contain rules that 

allow Drr to use an algorithm somewhat like the bubble sort to 
n 

rearrange the atoms in a conjunction by a series of 

interchanges of adjacent atoms. The rules needed by ~~ are 

(i) ~~(p,p), and (ii) ~(p,q),~(q,~j ~ ~(p,r) for manipulating 

equivalences, and (iii) ~(p,q) ~ t(t(p,r),C(q,r), and 

(iv) !(p,b(q,r)) ~ l(b(p,s),acecq,s),r)) for mariipulating 

conjunctions. 

by an example. 

It seems easiest to describe the derivation Dn n 

It should be clear by analogy with the bubble 

sort algorithm how the derivation goes in general. For 
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notational simplicity in this example, assum~ that C(p,q) is 

(p&q) and ft(p,q) is (p=q) . Then, C (p 1 , . .. ,p) is n n 

E(( 4 (p,q,r,s),(4(s,q,p,r)) then goes as shown in figure 5.4.i. 

The algorithm proceeds by a series of at most n-1 

. c -+ th npasses" through (p), where on the i pass, p 
n rr +1 . n -1, 

is 

moved to its proper position by interchanges with adjacent 

atoms. Each pass takes at most n applications of rules (i),(iii), 

and (iv), and rule (ii) is used once at the end of each pass except 

the first. In the example, lines 1 and 2 are the first pass 

(r is put in place), lines 3, 4, 5, 6, and 7 are the second 

pass (pis put in place), and lines 8, 9, 10, 11, and 12 are 

the last pass. The total number of steps in the derivation is 

therefore no greater that (n - l)(n+l)-1 = n 2 -2. Also, note 

that since ~(p, q) is a fixed formula, the length of each 

formula in the derivation is bounded by some constant times 

~CnCp 1 , ... ,pn)' and no atom occurs more than some constant 

number of times in any formula in Drr. n 005 . 4.a. 

of <1, . .. ,n>, such that JuK = {l, ... ,n}, and let K' be any 

permutation of K. Let pJ~<p. , ... ,p . >,and similarly for pK 
J1 Jz 

and pK'. The next lemma shows how 

a conjunction ((p) can be broken up into the two subsequences 

((pJ) and ((pK). 
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line number formula rule source lines ~ ·. 

~ 1 (((T&p)&q)&r)=(((T&p)&q)&r) (i) 

2 ((((T&p)&q)&r)&s)=((((T&p)&q)&s)&r) (iv) 1 
·,, 
·,. 3 (T&p) = (T&p) (i) ·~ 

I 4 ((T&p)&q)~((T&q)&p) (iv) 3 

I 5 (((T&p)&q)&s)=(((T&q)&s)&p) (iv) 4 

6 ((((T&p)&q)&s)&r)=((((T&q)&s)&p)&r) (iii) 5 

7 ((((T&p)&q)&r)&s)=((((T&q)&s)&p)&r) (ii) 2,6 

8 (T&q) = (T&q) (i) 

9 ((T&q)&s)=((T&s)&q) (iv) 8 
·, . 

10 (((T&q)&s)&p)=(((T&s)&q)&p) (iii) 9 
.·; . 

11 ((((T&q)&s)&p)&r)=((((T&s)&q)&p)&r) (iii) 10 

12 ((((T&p)&q)&r)&s)=(C((T&s)&q)&p)&r) (ii) 7,11 

FIGURE 5 • 4 • i. 

Derivation of 2cc~cp,q,r;s),C~cs , q,p,r)) 

.. 5 
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LEMMA 5.4.b. 

There is an inference system I 2=<K,f(.2> and there are 

constants bt, b2, and b3 such that whenever J and K are 

subsequences of <l , ... , n> for which JuK = <1, ... ,n> there is 

a derivation DJK such that 
n 

4) d(DJK)=l, and 
n 

5) no atom accurs more than b 3 times in any formula 

Proof 

of DJK. 
n 

The rules of ffe 2 are (i) +E(T,C(T,T)), 

(ii) ~(p,~(q,r)) + ~(8(p,s),C(C(q,s),r) (for the case picJ, 

p.iK), ( iii) E(p,C(q,r)) + E(C(p,s ),C(q,C(r , s))) (for the case 
1, 

(for the case p.cJ, p.EK) . A small example, with J=<p,q,s > 
1.- 1.-

and K~<q,r > will illustrate the construction of DJK . n 

,I 

•-· --·-~ ----·---.....,.,__~ ""'!M"M·W~.IC'mJ' ~li,JI~t:Y.If~~-'t.~~., :u:l!...~ ... :!:i! .. ~~~~~!!'..lli'"S".tl:'•"" :-::~· . ..._-.;o, .,..,.l!"'''t:.!.'\:l'l~·l~;;l~~~ .. _,_., __ ,.,..-......,,,.....,...,. .............. 
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line number formula rule source line 

1 T=(T&T) (i) 

2 (T&p)=((T&p)&T) (ii) 1 

3· ((T&p)&q)=(((T&p)&q)&(T&q)) (iv) 2 

4 (((T&p)&q)&r)= 

(((T&p)&q)&((T&q)&r)) (iii) 3 

5 ((((T&p)&q)&r)&s)= 
((((T&p)&q)&s)&((T&q)&r)) (ii) 4 

This example should make it clear that the lemma is true. OOS.4.b. 

Lemmas 5.4.a. and S.4.b. can be combined to give the 

following result. 

LEMMA 5.4.c. 

If K, c, E, T, and(. are as defined above, then there 
J 

is an inference sys tern I 3 = < K ,(J?./3 > , and there . are constants cJ.1 , 

a2, and as such that whenever J, K, and K 1 are as defined 

b h . d . . JK, h h a ove, t ere 1s a er1vat1on D sue t at n 

JK, 
via D , n 

4) d(D~K')=l, and 

5) no atom accurs more than a 3 times in any formula 

Proof 

of DJK 
1

• 
n 

appeal to lemmas 5.4.a. and 5.4.b . ®S.4.c. 
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The machinery has now been established so that the 

main result of this section can be proven. 

LEMMA 5.4.d. 

If N=<K, fRo> is a natural deduction system, then there 

is a Frege . sy~tem F=<K,~ > and there are constants d 1 and d 2 

such that whenever rAl' .•. ~t-Ak f-N t-B via Do, there is a 

derivation D such that 

1) Al , ..• ,Ak f--F B via D, 

Proof 

The idea of this proof is similar to the proofs of 

lemmas 5.3.1.2.a. and 5.3.1.4 . g., except that here each line . 

rt-G in Do is translated into the formula 1CCnCr') ,G) in D, 

where r' is the permutation that places the formulas of r into 

lexicographic order. For each rule R=r 1~B 1 ~ ... ,rj~Bj+A~H in 

fiCo, d(contains the rule 1(8(p,((r1 ')),B1), ... ,!(C(p,((r.'))· ,B.)+ 
' J :J 

1(~(p,((A')),H). The atom p is the one for which the 

environment ((6') is substituted when simulating an application 

of rule R with environment 6 and substitution cr. In addition, ~ 

contains all of the rules of d03 from lemma 5.4.c. and the 

rules p+1(T,p); I(T,p)+p; 1(p,q),~(p,r)+1(r,q); and 

I(p,q),E(r,p)+1(r,q). The first of these rules is used for 

deriving f(( 0 ,A .) from A., and the second derives B from 
1... 1... 

1(( 0 ,B). The other two are used in conjunction with the 

derivation of lemma S.4.c. to obtain derivations D+ and D of 

:, 
'· l: 
!. 
j; 
I 
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an instance of J(C(p,((ri')),Bi) and I(((f'),G) from one 

another in the case where r~G = ~r.a~B.a is an instance of 
1, 1-

r.rB .. The particular instance of I(C(p,((r.')) ,B.) of 
?,. 1, ?,. 1, 

"~- ~ C , CC~') _ interest in this case is J. (<.- (p, (r. ) ) ,B .. ) a . -
1, 1- p 

!(b(((~'),((r.'a)),B.a). Since r=~r.a, ~,is a subsequence 
1,. 1- 1-

of · r' and r.'ou~ = r, so that under the substitution a' 
1, 

lemma 5.4.c. gives a derivation DJK'a, of 
n 

= 
~'r.'a 

1-
pJpK, ' 

~(((f'),C(((~'),((f.'a))). Note that in this case m is the 
1, 

number of formulas in r., and since r. is fixed by ruleR, 
?,. ?,. 

which in turn is fixed by N, m is a constant that depends only 

on N. Also, note that n is the number of formulas in ~, which 

JK' is bounded above by !(f~G). · This derivation D a' along with n 

a single application of an instance of the appropriate one of 

the above two rules- gives the desired derivation D+ or D . 

Finally, to construct the derivation Dg each line frG 

which is derived in Do by the instance ~Ra of ruleR, Do 

consists of j .derivations D~ corresponding to the hypothesis 
?,. 

lines of R, foll9wed by one application of the rule of F that 

simulates R, followed by a derivation D to put the conclusion 

into the form I(((f') , G). This sub-derivation has a number of 

steps bounded by some constant a times !(f~G) (and t(frG)s!Do). 

Therefore, there are constants d 1 and d 2 such that 

. ; 
I ' 
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Finally, it must be noted that since N is implicationally 

complete, F is implicationally complete, and thus really is a 

Frege system. ~5.4.d. 

This theorem leads immediately to the following 

corollaries. 

THEOREM 5. 4. e. 

If N is a natural deduction system, then there is a 

Frege system that p-simulates N. 

COROLLARY 5. 4 . f. 

Every Frege system p-simulates every natural deduction 

system. 

Having established that natural deduction systems are 

no more powerful (to within a polynomial) than Frege systems, 

it would be reassuring to know that they are no less powerful. 

LEMMA · S.4.g. 

If K, 8, 1, and C are oefined as usual and N=<K,OGo> n 

is a natural deduction system, then there is a Frege system 
! 

D d F=<K,u~> and there are constants g1 an g2 such that whenever 

derivation Do such that 

1) r l""' A 1 , ••• , r kf- A k f- N 6t- B via Do , 

Proof 

First, observe that theorem 5.4.d. guarantees the 

existence of some Frege system F with the connectives K. The 
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proof of this theorem is very similar to the proof of theorem 

5.3.1.2.a., except that here Do uses the line ~G to simulate 

the formula G in D, Since N is implicationally complete, there 

is a derivation Di which simulates each rule Ri in 00. 
Everything proceeds as with the proof of theorem 5.3.1.2.a., 

except that Do also needs to include derivations of 

~J(((r.),A.) from r.rA. and of ~rB from ri(((~) ,B). To see 
~ ~ ~ . ~ 

how these derivations are constructed, consider the following 

derivation D' of ~rB from ri(((~) ,B). Let D be a derivation 

of p~q £rom r1(p,q), let D be a derivation of ~p from Trp, and 

let D be a derivation of p,qrr from C(p,q)rr. Then, if ~ 

-cu~)s contains n formulas, D' can be constructed from D=------p q 

followed by n instances of D (Remember that an instance of a 

natural· deduction derivation can include the specification of 

environment formulas), followed by ~D8 (i.e. each line of B p 

has~ added to its environment). The number of lines of D' 

is proportional to n, and the length of each line is proportional 

to ~ (M·B). Derivations of ri(((r.) ~A.) from r.rA. are similar, 
t. ~ ~ ~ 

except that D, D, and D are now changed so that their 

hypotheses and conclusions are interchanged. This completes 

the proof of theorem 5.4. g . !KI5.4.g. 

This theorem has as corollaries the last three results 

of this section. 

THEOREM 5.4.h. 

For every natural deduction system there is a Frege 

system that it p-simulates. 

' 1 
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COROLLARY 5.4.i. 

Every natural deduction system p-simulates every Frege 

system. 

COROLLARY 5. 4. j. 

Any two natural deduction systems p-sirnulate each other. 

The concept of s-natural deduction system was , 

introduced in section 4.2.2., and a definition for extended 

natural deduction systems could be devised as well, but it is 

clear that the techniques of this section and sections 5.3.3. 

and 5.3.2. could be used to show that they lie in the same 

p-simulation equivalence classes as s-Frege systems and 

extended Frege systems, respectively. 

5.5. SEQUENT AND TABLEAU SYStEMS 

Various types of tableau-type proof systems were 

introduced in section 4.2.3., including sequent systems, 

several variations of Gentzen systems, and Smullyan's analytic 

tableaux. This section presents some results concerning the 

complexities of these systems. Subsection 5.5.1. treats 

sequent systems, showing that they are p-simulation equivalent 

to Frege systems. Although Gentzen systems with cut are 

sequent systems, cut-free Gentzen systems are not implicationally 

complete, and thus are not sequent systems. These systems are 

discussed briefly in subsection 5.5.2., although further 

simulation results concerning them are deferred until 

subsection 5.6.4. Subsection 5.5.3. covers Smullyan's 

analytic tableaux, giving a simulation result and a lower 

bound result. 
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5.5.1. Sequent Systems vs Frege Systems 

Recall from paragraph 4.2.3.1. the definition of 

sequent systems. Since the sequent 6~r is logically equivalent 

to the formula I(((6),D(r)) (where Dis the analog of C for 

disjunctions), it is clear that the techniques of section 5.4. 

can be extended to show that sequent systems and Frege systems 

p-simulate one another. Thus, to avoid a lengthy and 

repetitious dev elopment, the following theorems are stated 

without proof. 

THEOREM 5. 5. l. a. 

Every Frege system p - simulates every sequent system. 

THEOREM 5. 5.1. b. 

Every sequent system p-simulates every Frege system. 

COROLLARY S.S.l . c. 

Any two sequent systems p-simulate each other. 

COROLLARY 5.5.l.d. 

Any two systems from the class {Frege systems} u 

{natural deduction systems} u {sequent systems} p-simulate 

each other. 

As with Frege systems and natural deduction systems, 

the concepts of extended sequent systems and sequent systems 

with substitution could be introduced, but it is clear that 

the techniques developed in this thesis could be used to show 

that they would be p-simulation equivalent to extended Frege 

systems and s-Frege systems, respectively . 

·J ..-~ ............. ~JI("'-!~-:.<.J!:-~~·--~· 
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5.5.2. Cut-free Systems 

Recall from paragraph 4.2.3.1. the definitions of basic 

Gentzen system) Gentzen system with thinning, and Gentzen 

system with cut. For each adequate set of connectives K, there 

is one system of each of these three types. Let G be the basic 

Gentzen system for the connectives K, and let tG and aG be the 

corresponding systems with thinning and cut, respectively. 

Since any derivation of system G is also a derivation of 

systems tG and aG, these systems p-simulate G in a trivial way. 

Nearly as simply, aG p-simulates tG. Each application of the 

thinning rules is replaced by an instance of one of the aG 

derivations simulating that rule. For example, if bt-A,r is 

inferred from 6rr by the thinning introduction rule and 6 is 

non-empty, so that 6=6',8, ~hen ~rA,r is derived from ~t-r by 

the following derivation. 

1. 6',B t- r (hypothesis) 

2 • 6 ' , B t- A , r , B (ax i om) 

3. 6 1 ,B t- A,r (cut) (1, 2) 

S~milar two-line derivations exist for thinning elimination 

and for the cases where 6 is empty (but r must then be non­

empty). 

Combining these trivial results with corollary S. S.l.d. 

and the fact that aG is a sequent system leads to the following 

theorems . 
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THEOREM S.S.2.a. 

Every Frege system, natural deduction system, and 

sequent system p-simulates every basic Gentzen system and every 

Gentzen systemWith thinning. 

THEOREM S.S . 2 . b. 

Every Gentzen system with thinning p-simulates the 

basic Gentzen system for the same connectives . 

The existence of simulations in the reverse direction 

is doubtful. But a consequence of the definition of simulation 

is that if any verification system P is polynomial-bounded, 

then P simulates every verification system (for an infinite 

set). Thus, a proof that Pt does not simulate P 2 implies that 

P1 is not polynomial-bounded. Therefore, a proof that no such 

reverse-direction simulations exist would imply that basic 

Gentzen systems are not polynomial-bounded, a fact that 

(although conjectured) is not now known to be true. 

The relationship between basic Gentzen systems (or 

Gentzen systems with thinning) with different sets of 

connectives is also unclear. If K 2 ~K 1 and G 1 is the basic 

Gentzen system (or Gentzen system with thinning) for K 1 , and 

G2 is the corresponding system for K 2 , then Gz trivially 

p - simulates G1 • This is true because every rule of G 1 that 

applies to formulas in the connectives K 2 is also a rule of 

G2 • Since G1 is analytic, no G1 -derivation of a formula 1n Kz 

can contain any formula (or use any rule) with connectives not 
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If K 2fK 1 but there is a direct translation * from K 1 

then the usual techniques can be used to show that for 

any derivation of A in system G1 there is a not-too-much-longer 

derivation of t(A) in system G2. But it is not clear how this 

helps to find short derivations of formulas B in the 

connectives K2 that are not the image under t of any formula A. 

The technique from paragraph 5.3.1.2. of deriving A from 

t 1 (t 2 (A)) will not work here, because cut-free Gentzen systems 

are analytic. For the case where there is only an indirect 

translation from K1 to K 2 ~ the relationship between G1 and G2 

is totally unclear, because the analyticity of cut-free Gentzen 

systems renders all of the techniques of paragraph 5.3.1.4. 

useless. Thus, the only comparisons among cut-free Gentzen 

systems that can be stated with certainty are the following 

two theorems. 

THEOREM 5.5.2.c. 

If G is the basic Gentzen system for the connectives 

K, then G p-simulates the basic Gentzen system for any K'~K. 

THEOREM 5.5.2.d. 

If G is the Gentzen system with thinning for the 

connectives K, then G p-simulates the Gentzen system with 

thinning for any K'~K. 

5.5.3. Analytic Tableaux 

Srnullyan's analytic tableaux were described in 

paragraph 4.2.3.2. Technically speaking, each adequate set 

of connectives gives rise to a different system of analytic 

tableaux. If s is the system of tableaux for K, and G is the 
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basic Gentzen sys tem for K, . then ~he construction described in 

paragraph 4.2:3.2. gives a way of turning a tableau for A into 

a basic Gentzen derivation of the sequent Ar. This method 

could be used equally well to obtain a derivation of rA from 

a tableau for ~A. Since basic Gentzen systems are analytic, 

no sequent in any derivation of A can be longer than ~A. Thus, 

the increase in size of a string representation of the tableau 

tree caused by replacing the formula at each node by a sequent 

is not too great, so that the following theorem i s obtained. 

THEOREM 5.5.3.a. 

The basic Gentzen system for any adequate set of 

connectives K~{~} p-simulates the system of analytic tableaux 

for K. 

It is not clear whether tableaux simulate basic Gentzen 

systems, because basic Gentzen derivations need not be tree s . 

Also, the relationship betwe en tableau syst ems for different 

sets of connectives is similar to the situation for basic 

Gentzen systems. 

But certain simulations involving analytic tableaux 

are known not to exist, because Cook has shown that the system 

of analytic tableaux for sets of clauses (which trivially 

p-simulates the system of tableaux for {,,v,&} is not 

polynomial-bounded [Cook 1973] [Cook & Reckhow 1974]. In 

his proof Cook constructs an infinite family of inconsistent 

sets of clauses {T }. m 

! 
' ; 
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The sets of clauses T could be defined inductively m 

as follows. The atoms of T are taken from the set m 

obtained from the set of clauses S by replacing each atom P· '(, 

by the atom p .• For any literal 
a1-

t; , let E,S be the set of 

clauses obtained from the set of clauses S by adding t; to each 

clause. The inductive definition of T can now be stated as: m 

To = {0}, and for m~O 

T = pT 1 u -T 0 
m+l m P m 

Thus, 

T2 = {pp! ,pp1 ,ppo ,ppo} 

T3 = {pp1p11 ,pp1P1 1 , pp1p1 o ,pp1p1 o ,ppopoi ,ppopo 1 ,ppopoo ,ppopoo} 

etc. 

Note that T is a set of 2m clauses, each of which contains m 
m 

literals. The total number of distinct atoms in T is Zm-1, m 

and the total number of occurrences of literals in T is m•Zm. 
m 

Thus there is a constant d such that m•Zm ~ tT ~ d•m 2 •2m. m 

In his proof Cook shows that there is a constant 

c>O such that for every m>O, the smallest analytic tableau 
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2cm 
has at least 2 nodes. The prqof can easily be 

extended, by converting {T } into formulas in {,,v,&} and using 
m 

direct translations, to show the same lower bound for the 

system of analytic tableaux for any adequate set of connectives 

K:. 

THEOREM 5. 5. 3 . b. (Cook) 

No system of analytic t ab lea ux is polynomial-bounded. 

Cook observed that for each m there is a resolution 

derivation of 0 from T of length proportional to tT , but a m m 

much stronger statement can be made. Thos~ resolution 

derivations not only are regular, but they are trees and they 

can also be generated by the Davis-Putnam procedure without 

making use of the subsumption rule. The formulas {T } also m 

have semantic trees of size proportional to tT . This proves m 

the following theorem . 

THEOREM 5.5.3.c. (Cook) 

The system of analytic tableaux for sets of clauses 

cannot directly simulate either the Davis-Putnam procedure without 

subsumption, the method of semantic trees, or tree resolution. 

Somewhat less obvious is that if {T } are converted m 

into formulas in the right way, then there are derivations of 

T r in the appropriate Gentzen system with thinning of length 
m 

proportional to (tT ) 3
• To see how these derivations are 

m 

constructed, consider the c ase where K= {,,v, &} and m=3. The 

formula for T 3 is a renaming of 
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((pq)r)&((pq)~)&((p~)s)&((p~)i) & ((~t)u)&((~t)~)&((~~)v)&((~~)~), 

where AB is AvB, ~ is ,~, and the parenthesization of the 

conjunction is irrelevant. The sequent T 3 r can be derived in 

7=2 3 -1 &-elimination steps from rr, where 

r={ ((pq)r),. ((pq)r), ((p~)s), ((p~)i), ((~t)u), ((pt)u), ((p~)v), 

((pt) ~)}. 

The derivation of rr is shown in figure 5.5.3.i. The sequent 

6r is represented by 6, and sequents with X above t hem are 

derived from an axiom by one application of the ,-elimination 

rule. Sequents connected t o their parent by a line labell ed T 

are derived by thinning elimination, and all other sequents 

are derived by v-elimination . Observe that each v . in T is 
m 

expanded by the v-elimination rule at most once, so that the 

number of steps in this derivation is proportional to ~T 
m 

Notice also that no sequent is longer "than (9-T ) 2
, so that the m 

total length of the derivation is· proportional to (~T ) 3 • 
m 

The same methods can be us ed with any other adequate 

set of connectives. This completes a sketch of the proof of 

the following theorem. 

THEOREM 5.5.3.d. 

For any adequate set of connectives K , the system of 

analytic tableaux for K cannot directly simulate the Gentzen sys tem for 

K with thinning. 

Although analytic tableaux can be exponentially worse 

than other systems for certain examples, the next theor em s how s 

that for other examples another system is exponentially worse 

than analytic tableaux . 

._;'~iJ&liiiiiliFiifWRiW~irJII!ii!MtMG!ftil!P.:~~~- .. . ~~·-,: . . , 
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_X _ _X _ 
r,pq,p,p,t r,pq,p,t,t 

X 
r,pq,p,p,pt 
~ 

r,pq,p,t,pt 

~ 
r,pq,p,pt,f>t 

~ X 
r,pq,p,v,pt,pt r,pq,p,v,v,pt 

(note: (pt)i>Er) 

r,pq,p,pt (this time because (pt)ver) 

""Z - - _X -
r,pq , p,u,pt r,pq,p,u,u 

~ 
r,pq,p,u 

r,pq,p 

~~ _X-
r,pq,p,q r,pq,q,q 

~ 
I -

~,pq,q 

r,pq,pq 

f"Z X I r,pq,pq,s r,pq,s,i 

I ~ 

l r,pq,B 

-----------r,pq 

I~ X 
r,pq,:r r,r,r 

,,~ 

r,r 
L-------
r 

FIGURE 5.5 . 3.i. 

Derivation of T 3 in Gentzen System with Thinning 
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THEOREM 5 . 5 . 3 . e. 

Full truth tables cannot directly simulate analytic tableaux. 

Proof 

For the case where K={,,&}, consider the formula 

{(p&,p)&A), where iA is arbitrarily large and A contains about 

Zo~CiA)different atoms . The full truth table for this formula 
iA 

has size exceeding zZog(iA), but there is an analytic tableau 

of size proportional to iA. Other sets of connectives can be 

handled equally easily. OOS.S.3.e. 

Finally, it should be noted that although theorem S.5.3.b. 

was derived independently, it does follow as a corollary of the 

results to come in subsection 5.6.1. 

5.6. RESOLUTION 

This section includes an assortment of simulation and 

lower bound. results concerning the various forms of resolution 

and related systems. Subsection 5.6.1. discusses tree 

resolution, and shows how it relates to semantic trees, 

analytic tableaux, and Galil's enumeration trees. Regular 

resolution and the Davis-Putnam procedure are discussed in 

subsection 5.6.2 . , and subsection 5.6.3. covers the 

relationship between extended resolution and extended Frege 

systems . . In the final subsection of this section, the cloudy 

area of systems just slightly more powerful than systems 

known not t o be po lynomial-bounded is investigated. Here the 

relationship between resolution and various cut-free Gentzen 

systems is studied in detail. 
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Throughout this section, the measure of the size of a 

resolution derivation will be taken to be the number of 

resolvents. This is reasonable, since by the resolution rule, 

no clause can have more than one literal more than its 

descendants. Therefore, if n is the number of resolvents in a 

resolution derivation of clause c, the total length of that 

derivation cannot be greater than some constant times 

n• (n+tC) · Zog(n+tC), so that to within a polynomial, n is a 

good measure of the length of that derivation. 

5.6. 1. Tree Resolution 

In this section the system of tree resolution is 

analyzed and compared with other systems. Paragraph 5.6.1.1. 

presents Tseitin's lower bound for tree resolution, and gives 

a negative result about simulation. Tree resolution is compared 

to the method of semantic trees in paragraph 5.6.1.2. and to 

the system of analytic tableaux for sets of clauses in 

paragraph 5.6.1.3. Paragraph 5.6.1.4. introduces Galil's 

generalization of semantic trees, called enumeration trees. 

5.6 . 1.1. Tseitin's Lower Bound for Tree Resolution 

A tree resolution derivation is a resolution derivation 

that is a tree. Any resolution derivation can be made into a 

tree resolution derivation by duplicating the sub-derivations 

of all clauses that are used more than once. This process . can 

cause an exponential increase in the size of the derivation if 

the derivation contains long chains of clauses that are used 

more than once. But it is ·not at all clear how to show, given 

a set of clauses, that all short resolution derivations of 0 

from that set of clauses must contain such long chains. 

• itkt_hiN = L .,..,. 
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Tseitin has shown that sets of clauses exist where 

such long chains are necessary. One of Tseitin's lemmas will 

be useful later on in this subsection, so it will be given 

first. [Tseitin 1968] 

LEMMA 5. 6 .1.1. a. (Tsei tin) 

Any tree resolution derivation of 0 fr~m the set S of 

clauses can be converted into a regular tree resolution 

derivation of 0 from S with no more steps than the original. 

COROLLARY 5 . 6.l . l.b. 

Tree resolution and regular tree resolution p-simulate 

each other. 

Tseitin's main theorem concerning tree resolution is 

the following . 

THEOREM 5. 6. 1.1. c. (Tsei tin} 

There is an infinite family of inconsistent sets of 

clauses {S.} and there is a constant c>O such that if n is the 
-z.. 

length of the shortest regular resolution derivation of 0 from 

S. and m is the length of the shortest extended tree resolution 
-z.. 

derivation (i.e. extended resolution derivation that is a tree) 

of 0 from s., then every tree resolution derivation of 0 from 
-z.. 

s. contains more than zc(Zog max(m,n))
2 

clauses. 
-z.. 

In fact, careful analysis of Tseitin's proof shows that 

the shortest regular resolution derivation of 0 from S. can be 
-z.. 

generated by the Davis-Putnam procedure without subsumption. 

This leads to the following corollary. 
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COROLLARY 5.6.l.l.d. 

Tree resolution cannot directly simulate e·xtended tree 

resolution, regular resolution, or the Davis - Putnam procedure, 

with or without subsumption. 

COROLLARY 5 . 6.l.l.e. 

Tree resolution is not polynomial-bounded . 

By lemma 5.1.2.a., any system that tree resolution can 

simulate must also not be polynomial-bounded. 

5. 6.1. 2. Tree Resolution vs Semantic Trees 

Since there is a formulaS' in {,,v,&} that is logically 

equivalent to any se t of clauses s, any semantic tree for S' is 

also a semantic tree for s . Also, since ,s' is valid if and 

only if s' is inconsistent, any semantic tree that shows ,s' 

to be a tautology shows S' and S to be inconsistent. This 

proves the following theorem. 

THEOREM 5.6.1. 2.a. 

The system of semantic trees for inconsistent sets of 

clauses p-simulates the system of semantic trees for 

inconsistent formulas and the system of semantic trees for 

tautologies. 

The converse of this theorem may not be true . Consider 

see that every semantic tree for F must have zn leaves. By n 

symmetry it may be assumed without loss of generality that the 

root of a semant ic tree t for F lo oks like 
n 

I • 
I 
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But now ll must be a semantic tree for (p 1= .. ·Pn_ 1=r)v 

••(Pl=···=Pn-l) ~ Fn-l ' Thus, if the system of semantic trees 

for tautologies ~imulates the sy~tem of semantic trees for 

inconsistent sets of clauses, the function g from that simulation 

must take Fn into some set of clauses whose smallest semantic 

tree has at least zc·n leaves, for some constant c>O . The 

T 
obvious method of mapping F into def(F )u{~ n} will not work, n n 

because, if E =(p1= ... =p ), then def(F) contains the clauses n n n 

FE" F E 
~ n~ n · and~ n~ n, so that the semantic tree 

F 
is closed for def(Fn)u{~ n}. Changing def(F ), so that each n 

occurrence of a subformula has a different literal associated 

with it, might overcome this problem, but it is hard to 

imagine how any argument about simulation would not apply 

equally well to the usual def(F ). n 

To see how tree resolution relates to the system of 

semantic trees for sets of clauses, consider an inconsistent 
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set s of clauses and a semantic tree T for S. Prune T (by 

removing pairs of leaves) until no tree contained in T is 

closed for s. Label each leaf T with one of the clauses 

falsified by that branch. Consider the pair of leaves 

and note that since T has been pruned, it must be true that 

pEC 1 and pEC 2 . Since the same truth assignment that falsifies 

C1 falsifies C2 when the value of p is changed, C1 and C 2 have 

a resolvent C3. Label node v with C3, and note that if T' is 

T with the leaves labelled C1 and Cz removed, then T' · is a 

closed semantic tree for Su{C 3 }. Prune T' if necessary, and 

repeat this process until T has been converted into a tree 

resolution derivation of 0 from S with no more resolvents than 

th~ number of nodes in T. This completes the proof of the 

following theorem. 

THEOREM 5.6.1.2.b. 

Tree resolution p-simulates the system of semantic 

trees for sets of clauses. 

COROLLARY 5.6.1.2.c. 

No system of semantic trees is polynomial-bounded. 

The converse of theorem S.6.1.2.b. is also true. 

THEOREM S.6.1.2.d. 

The system of semantic trees for sets of clauses 

p-simulates tree resolution . 
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Proof 

Let 1 be a resolution tree (dag) for s, with the edges 

labelled as described at the beginning of subsection 4.2.4. 

By lemma 5.6.1.l.a. it may be assumed without loss of generality 

that T is regular, so that no branch of 1 contains a 

complementary pair of edge labels (nor more than one occurrence 

of any edge label). Note that the two edges coming into any 

node c of T are labelled by a complementary pair of literals. 

Let b be a branch of T terminating at clause c~s, and let B 

be the set of literals labelling edges of b. Then, C~B, so 

that if B={~lsEB}, B falsifies c. Therefore, the tree T' 

obtained from T by deleting all node labels and complementing 

all edge labels is a closed semantic tree for s. ~5.6.1.2.d. 

5.6.1.3. Tree Resolution vs Analytic Tableaux 

By theorems 5.6.1.2.b. and 5.6.1.2.d., the smallest 

tree resolution derivations of 0 from s are the same as the 

smallest closed semantic trees for S with only the labels 

changed. Lets be an inconsistent set of clauses , and let T 

be a closed analytic tableau for s. A closed semantic tree 

T' for s with at most twice as many nodes as T can be constructed 

by a depth-first search of T. First prune T so that each 

branch of T closes as soon as possible. Let v 1 be a node of T 

such that all of the sons of v 1 are leaves. Then, if C1 is the 

clause expanded at v 1 and if B 1 =<~ 1 , ... '~n> is the sequence 

of node labels on the branch from the root of T to v1 (with 

repetitions removed) and B!={~, ... ,~}, then C 1 ~Bl (because 

for each sECl, Blu{s} contains a complementary pair). Thus, 

- ·-. 
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is a closed semantic tree for Bt={C 1 ,{~ 1 }, ••• ,{~n}}. Mark the 

path from the root oft to v 1 as "scanned". Let v1 ' be v 1 's 
I father, and let C1 be the clause expanded at v 1 '· Let v2 be 

~· . 

1*­
~~ 

any descendant of v 1 ' (other than v 1 ) whose sons are all leaves. 

If Vt is the only son of v1 ',then C1 '={~ }, so -r 1 is closed n 

father, and try again to find a v2. Eventually 
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either some v 2 will be found, or it will be shown that for some 

sn+l~s, t 1 is closed for sn+l" Let c 2 be the clause expanded 

labels from the root of t to v2 (again, with repetitions 

removed). Note that S _dn1 , ... ,nk}, or the branch to v2 would 

have been pruned. Thus, 

v ~JVP :':cJV 
~~· 

v, tJP-~ 

is closed for 

s2={cl,Ct', ... ,cl(n-J),c2,{~ 1 J, ... ,{~J-l},{n 1 l; ... ,{nk}}. Mark 

the path in t from the root to v2 as "scanned". Continue by 
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searching for the nearest ancestor of v 2 whose sons have not 

already been scanned, and let v3 be a descendant of that 

ancestor with all leaves for sons . Note that at the ith stage 

of this algorithm T. contains at most twice as many nodes as 
1, 

the part of T that has been scanned. Also, if v. is any 
J 

subtree of the scanned part of T such that every descendant 

of v . with all leaves for sons has been scanned, and B is the 
J 

set of node labels from the root ofT to v., then 1 2 is c1osed 
J 

for SuB. Therefore, when every node of 1 with all leaves for 

sons has been scanned, the semantic tree T . for that stage 
J 

will be closed for s. This proves the following theorem. 

THEOREM 5.6.1.3.a. 

Tree resolution and the system of semantic trees for 

sets of clauses p-simulate the system of analytic tableaux for · 

sets of clause·s. 

COROLLARY 5.6.1.3.b. 

No system of analytic tableaux is polynomial-bounded. 

The converse of theorem 5.6.1 . 3.a. is not true, by 

theorem S.S. 3 .c., so that the systems of tree resolution and 

semantic trees for set.s of clauses are strictly more powerful 

(~o ~ithin a polynomial) than analytic tableaux. 

5.6.1.4. Galil's Enumeration Trees 

Galil has i nvestigated an interesting generalization 

of semantic trees, called enumeration trees . Recall from 

paragraph 4. 2 .4.1 . that S \ p is the set of clauses obtained 

from s by deleting all clauses containing p and all occurrences 
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of p so that S\p - S~. Note that if 

T = 

is a closed semantic tree for S, then it is necessary ·and 

sufficient for T 1 to be closed for S\p and Tz to be closed for 

S\p. Also, note that if -r is closed for S'ss, then T is closed 

for s. 

This leads to the following definition of an 

enumeration tree. If S is a set of clauses, then let 

s~ = {c~ICeS}. As a basis, the enumeration tree for 0 is 0, 

If Tl is an enumeration tree for S1uS1 
, and Tz is an 

enumeration tree for S2uSz', and p does not occur in s 1 , s l , 

82, or s 2,, then 

s 
T = /\ 

is an enumeration tree for S if (StuSl 'puS2uSz'p) c s. By the 

arguments above , any closed semantic tree for S can be made 

into an enumeration tree for S by suitably labelling the nodes. 

Conversely, if -r1' is a closed semantic tree for S 1 uS 1 ' and 

-r 2 ' is a closed semantic tree for SzuS2', then 

is closed for S~(S1uS1 'puS2uS2'p). This proves that enumeration 

trees are sound and complete, and also proves the following 

theorem. [Galil 1975] 
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THEOREM 5.6 . 1.4.a. (Galil) 

Enumeration trees and semantic trees for sets of 

clauses p-simulate each other. 

But the story does not end here, however, because while 

the information required to verify that a semantic tree is 

closed is distributed along the branches, the information 

required to verify that an enumeration tree T is closed for 

s is contained in the node labels of the two sons of s. That 
. . 

is, if S' labels the roots of two subtrees of T it is not 

necessary to check both of them; the existence of one 

enumeration tree for S' guarantees that all occurrences of S' 

are inconsistent. This leads to the idea of enumeration dags 

(Galil also calls these enumeration trees), which are obtained 

from enumeration trees by coalescing nodes with the same label 

and deleting extra subtrees. Since enumeration trees are a 

special case of enumeration dags, they are p-simulated by 

enumeration dags. Using corollary 5.6.1.l.d., theorem 5. 6.1.2 .d., 

and theorem 5.6.1.4.a., Galil disproves the converse with the 

following theorem. 

THEOREM 5.6.1.4.b . (Galil) 

The system of enumeration dags p-simulates regular 

resolution. 

Anticipating a result from subsection 5.6.2., Galil 

has also extended Tseitin's proof that regular resolution is 

not polynomial-bounded to prove the following. 
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THEOREM 5. 6 .1. 4. c. (Galil) 

Enumeration dags cannot directly simulate . extended regular 

resolution. 

COROLLARY 5.6.1.4.d. 

The system of enumeration dags (along with . all systems 

enumeration .dags simulate, including regular resolution) is 

not polynomial-bounded. 

5.6 . 2. Regular Resolution 

The system of regular resolution was introduced by · 

Tseitin, and it is of interest primarily because something can 

be said about it that cannot (in the present state of knowledge) 

be said about resolution in general. Although it is difficult 

to see how non-regular resolution derivations could be much 

shorter than regular ones, it is equally difficult to see how 

to prove that no set of clauses has a non-regular derivation 

that is much shorter than its shortest regular derivation. 

Paragraph 5.6.2.1. discusses the Davis - Putnam procedure, 

which is a special case of regular resolution. The effect of 

the subsumption rule on lengths of proofs, and Kirkpatrick's 

lower bound are both discussed. Paragraph 5.6.2.2. covers 

Tseitin's lower bound for regular resolution, and shows how 

Kirkpatrick's techniques can be applied to improve that bound. 

Finally, it is shown how the Tseitin-Kirkpatrick bound can be 

extended to cover certain systems of_regular resolution with 

limited extension. 
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5.6.2.1. The Davis-Putnam Procedure 

It is not hard to find ex~mples of sets of clauses 
_,-i,_ (}'). c ~_, 

where the Davis-Putnam procedure produces tree proofs with one 

order of elimination of variables and exponentially long 

proofs with another order. Cook has given one such example 

[Cook 1972b), and his family {T} [Cook 1973] is another. . m 

A bit more subtl~, but still not too difficult, are 

examples ·where the Davis-Putnam procedure without subsumption 

gives exponentially longer ·proofs than the Davis-Putnam 

procedure with the subsumption rule, no matter what variable 

elimination order is used. Such examples have been demonstrated 

by Cook [Cook 197lc] and Simon [Simon 1971], proving the 

following theorem and its corollary. 

THEOREM 5. 6. 2. 1. a: (Cook, Simon) 

The Davis-Putnam procedure without subsumption cannot 

directly simulate the Davis-Putnam procedure with subsumption. 

COROLLARY 5.6 .2 .l .b . 

The Davis-Putnam procedure without subsumption is not 

polynomial-bounded. 

It is much more difficult, however, to find examples 

of sets of clauses where the Davis-Putnam procedure with 

subsumption generates exponentially long proofs, no matter 

what variable elimination order is used. Although such a 

class of examples was given by Tseitin [Tseitin 1968], a 

[similar class was discovered by Kirkpatrick [Kirkpatrick 1974], 

and Kirkpatrick's lower bound is slightly higher than Tseitin's. 
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THEOREM 5.6.2.l.c. (Tseitin, Kirkpatrick) 

There exists an infinite family of inconsistent sets 

of clauses {S } and there are constants 01 and a 2 such that n 

if s contains n clauses, then every Davis-Putnam derivation 
n 

n 
a 1 •· 

of 0 from S (with subsumption) includes at least 2 tog(n1 
n 

clauses, while there is a regular extended resolution derivation 

of 0 from S consisting of no more than a 2 •n•tog(n) clauses. n 

Proof Outline 

Tseitin obtained the slightly more conservative bounds 

a1•ln 3 • of 2 and az•n , respect1vely. Both Tseitin and 

Kirkpatrick developed their proofs by defining an inconsistent 

set of. .clauses S(G) associated with any undirected graph G. 

They then showed a correspondence between steps of a derivation 

of 0 from S(G) and certain operations on the graph G. They 

thus reduced the problem of finding sets of clauses with no 

short proofs to the problem of finding graphs with certain 

properties. 

Given any undirected graph G=(V,E), the set of clauses 

S(G) is constructed as follows. For any set of literals 

n-1 . 2 clauses that are equ1valent to ; 1t . . . 1~n=E. For example, 

[p,q,~]T = {pq~,p~~'~q~,~~r}, and [~,q,r,a]F = {pqri,pq~s~p~rs, 
~qrs,p~r8,~q~8,~~ri,~q~s}. If the edges of G are labelled with 

distinct literals, and f:V~B, then S(G,f) = v~V[Cv]f(v), where 
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cv is the set of labels of edges incident with v in G. Tseitin 

shows that S(G,f) is inconsistent if and only if l{vjf(v)=Tll 

is odd, and that if f and f' both map an odd .number of vertices 

into T and if G' is the same graph as G with a (possibly) 

different labelling with distinct literals, then S(G',f') is a 

renaming of S(G,f). Thus, it may be assumed without loss of 

generality that the edges of G are labelled p1 , ... ,pm , that 

f(v 1 )=T and f(v 7 )= ••• =f(v )=F, and that it is this labelling 
- n 

of the vertices and edges of G that gives S(G). Notice that 

if d(v) is the degree of vertex v in G. then the number of 

clauses in S(G) is Evczd(v)-l). 
V E 

Tseitin and Kirkpatrick both show (in somewhat 

different ways) that if any sequence of single-edge deletions 

that reduces G to the empty graph on n vertices must at some 

stage produce a connected graph 8, where there are at least · 

m edges of G that are incident with at least one vertex of 8 

but are not edges of 8, then any derivation of 0 from S(G) 

must contain more than zm clauses. The difference between 

Tseitin's and Kirkpatrick's lower bounds arises from the fact 

that they used different graphs. Tseitin's graphs are two 

dimensional square grids: 

, eta., 
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while Kirkpatrick's graphs are modified n-cubes. 

Kirkpatrick defined the n-cube B to be an n 

n-dimensional cube view~d as a graph. That is~ if the vertices 

n of B are the 2 n-tuples of O's and l's, then vertices l and 3 n 

are adjacent in B if and only if l and J differ in exactly n 

one position. Modified n-cubes D are constructed by replacing n 

the vertices of B by cycles of n vertices. That is, n 

D =(V ,E), where n n n 

V = { ( i, r) ll e: { 0, 1} n , r (:{ 0, ... , n -1}} and 
n 

E - {((i ,r),(J,s))jeither r=s and land J differ in n 

the rth position and only in the rth position, 

or (r-s):l(mod n) and l=J}. 

Note that for n~3 each vertex of D has degree three, and n 

D has n•Zn vertices. Kirkpatrick's lower bound is obtained n 

by letting S n = 
4•n•2 

S(D ). n 005.6.2.l.c. 

COROLLARY 5.6.2.l.d. (Tseitin, Kirkpatrick) 

The Davis-Putnam procedure with subsumption cannot 

directly simulate regular extended resolution. 

COROLLARY 5.6.2.l.e. (Tseitin, Kirkpatrick) 

The Davis-P~tnam procedure with subsumption (and any 

system simulated by the Davis-Putnam procedure with subsumption) 

is not polynomial-bounded. 

--. 
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5.6.2.2. Tseitin's Lower Bound for Regular Resolution 

Tseitin never actually discussed the Davis-Putnam 

procedure in [Tseitin 1968], but part of his proof of the 

following theorem effectively shows that the shortest regular 

resolution derivation of 0 from S(G) can be generated by the 

Davis-Putnam procedure (without subsumption) . Thus, theorem 

5.6.2.l.c. applies to regular resolution as well as the· Davis­

Putnam procedure. Galil has extended Tseitin's work even 

further, showing that theorem 5.6.2.1 . c . also applies to 

enumeration dags [Galil 1975]. Finally, it is riot hard to see 

(Galil has also made this observation.) th~t combining 

Tseitin's and Galil's proofs with Kirkpatrick's graphs gives 

the following theorem. 

THEOREM 5.6.2.2.a. (Tseitin, Kirkpatrick, Galil) 

There exists an infinite family of inconsistent sets 

of clauses {S} and there are constants a 1 , a2, and a3 such n 

that if ts =n, and if the shortest derivations of s have 
n n 

lengths r in the system of regular resolution, d in the system 

of enumeration dags, and e in the system . of regular extended 

resolution, then 

n 
cl·-----

2 (Zog(n)) 2 

n 

d ;:: 2 
az•-----

(Z.og(n))2 and 
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COROLLARY 5.6.2.2.b. (Tseitin, Kirkpatrick, Galil) 

Neither regular resolution nor enumeration dags can 

directly simulate regular extended resolution. 

COROLLARY 5.6.2.2.c. (Tseitin , Kirkpatrick, Galil) 

Neither regular resolution nor enumeration dags is 

polynomial-bounded. 

Recall from paragraph 4.2.4.2. the definitions of aZ(B), 

def(B), resolution with limited extension, and extension 

derivations. Since the computation of def(B) depends on the 

connectives in B, it is more proper to consider the methods of 

resolution with limited extension (or systems of extension) 

with two different sets of· connectives as distinct proof 

systems. 

The fact that the graphs D have degree three can be n 

exploited to show the same lower bound for the system of 

regular resolution with limited extension for any set of 

connectives K that contains both = and ~ or , and either -

- T 
or ~. First note that [~A~~~A=B] is the same set of clauses 

as aZ(A=B), and that al(A~B) = [~A~B~A~B]F. Let v be the 

vertex of D that gets labelled T, and let a be the label of n 

one edge (u,v) incident with v. LetT be·a directed spanning 

~ tree of D such that the root of T is v and the only , , . n 

edge incident with v in T is a . For example, the darkened 

lines in figure 5.6 . 2.2.i. give such a spanning tree T for 

T F 
Note that S(Dn) = [a,B,y) uwliv_[a',B',y'), where a', B', 

W€V 

I 
i 

1, 

f! 
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I· 
I 

FIGURE 5.6.2.2.i. 

Directed Spanning Tree for the Modified n-cube D3 
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y' are the edges incident with w and a,B,y are the edges incident 

with v. For edges ~EE, define F(~) inductively as follows: 

1) if ~iT, then F(~)=s, 

2) -if sET, then F(s) = (F(~l)~F(~2)), where s1, ~2 are 

the edges of D incident with the head of s (i.e. n 

the end of~ farthest from the root ofT). 

Finally, let F = (F(a)~(B~y)), and note that F is n n 

unsatisfiable. Then F is a formula in n 

fsl~ labels an edge of D -T}. If the literal s is associated n 

·with the formula F(s) for ~ET, and p is associated with B=y 

and q is associated with F , then 
n 

def(F ) n 

def(F ) n 

'T T F 
= [S,y,p] u[a,p,q] u uv[a',B',y') . Therefore, 

ti~v 

T T T 
= (S(D )-[a,B,y] )u[S,y,p] u[a,p q] . Let D be a 

n 

regular derivation of 0 from s = (def(F )u{q}). (Note: n 
--::;r 

def(F )u{q} is def(,F )u{~ n} and ,p is a tautology.) Let n n n 

D1 be the derivation obtained from D by replacing S by S\q and 

dropping all resolutions on q. Thus, D1 is ~ regular 

derivation no longer than D of 0 from 

T T 
(S(D )-[a,B,y) )u[B,y,p] u{a~;~p}. If any clause a~C or ~pC' n 

appears in b1 , then fl 1 may be shortened by replacing ape by 

ap (or replacing .apC' by ap) and deleting some resolutions, if 

necessary. After deleting all occurrences of such clauses, a 

derivation D2 is obtained, still no longer than D, and such 

that no clause in the derivation contains ap or ~p (except 

~mnmzxazr'ST"..-==ta:::::'!W'~'"' ·e~· .. ;-;;;:;;- r : : =~-=:.=~-----

I 
. ! 

i . .. ~ 

1,. 
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these initial clauses themselves). Replacing every occurrence 

in D2 of p by ~ and p by a gives a derivation D3 (again some 

reso1vents may have to be .discarded) of 0 from 

(S(D )-[a,B,y]T)u[S,y,a]Tu{aa,aa} = S(D )u{aa}. All uses of 
n . n 

aa can clearly be eliminated without changing the conclusion 

of the derivation, so that a derivation ~~ of 0 from S(D ) is n 

obtained, where D~ has no more resolvents than 8. Thus, any 

short derivation of ,p by· regular r esolution with limited 
n 

extension gives a shorter regular resolution derivation of 0 

from S(D ). Note that F could easily be modified to be a n n 

formu1a in{,,=} or{,,~}. Combined with the proof of theorem 

5.6.Z~l.c., this gives the following theorem. 

THEOREM 5.6.2.2.d. 

The system of regular resolution with limited extension 

for any set of connectives containing .{=,~}, {,,=},or{,,~} 

cannot directly simulate regular ext ended resolution, and is 

. thus not polynomial-bou~ded. 

It is interesting to note that, since F
1 is just a large 

~ n 

formula in= and~, the techniques of lemmas S.3.3.e . , 5.4 . a., 

5 .i4. b4 ,- and · S. 4. c. for manipulating conjunctions can be adapted to 

manipulating iterated formulas in = and ~' to give an inference 

system I that allows derivations of ,pn of length p(~Fn), for 

some polynomial p. Thus, the following theorem is obtained. 

THEOREM 5.6.2.2.e. 

The system of regular resolution with ~imited extension 

for any K containing {:::,~}, {,,=}, or{,,~} cannot simulate 

any Frege system. 
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5. 6. 3. Extended Resolution 

The method of extended resolution and the family of 

systems . ~£ extension for each set of . connectives K were defined 

in paragraph 4.2.4.2. Since an extension derivation of A is an 

~xtended resolution derivation of ~A from def(A), ' to show that 

~xtension (for any set of connectives K) p-simulates extended 

resolution, it suffices to observe that de f (A) can be computed 

in polynomial time, and that an extended resolution derivation 

of 0 from def(A)u{tA} can be converted to a derivation of ~A 

merely by ignoring all resolutions involving the clause ~A. 

THEOREM 5 . 6 . 3 . a . 

The system of extension (for any set of connectives K) 

p-simulates extended resolution. 

The converse of this theorem is also true. 

THEOREM 5. 6. 3. b. 

Extended resolution p - simulates the system of extension 

for {,,v,&}. 

Proof 

Let s be any unsatisfiable set of clauses, and let S' 

be the formula in {,,v,&} constructed equivalent to s in the 

obvious way. Thus, S' is unsatisfiable, so ,s' is a tautology. 

Let D be an extension derivation of ,s'. That is, 1- -.S' via D, e 

so that def(,S ') 
,s' 

L_ ~: v i a D. 
r er "' Note that def(,s')=def(S') 

,s, S" 
and f,; = t,; , and that def(S') can be obtained by extension 

of the set of clauses s. Thus, if there is a derivation D' such 

that Sudef(S')u{t;
81

} 1- 0 via D', then s 1- 0 via def(S')DD ' . 
r er 
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Derivation D' can be constructed in a very 

straightforward manner. Let c. = ~ 1 ... ~ be any clause ins, 
'l- m 

and let Ci' = (( ••• (~ 1 v~ 2 )v .•• )v~m). · Then def(Ci')=.def(S'), 

where def(C.') = .'l/ 2{U.a . 1 ~.,a.c;::--1 ,a.~}, Ct.t=~l, and a =y .. 
'l- J= J J- J J J- J J m 'l-

A resolution derivation D~ of y. from {C.}udef(C.') can be 
v 'l- ~ ~ 

constructed in Z(m-1) steps. If m=l, then y.=a =a 1=~ 1=c .. ~ m 7-

Otherwise, for j=2, ... ,m. resolve a. 1 ~ . ... ~ with a.a. 1 to . • J- J m J J-

get a . ~ .... ~ and then with a .~ to get a.;. 1 ... ~ . The 
J J m J J J J+ m 

result is a 2(m-1) step derivation D. of {y.}(={a }) from 
'l- 7- m 

s 1 = ( ( ... (C 1 
1 &C 2 ') & ••• ) &C n '). Then 

def(S'),. ,..U_ 1def(C_.') u .Q 2{8.B. 1 ,B.y.,s.~1Y.l, where 81=Y1 
v v J- J J- J J J J- J 

S' and B =~ • n A Z(n-1) step derivation D0 of {~51 } from 

{{y1}, ... ,{yn}}udef(S') can be constructed as follow-s. If n=l, 

Otherwise, for j=Z, .•• ,n, resolve B. 1 with 
J-

s.~1~ to obtains.~, and then resolve this withy. to 
J J- J J J J 

obtain 8.. Finally, deri v·ing 0 from { ~S', ~S '} in the one- step 
J 

derivation~ leads to the derivation D'=D 1D2 ... DnD 0D of 0 from 

-p 
Sudef(S ') u{~ }. The simple observation that ~D' is 

proportional to ~def(S ') completes the proof. 005.6.3.b. 
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The relationship between systems of extension for 

different sets of connectives is best s hown indirectly, via 

extended Frege systems . It can be shown that the system of 

extension for any set of connectives K and any extended Frege· 

~ystem for K p-simulate each other. Then the fact that any 

two extended Frege systems p-simulate each other can be used 

to show that all systems of extension and the system of 

extended resolution are in the same p-simulation equivalence 

class with extended Frege systems. 

THEOREM 5.6.3.c. 

If K is any adequate set of connect ive s and F=<K,~> 

1s a Frege system, then the system of extension for K 

p-simulates the . extended Frege system eF. 

Proof 

The basic outline of this pro~£ was suggested by a 

paragraph in [Tseitin 1968], where Tseitin briefly indicates 

how extended resolution simulates Gentzen systems. In fact, 

it was that paragraph that stimulated this entire line of . 

research into the comparative complexities of proof systems. 

Let A be any tautology in the connectives K, and let 

D be any derivation such that f- eF A via D, so that 

i-1~ p. does not appear in {Au .u 16(p .,B.)uB .}. 
1- J= J J -z. 

For lsisn associate 

the literal p. with the formula B., and let -z. . . 't 

def(D) = u def(B), noting that def(A)~def(D), 
all.formulas BinD 

li'illil . MJB i.r l ;;;;,;; ',. .. • 

'·· 
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and that def(D) can be obtained from def(A) by a sequence of 

extensions. 

In particular, note that for l ~isn , def(~(pi,Bi))=def(D), 

and def(E(p. , p.))cdef(~(p.,B . )). Since ~(p , p) is a tautology, 
~ ~ - ~ ~ 

there 'is a resolution derivation D , where 

def(~(p , p)) 1-r E;~(p,p) pia D~. (Extension will not be required, 

because (def(E(p,p))u{E;ft(p , p)}) ~ 0 but def(2(p,p)) is 

consistent.) Then for l ~isn there are renamings cr. such that 
~ 

def(~(p ., B . )) 1-r E;E(pi , Bi) via D~a. = D . . Note that D. 
~ ~ 1,.. 1, 1, 

contains the same number of steps as o2 . 

For each rule R={A 1 , ... ,Ak}+B in i~t let 

k ' R 
def(R) = i~ldef(Ai)udef(B), and let D be a resolution 

B Al A 
derivation of E; from def(R)u{E; }u • •• u{E; n} . (Again, 

extension is not needed. The required derivation can be 

obtained by dele~ing all resolutions involving E; 8 from a 

Note that for any formula A and any substitution a there is a 

renaming cr' such that def(A)a'~def(Aa). Because of this 

property of def , if B' is inferred from A1 ' , .. . ,An' by ruleR , 

and if r = iQ 1def(Ai ') udef(B'), then there is a renaming cr' 

A ' A ' 
such that ru{E; 1 }u ... (E; n} 1- E; 8 ' via DRa '. 

r 

~rmmnmzFTE 71'iiiiii ELm i:S Sua iiiiiii&iiinot- i : i = : iiii ----lA~ :. = 
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It should now be clear how to construct a resolution 

derivation D" of ~A from def(D). It begins with derivations 

D1 , ••• ,D of the single-literal clauses 
E(pl,Bl) E(pn,Bn) 

~ , ... ,.; . . n 

Then, for every formula B' in D', D11 contains the single-literal 

B' . 
clau~e .; , preceded by the appropriate renaming of the 

derivation corresponding to the rule by which B' was derived in 

D,. The total number of steps in D" is bounded above by some 

constant times (n+~8D'), and each step contains a bounded 
. 

number of literals. This gives the required extension 

derivation of A. 005.6.3.c. 

The conve~se of this theorem has an equally 

straightforward proof. 

THEOREM 5.6.3.d. 

If K is an adequate set of connectives, then there is 

a Frege system F=<K,f?v> such that tf,te extended Frege system 

at p-simulates the system of extension for K. 

Proof · 

The proof of this theorem is simplified by an appeal 

to the following rather neat result from [Galil 1975]. 

LEMMA 5.6.3.e. (Galil) 

There is a constant s such that if m distinct atoms 

appear in D, if S f-er C via D, and no clause of Su{C} contains 

more than j literals, then there is an extended resolution 

derivation D' such that 

1) S I- er C via D ', 

t . 

. ' 
;;;AMII!f·-;-- ·-·Mjirj'j!f·····wriia;:···-···· -: ,- -~·&mt----------·-····· · -~ · 
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2) no clause of D' contains more than j literals, and 

Now let A be a formula in the connectives K, and let D 

be an extension derivation of A, so that def(A) r-er ~A via D, 

and (def(f)udef(A)) ~r ~A via D', where r is the set of 

formulas introduced by extension. If k is the maximum arity 

of connectives in K, then no clause in (def(r) ude f(A)) contains 

more than k+l literals . Then:, by lemma 5.6.3.e., it may be 

assumed without loss of generality that no clause of D' has 

more than k+l literals. For l~i sk +l, let y.(p 1 , ... ,p.) be . a 
'l- 'l-

formula in the connectives K such that 

Vi(p1 , ... ,pi)- (( ... (p 1vp 2)v .. . )vpi). Since k+l is finite, 

it is allowable for ft to contain rules that simulate all 

possibilities of resolutions involving clauses with no more 

than k+l literals. For example, if Ct , C2, and Cs are clauses 

of lengths i1,iz,i3 s k+l and C3 is the resolvent of C1 and C2, 

then ft will contain the rule V· (Ct),y. (C2) + y. (C3) (or a · 
'l-1 ~2 ~3 

renaming of it). 

If c is a clause of length i, then let C=y. (C) , and if 
'l-

s is a set of clauses, then let s={clces}. Then, since y ._ (F,:)=t;, 
1 

if S=(def(f)udef(A)), then S l- F,;A 
F' 

via i5 ' . Thus, to get a 

derivation of A in the system eF', it will suffice to find a 

- A series of extensions 6 such that 6 ~ F S and !:!. , ~ 1- F A. For 
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this let 6 
u B cl c. 

== BEsub(fu{A})E(~ ,*(~ , ... ,t;. 'i-)), where 

B cl c. 
Then, since cl(B),.... ~(~ ,*(~ , ... ,~ -z.)), 

each formula C corresponding to a clause C of cl(B) can be 

B cl c. 
derived in system P from 2(~ ,*(~ , ... , ~ ~)). Notice that 

this derivation is a r~naming of a fixed derivation that 

depends only on *· 

All that remains is to show how to derive A from 

6u {~A}. If P contains the rules 

~(p 1 ,q 1 ), ... ,E(pi,qi) + 2(*(p ) ,*(q)), for each connective *£K, 

plu s the rules E(p,p) and 2(p,q),p + q, it is not hard to see 

how to construc t a short derivation of E(~A,A) from 6A, wheTe 

A . A 
6 is the sequence of extensions defining A . S{nce 6 £6, this 

completes the proof. 005 . 6.3 . d. 

A minor modification of the proof of theorem 5.6.3 .d. 

leads to the following theorem. 

THEOREM 5. 6. 3 . f. 

If K is any adequate set of connectives, then there is a 

Frege system F=<t<,/~> that p-simulates the system of resolution 

with limited extension for K . 

Proof Sketch 

The proof of this theorem is similar to the proof of 

theorem 5.6.3.d. 
Al An 

The clause C == ~ ... ~ is simulated by the 

formula c == v (A 1 , . .. ,A ). Since the system of resolution 
n n 

with limited extension is not allowed to do any extensions 

·! . 
• ': · 
I 
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beyond def(A), theorem 5.6.3.e. does not apply, so that D' may 

contain arbitrarily long clauses. Thus, j0 cannot contain 

enough rules to directly simulate all of the possible 
r 

resolutions in one step. Instead ~ contains rules for 

reordering disjunctions analogous to those of lemma 5."4.a. 

and a single resolution rule: V (p,q),v (,p,r) + v (q,r). 
2 2 2 

This gives a derivation in system F of A from S. But each 

formula ~ 6£ ~ is a tautology whose derivation is an instance 

of the derivation for the principal connective of the formula 

being defined by C. 

Thus, any extension derivation D of A leads to a 

derivation D' of A in the system F. However, if D contains 

extensions that define literals corresponding to exponentially 

long formulas, D' will bi exponentially long. Thus, all that 

can be said with certainty is that if D' contains no extensions 

defining literals equivalent to formulas that are not 

subformulas of A, then ~D' is bounded by a polynomial in ~D 

and ~A. 005.6.3.£. 

The results of this subsection are rounded out with 

the inclusion of the following very interesting theorem from 

[Galil 1975]. 

THEOREM 5.6.3.g. (Galil) 

Extended regular resolution p-simulates extended 

resolution. 

: i 
'' . ·1 i 
'; 
; :~ 
~ . 
' . 

i . 

' 
: . 
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5.6 . 4. Resolution vs Cut - Free Gentzen Systems 
' 

The "weakest" systems that have not been shown not to 

be polynomial - bounded are (non-regular) resolution, systems 

of (non-regular) resolution with limited extension, and cut­

free Gentzen systems. All of these systems are p-simulated 

by any system in the equivalence class including Frege systems, 

natural deduction systems, and sequent systems. Since the 

computation of def(A) can be carried out in polynomial time, 

the p-simulation of (regular or non-regular) resolution by 

(regular or non-regular, respectively) resolution with limited 

extension is trivial. The p-simulation of resolution with 

limited extension by Frege systems was established by the0rem 

5.6.3.f. The p-simulation of basic ~entzen systems by Gentzen 

systems with thinning is trivial (theorem S.S.2.b.), and the 

p - simulation of Gentzen systems with thinning by Gentzen 

systems with cut is established by theorem 5.5.2.a. Theorem 

5.5.2.a. could be combined with established techniques for 

reordering conjunctions and disjunctions to show that Gentzen 

syst.ems with cut p-simulate the Gentzen system for sets of 

clauses. 

THEOREM 5.6.4 . a. 

The Gentzen system with cut for {.,,v,&} p-simulates 

the Gentzen system for sets of clauses. 

(Note: The only real difference between the Gentzen system 

for sets of clauses and the Gentzen system with thinning for 

{,,v,&} (when applied to sets of clauses) is that the order 

of disjunctions does not matter in the former system. That 

is, when both systems are applied to sets of clauses, the 

.. 
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Gentzen system for sets of clau?es is merely a minor 

generalization of the Gentzen system with thinning for {,,v,&}, 

and thus trivially p-simulates that system.) 

In the other direction, the systems under consideration 

in this subsection are all simple generalizations of systems 

that have been shown not to be polynomial-bounded (regular 

resolution, regular resolution with 'limited extension for 

K~{,,=} , analyt~c tableaux, eta.). It therefore seems 

worthwhile to investigate these systems in as much detail as 

possible, with the hope of establishing relationships that will 

allow these systems to be added to the list of systems that 

are provably not polynomial-bounded. Although there is hope 

that the proof techniques of Tseitin (as extended by 

Kirkpatrick and Gal i l) could be used to give non-polynomial 

lower bounds for these systems, theorem 5.6.2.2.e. tends to 

indicate that these techniques cannot be extended to Frege 

systems. 

The relationships between different cut - free Gentzen 

systems were discussed in subsection 5.5.2., and the 

relationships between various resolution-based systems have 

been discussed earlier in this section. This subsection 

covers the relationship between certain cut-free Gentzen 

systems and certain resolution-based systems. In paragraph 

5.6.4.1 . it is shown that the Gentzen system for sets of 

clauses p-simulates enumeration dags , while paragraph 5.6.4.2. 

shows that each Gentzen system with thinning is p-simulated 

by the system of resolution with limited extension for the 

same connectives. 
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5.6.4.1. The Gentzen System for Sets of Clauses 

Recall the definition of the Gentzen system (with 

thinning) for sets of clauses from paragraph 4.2.3.1. and the 

definition of Galil's enumeration dags from paragraph 5.6.1.4. 

The purpose of this paragraph is to prove the following theorem. 

THEOREM 5.6.4.l.a. 

The Gentzen system with thinning for sets of clauses 

p-simulates the system · enumeration dags. 

Proof 

Let G be the Gentzen system with thinning for sets of 

clauses. Since no rule of G introduces any formula into the 

consequent side of any sequent, every sequent in every 

G-derivation has an empty consequent. Thus, there is no 

confusion if the sequent 6r is denoted simply by 6. It is 

convenient to identify the formula vc~l'''' '~m) with the clause 

clauses S={e 1 , ... ,en} . Note that n-1 &-elimination steps are 

sufficient to derive the sequent &(e1 , .. . ,en) from the sequent 

{e1 , ... ,en}. Since G is analytic, any derivation of the 

sequent S={c 1 , ... ,c } must consist entirely of sequents that n 

are sets of clauses. The remaining rules that apply are the 

axiom rule: +~ , ~,S', the thinning elimination rule: s'~s',C, 

and the v-elimination rule: S',e 1 , B' , C2 + S',e 1 e 2 • 

Let S be an inconsistent set of clauses, and let D be 

an enumeration dag for S . A derivation D' of S in the system 

G can be constructed from D in a very straightforward way. 

·. .. 
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If S' is a set of clauses labelling some node of D, then D' 

will contain the sequent S'~ along with a derivation in system 

G of S ' from the sequents corresponding to the parents of S' 

in D. 

Assume that the parents of S' are S 1 uS1' and S 2 uS 2 ', 

and that (S1uS1'~uSzuSz'~) ~ S' . If S1uS1' = S 2 uS2 ' = {O}p 

then{~,~} s S' (or DeS', in which caseD could have been 

pruned), so that the sequent S' is an axiom in system G. 

If one parent of S' is {0}, then (S1uS1 '~u{~}) s S' . 

Assume that the sequent S1uS1' has already been derived, and 

5 1 '={c1 , ... , ck} . If k=O, then S' can be derived from 5 1 by a 

series of thinning steps. Otherwise, for l~i~k, let s~ be the 

axiom {s 1 ,c 1 ~, ... ,ci-l~'ci+l'' .. ,ck,~'~}. Then, derive 

s1 ,c1 , . .• , ck ' ~ by a single thinning step, and for l ~i~k, derive 

s 1 , c 1 ~, ... , c i ~ , c i + 1 , ... , C k, ~ from s 1 , c 1 ~ , ... , C i _1 ~, C i , •.. , c k, ~ 

and si by a single v-elimination step. The result of this 

last step is the sequent S 1,S1' ~,~ , from which S' can be 

derived by thinning. 

Finally, assume that both parents of S' have been 

derived, and that S 1 '={c1 , ... ,C7<}' and S 2 '={ B1 , .. . ,Bj}. If 

k=O, then S' can be derived from 81 by thinning, and if j=O, 

S' can be derived by thinning from 8 2 • Otherwise, S' is 

derived from S1,S1' and Sz,S2' by the derivation shown in 

figure 5.6.4.l.i. 
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FIGURE S.6.4.l.i. 

Simulation of Enumeration Dags by the Gentzen System with 

Thinning for Sets of Clauses 
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In any case, the numher of steps in the derivation of 

S' from its parents is bounded by a polynomial (of degree two) 

in the number of clauses inS'. Then, since the number of 

clauses in S' is not less than the number of clauses in each 

of its parents, no sequent in the entire derivation contains 

mor e clau$eS than S. Therefore, the total length of derivation 

D 1 i$ bounded by c · ~8 D•(tS) 2 , where cis a constant. 

~5 . 6.4.1.a. 

Since the Gentzen system for sets of clauses is such 

a minor generalization of Gentzen systems for {,,v,&}, it 

seems unlikely that it could ever be shown that Gentzen systems 

(with thinning, at least) cannot simulate regular resolution. 
~ ~ ~s ~ fie C-SV\Vl t c--J<u-e. 5, s~.EJ. F,J..u ( pw..~) .fav =::: 

5.6.4.2. Resolution with Limited Extension 

In paragraph 5.6.2.2 . it was shown that certain systems 

of regular resolution with limited extension are not 

polynomial-bounded. This paragraph presents a proof (suggested 

in [Tseitin 1968]) that for any adequate set of connectives K 

the system of resolution with limited extension for K 

p-simulates the Gentzen system with thinning for K. This 

suggests that a Gentzen derivation should be called regular 

if its simulating derivation in the system of resolution with 

limited extension is regular. It will turn out that a Gentzen 

derivation D is non-regular if there is a formula A and a 

sequence of sequents s 1 , . .. ,sk such that for l~ i ~k - 1, Si is a 

parent of Si+l in D, A appears (either as an antecedent formula 

or as a consequent formula ) in s 1 and Sk' but f or some l <i <k, 

! ' 

i 
I 

! 
!i 
i.' 

~~ 
:; 
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A does not appear (as an antecedent or cons equent) in the 

sequent s. (although A must appear as a subformula). It is 
1.. 

not hard to see .that regular Gentzen systems are complete, 

but a corollary of the proof of the following theorem is that 

for K containing {,,=}, {,,~}, or {=,tl, the regular Gentzen 

system for K with thinning is not polynomial - bounded. 

THEOREM 5.6.4.2.a. (Tseitin) 

If K is any adequate set of connectives, then the 

system of (regular) resolution with limited extension for K 

~-simulates the (regular) Gentzen sfstem with thinning for K. 

Proof 

The main idea behind this proof comes from [Tseitin 1968). 

That is to represent the sequent S = .A1 , . . . ,Am~B1 , ... ,Bn by the 

S · AI ~ 8 1 8n clause C = t; , • •• ,t; ,t; , • • • ,t; Note that because the 

Gentzen systems with thinning are analytic, if B appears in 

any sequent of a derivation of ~A , then B is a subformula of A, 

so that t;
8 appears in def(A). Then, if sis inferred from 

s 1 , . .. ,sk by applying the *-introduction or *-elimination rule 

s 8 1 8 k to some formula Bins, then c can be derived from C , ... ,c 

and oZ(B) using a number of resolutions that depends only on * · 

For example, if S = A1,A2:;:,Aa~A" is derived from S1 = A1rAz,A~ 

and S 2 = A 1 ,A 3 ~A~t by the :;:,-elimination rule, then 

0 z (A 
2 

:;:,A 
3

) = { t;A 2 :;:,A 3 ~ t;A 3 , t;A 2 :;:,A 3 t;A 2 , t;A 2 :;:,A 3 '2f3} ' 
CS = ?I t;A 2 :;:,A 3 i;A 1t , CS 1 = ?1 t;A 2 .;A", and CS 2 = t;A 1 t.:A 3 t;A '+. This 

leads to the following two-step derivation. 
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(from 
a l (A 2 =>A 3) ) 

Similar cases hold for all other introduction and elimination 

rules, a consequence of the fact that 

Note that if S is obtained from S' by thinning, then 

{ c1 ~ ... , c } I- c via D, then there are a clause c ':=_C and a n r 

derivation D' such that {c 1 ', ... ,c '} 1- C' via D' and tD'~tD. n r 

This fact is easily proven by induction on the number of steps 

in D. Putting these two facts together, if for l~i~k, s. is 
t. 

s. t 
derived from Si' by thinning, Ci:=_C ~ , and Sis derived from 

s 1 , .. . ,sk by *-elimination or introduction, then there is a 

clause C:=_C
8 that can be derived from c 1 , ... ,ck in no more steps 

s · 8 1 8 k 
than the derivation of C from c 1 ••• ,c 

All that remains is to show how to deiive C:=_C
8 when 

one or more of the parents of sequent S is an axiom. Consider 

again the example of the =>-elimination rule. Suppose, for 

example, that A1=A2 and A3=A4, so that both 81 and 82 are 

-

i . 
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axioms . · Then, c8 = ?'2 ~A 2 :)A 3 ~A 3 , which is one of the clauses 

in c Z. (A 2 =>A 3 ) • 
. s 

In fact, if all of the parents of C are axioms 

when s is obtained by applying some introduction or elimination 

rule to the formula B in s, then it will always be the case 

that some clause of cZ.(B) subsumes c8 • For the case where some 
• 

but not all of the parents of S are axioms, consider the 

=>- elimination example again, this time with A 1 =Az, but A 3 ~Att. 

S :A;z A 2 =>A 3 A ·· . Then, C = ~ ~ ~ .. can be derJ.ved in one step from 

c8
2 = ~~~A 4 and ~A 2 =>Aa~~A 3 , one of the clauses from 

cl(A 2 =>A3). Note that in all cases, the only clause from 

cZ.(A 2 =>A~) that was used was ~A 2 =>Aa~~A 3 , the clause that says 

=>-introduction rule. 

If D is a derivation of the sequent ~A in the Gentzen 

system with thinning (for the connectives in A), then the 

result of this construction will be a resolution derivation 

D' of some clause C~{~A} from def (A) , such that the number of 

steps in D' is bounded by some constant c times the number of 

steps in D. Since def(A) is consistent, C;eO, so C=~A. 
005.6.4.2.a. 

Note that in this proof, the cut rule is easily 

simulated by a single resolution step. But since the cut rule 

is not analytic, the simulating resolution derivation will 

have to use clauses from cZ(B) for some formulas B that are 

i ·~ 
\ 
I 
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not subformulas of A. This is Tseitin's proof that extension 

p-simulates Gentzen systems with cut. Combined with theorems 

5.6 . 3.d. and S.S.l.b., .this gives an alternate proof that every 

extended Frege system p-simulates every Frege system. 

Also, note that this simulation can be turned around, 

using the same association between clauses and sequents. Every 

use of the resolution rule can ·be simulated by a single 

application of the cut rule. Combined with theorem S.S.l.a., 

this gives an alternate proof of theorem 5.6 . 3.£., that Frege 

systems p- simulate resolution with 1 irnited ·ext ens ion. 

5.7 . DISCUSSION 

The results of this chapter have already been 

summarized in figure 5.2.i. What has been accomplished in this 

chapter is that a potentially infinite collection of proof 

systems has been reduced to 21 categories. Most of the work 

of this reduction came in subsection 5.3.1., where the tools 

were developed to show that all Frege systems p-simulate each 

other. 

In terms of the 
·P .rn rD 

/; vs !{.)} question, the most 

interesting part of figure S.Z.i. is the part above the double 

solid line. The systems below the line are no longer of 

interest with respect to this question, because it has been 

proven that they cannot be used to show that f = 12f (or even 

that -'luP is closed under complements). The systems just above 

the line (boxes s . - 12 . in figure 5 . 2.i.) are of interest 
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because they are all closely related to systems below the line. 

Thus, there is hope that the techniques of Tseitin (as extended 

by Kirkpatrick and Galil) can be elaborated upon to give 

non-polynomial lower bounds for these systems. 

The remaining three boxes at the top of figure 5.2.i. 

present interesting problems. (Extended tree resolution was 

defined by Tseitin only so that the statement of theorem 

5.6.l.l.c. would be as strong as possible.) By theorem 

5.6.2.2.e.t the techniques of Tseitin, Kirkpatrick, and Galil 

cannot be used to show a non-polynomial lower bound for Frege 

systems and their allies. Such a lower bound (if it exists) 

awaits the discovery of an entirely new proof technique; 

perhaps even some form of diagonalization will be needed . 

The relationship between Frege systems and systems 

with extension was discussed in subsection 5.3.2. A proof that 

Frege systems cannot simulate extended Frege systems would have 

as a corollary (in addition to the conclusion that .Frege systems 

would not be polynomial-bounded) that fan-out one circuits 

cannot "simulate" (in a polynomial number of gates) fan-out 

two circuits. 

Finally, the top box in the figure, containing s-Frege 

systems, is the most interesting of all, because each s-Frege . 
system p-simulates every other system shown in the figure. A 

non-polynomial lower bound for any s-Frege system would imply 

that no system shown in figur e 5.2.i. is a polynomial-bounded 

verification system. This would provide strong circumstantial 
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evidence to support the speculation that /UP is not closed 

under complements. Conversely , if there is any system in 

figure 5. 2. i . that can be used to show that "/'UP is closed 

under complements (i:e. if one of them is a polynomial-bounded 

verification system), then every s-Frege system is polynomial­

bounded . Furthermore, it would not be hard to imagine that a 

proof that some system is polynomial-bounded could be extended 

to give a polynomial-time decision procedure, thus proving that 



6. CoNCLUSioN ' 

This thesis i s only a first step in the classification 

of propositional proof systems according to their complexity. 

Section 6.1. summarizes the results that have been obtained, 

and discusses their significance. Section 6.2. follows with 

a discussion of the old questions that remain unanswered and 

the new questions that have been raised as a result of this 

thesis. The thesis closes with section 6.3., which discusses 

suggestions for further research into the 00 VB 1ZJP question 

and proof system complexity . 

6.1 . SUMMARY OF RESULTS AND DISCUSSION 

The question of whether or not f equals 7l.J1 was raised 

over four years ago [Cook l971b]. In those four years a great 

deal has been said about the problem, but its solution still 

seems remote. This thesis has attacked the problem from a new 

angle, and although the P vs '/Uf problem has not been solved, 

some new insights have been gained. The significance of the 

question of whether or not ?7 . .f is closed under complement is 

now more fully understood , and the concept of polynomial-

bounded verification systems gives an intuitive a nd useful 

characterization of the class /lf. Finally, the idea of 

simulation of one verification system by another, as formalized 

in subsection 5.1.2., gives a way of comparing the complexi ties 

of verification systems analogous to the ways various resour ce-

bounded reducibility notions allow complexity comparisons 

between languages. 

-229-
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Formalized logical proof systems have been around for 

at least 96 years [Frege 1879], but in all that time, little 

has been done to compare the efficiencies of different systems. 

The concepts of verification system and simulation developed 

in this thesis provide a formal framework within which proof 

systems can be compared with respect to lengths of proofs. 

These methods have been applied to large classes of systems 

for the propositional calculus, and it has been found that 

interesting statements can be made. These simulation results 

are summarized in figur e 5.2.i. 

The most interesting new simulations are those related 

to the top three boxes in figure 5 . 2.i. In the top box is the 

family of s-Frege systems . Since any two s-Frege systems 

simulate one another, no s-Frege system is more than algebraically 

less powerful than any other, and since s-Frege systems simulate 

all of the other systems investigated in this thesis, they are 

the most powerful (to within a polynomial) of the systems 

studied here. 

The next box in figure S.2.i. contains systems that 

are all relatively new. The new concept of extended Frege 

systems was introduced in subsection 5.3.2., and these systems 

were shown to be p - simulation equivalent to Tseitin's system 

of extended resolution. This makes Tseitin's observation that 

extended r esolution simulates Gentzen systems (and thus Frege 

systems, as well) a trivial consequence of the fact that Frege 

systems are a special case of extended Frege systems . 
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The third box in figure S.Z.i. (box 4) contains Frege 

systems, natural deduction systems, and sequent systems. The 

terms "natural deduction" and "sequent system" have been used 

informally in the literature before, but in this thesis, these 

terms (along with the term "Frege system") are given precise 

meanings, and it is shown how nearly all published propositional 

proof systems (except the resolution -based ones) fit into one 

of these three categories. A large portion of the work in 

chapter 5. is devoted to showing that any system from one of 

these three classes p-simulates any other such system . The 

proof methods used are general, and apply to an infinite class 

of proof systems. They show that no new powerful connectives 

or inference rules (of the forms allowed by these systems), 

no matter how complicated or "clever", can increase the power 

of these systems by more than a polynomial. 

Figure S. Z.i. also summarizes the results that tie the 

proof system simulations of this thesis to the question of the 

closure of /1&0 
under complements - the non-polynomial lower 

bounds. Although most of the lower bound results shown in the 

figure were known, the one new result (theorems 5.6.2.2 .d- e . ) 

is particularly interesting. First, it extends the results 

of Tseitin, Kirkpatrick, and Galil, by showing that g new 

family of proof systems (all systems of regular resolution 

with limited extension for formulas in any set of connectives 

containing two of {,,=,1}) is not polynomial-bounded. Second, 

this result shows that no obvious extension of Tseitin's 

techniques can be used to give a non-polynomial lower bound 

for Frege systems. Therefore , a proof that systems in any of 
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the top three boxes in figure 5.2.i. are not polynomial­

bounded awaits the discovery of entirely new proo~ techniques. 

6.2. OPEN QUESTIONS 

This thesis has attacked the question of proof system 

complexity in a systematic way, and a number of questions about 

proof system complexity have been answered. A great many 

unanswered questions can be found by referring to figure 5.2.i . 

The cases whe re the relationship between two proof systems is 

most fully known wi th respect to the nsimulates 11 relation are 

either when both systems lie within the same solid box in the 

figure (i.e. the two systems simulate one another) or when one 

system. is known to simulate a second. systemt but the second 

is known not to direct ly simulate the first. This second alternative 

is indicated in the figure by the existence of a chain of 

downward arrows from the first system to the second and a 

second chain from the first system to the second following 

downward arrows and including at l eas t one upward dashed arrow 

(followed backwards). Although no such pairs are known, there 

could also be two systems such that neither can simulate the 

other. 

The most important open ques tions with respect to the 

f vs 1Lf question are those connected with systems above the 

double solid line in figure S. Z. i. Is regularity a significant 

restric tion on the form of derivations~ or can regular 

resolution simulate non- re gular r esolution? Even if it cannot 

in general, can regular resolution simulate non-regular 
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resolution on the sets of clauses arising from Tseitin's (or 

Kirkpatrick's) graphs? If it can, then general resolution 

would be proven not to be polynomial-bounded. Can it ever 

really help to apply the limited extension operation to a 

formula that is already in conjunctive normal form, or can 

resolution simulate resolution with limited extension? 

Although a few relationships between cut-free Gentzen 

systems and resolution- based systems have been derived, the 

full details of the relationship between these families of 

systems remain unknown. It is not even known if two cut-free 

Gentzen systems with different sets of connectives can simulate 

each other. It would seem unlikely that any of these cut-free 

or extension-free systems could simulate Frege systems, but 

theorem 5.6.2.2.e. now provides only a partial answer to this 

question. 

As it was pointed out 1n subsection 5.3 . 2., the 

relationship between extended Frege systems and Frege systems 

without extension is closely tied to the relationship between 

fan-out two circuits and fan-out one circuits. This emphasizes 

the fact that both are important open questions in complexity 

theory. 

The position of s-Frege systems at the top of figure 

S.Z.i. makes them the focus of a number of open (and probably 

very difficult) questions. Are they polynomial-bounded? Can 

any other proof system simulate them? What is there about the 

substitution rule that makes these systems so powerful? 



-234-

Although their relevance to the f vs 'llf question has 

been ruled out, the systems below the double solid line in 

figure S.Z.i. also give rise to some interesting open questions. 

For instance, all of the examples that have been found for 

showing a non-polynomial lower bound for the Davis-Putnam 

procedure with subsumption are also. non-polynomial for regular 

resolution. Is this necessarily the case (i .e. can the Davis­

Putnam procedure with subsumption simulate regular resolution), 

or can examples be found for which regular resolution allows 

polynomial-length proofs while the Davis - Putnam procedure with 

subsumption does not? The relationships between the Davis­

Putnam procedure (with or without subsumption) and two other 

systems are also of interest. Can the Davis-Putnam procedure 

s~ulate either tree resolution or analytic tableaux? If the 

answer to either question could be shown to be "no", then an 

incomparable pair of proof systems will have been found 

respect to the "directly simulates" relation). 

6.3. SUGGESTIONS FOR FURTHER RESEARCH 

The concept of verification systems is not specific 

to propositional calculus, nor even to logical theories in 

general. It would be interesting to see if reasonable 

verification systems could be devised for the complements of 

various problems from~ such as non-isomorphic graph pairs, 

non-isomorphic subgraph pairs, non-three-colourable graphs,\l 

eta. It would then be instructive to try to find simulations 

between these systems and the various sys tems for tautologies 

and unsatisfiable sets of clauses discussed in this thesis. 
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Perhaps such verification systems and simulations could lead 

to a more intuitive understanding of why the complements of 

~-complete languages are difficult to recognize. 

A great many open questions were discussed in 

section 6.2., but nothing was said about how any of them might 

be solved. Any of the questions relating to proof systems that 

have already been shown not to be polynomial-bounded might be 

interesting, but each question is likely to require its own 

special proof technique. For example, to show that the Davis­

Putnam procedure without subsumption cannot directly simulate the 

system of analytic tableaux for sets of clauses, one must find a 

family of sets of clauses for which tableaux are polynomial­

bounded but Davis-Putnam derivations without subsumption ar e 

not. The same family could not be used to show that the Davis ­

Putnam procedure with subsumption cannot directly simulate regular 

resolution or that tableaux cannot simulate full truth tables. 

In a similar vein, it would be interesting to relate the 

various specialized resolution strategies (linear resolution, 

Method I, etc.) to the systems in figure 5.2.i., but it is 

unlikely that any of them (except possibly Method I) would be 

found to be as powerful as regular resolution. 

Of the open questions that might have a bearing on the 

~ vs 12.JP question, the ones with a reasonable chance of being 

answered by known techniques are those relating to systems in 

figure 5.2.i. between the double sol id line and the box 

containing Frege systems . There are several ways one might 

try to go about extending Tseitin's non-polynomial lower bound 
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to non-regular proofs. One way would be to give a general 

construction showing how regular resolution (or enumeration 

dags) could simulate non-regular resolution. Although there 

is no intuition to suggest how irregularities can make proofs· 

shorter, it is equally difficult to see how to systematically 

remove irregularities from a proof without increasing the proof 

size by a potentially exponential amount. A more restricted 

approach that would still give a non-polynomial lower bound 

for general resolution would be to apply Tseitin's theorem tb 

resolution more directly. One way to _do this would be to show 

that regular resolution simulates non-regular resolution just 

for Tseitin's (or Kirkpatrick ' s) graph-derived examples. 

second approach to try would be to analyze the machinery 

A 

developed within Tseitin's proof and to use that machinery in 

new ways to show that the regularity restriction in Tseitin's ·: · 

proof is not needed. 

The relationship between resolution and resolution with 

limited extension should be investigated more carefully, and 

an attempt should be made to extend theorems S.6.2.2.d-e. to 

all (regular) resolution with limited extension . The 

relationship between enumeration dags and the Gentzen system 

for sets of clauses is somewhat analogous to the relationship 

between the Davis-Putnam procedure and regular resolution. 

In both cases one "step" in the first system corresponds to 

a number of "steps" in the second . Perhaps similar ideas could 

be used in the two cases to show that the first system can (or 

cannot) simulate the second . 

.. 

.. /· . 
,.:~,. 

f • · •• 
•. 
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In order to prove non-polynomial l ower bounds for Frege 

systems, extended Frege systems, and s-Frege systems, a whole 

new approach is needed. The simul ations involving these sys t ems 

show that they are all very flexible, and it seems doubtful 

that any combinatorial argument (such as in Tseitin 's proof 

for regular resolution) could be used for these systems. 

Perhaps one of these systems is powerful enough that somehow 

it could be used to "talk about" polynomial-time-bounded 

computations in such a way that diagonal arguments could be 

used. See [Cook 1975a] for an interesting start i n this 

direction. 
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