Rclpri_nted from JouriAL of COMPUTER AND SYSTEM SCIENCES Val. 13, No. 1, Auguat 1976
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Storage Requirements for Deterministic Polynomial
Time Recognizable Languages

StepuEN Cook
University of Torento, Toronto, Ontario, Canada
AND
Ravr SBETHI

The Pennsylvania State University, University Park, Pennsyluania 16802*
Received February 14, 1975; revised November 18, 1975

An intriguing question is whether (log n)® space is enough to recognize the class #
of languages recognizable in deterministic polynomial time. This question has earlier
been narrowed down to the storage required to recognize a particular language called
SP. SP is clearly in & and it has been shown that if SP has tape complexity (log n)t,
then every member of & hus tape complexity (log m)* This paper presents further
evidence in support of the conjecture that SP cannot be recognized using storage
(log m)* for any & We have no techniques at present for proving such a statement for
Turing machines in general; we prove the result for a suitably restricted device.

1. INTRODUCTION

A striking example of practical tradeoffs between storage space and execution time
is provided by the IBM 1401 Fortran compiler. Faced with a limited memory the
compiler consists of 63 distinct sequential phases for analyzing the source program [3].

On 2 more formal level are questions about the relationship between languages
accepted by time-bounded and space-bounded Turing machines, as in [1]. There is an
interesting relation between the time and storage required to recognize context-free
languages. The recognition algorithm in {9] requires time no more than Ofr?), but
requires at least linear storage, whereas the algorithm in [5] requires recognition space
no more than O({log n)*) and requires more than polynomial time. An intriguing
question is whether (log n)® space is enough to recognize all languages recognizable in
deterministic polynomial time, i.e., the class of languages that has come to be called &°.
Such speculation is based on attempts to extend the methods in [5] to recognize
languages in .

* Present address: Bell Laboratories, Murray Hill, N.J. 07974,
25

Copyright © 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ugd”

26 COOK AND SETHI

The above question has been narrowed down in [Z] to the storage required to
recognize a particular language called SP. SP is clearly in £, and it has been shown
that if SP can be recognized using (log n)* storage, for any %, then every language in &
can be recognized using (log #)* storage. Other languages like SP have been considered
in {4]

It was conjectured in {2} that SP canmot be recognized using (log n)® storage even
if the device used is nondeterministic. {Context-free languages are recognized deter-
ministically in [5].) In support of the conjecture a simple marking machine M, was
considered. M, required O(n*/*) markers to accept the set of strings SP. The machine
M, can be viewed as playing a game similar to the ones described in [6] to carry out
a computation on program schema, and in {7, 8] to determine a register allocation for
a straight-line program.

This paper presents further evidence in support of the conjecture that SP cannot
be recognized using storage (log n)* for any & In Section 2 we consider a game on
directed acyclic graphs (dags) and show that at least O(n*/%) markers are needed to play
the game on some # node dags. The O(n*/) bound is used in Section 3 to show that a
fairly general machine to recognize SP also requires O(n!/*) storage.

2. A Game on Dagcs

We are given a directed acyclic graph (dag) (IV, E), where N is a set of nodes and £
is 2 set of edges. Dags will be depicted as in Fig. 1 with the edges assumed to be
pointing downward. Nodes with no edges entering them are called roots and nodes
with no edges leaving them are called leaves or terminals.

e A AN
NN

Fic. I. A computation using four markers. For a black marker to be placed on a node
there must be mirkers an all its direct descendants. For a white marker to be picked up from a
node there must be markers on alt its direct descendants.

STOQRAGE FOR POLYNOMIAL TIME LANGUAGES 27

The game we will describe is an extension of those in {2, 6, 7, 8], In[7, 8] for example,
there is an unlimited supply of black markers. Initially, there are no markers on the dag.
In one move, a marker can be placed on a leaf IFf there are markérs on all direct
descendants of a nede x, then a marker can be placed on x The object of the game
is to place 2 marker on one of the roots of the dag.

Suppose placing a marker on a node is viewed as “proving” a node. Then the rule
governing the placement of a marker on a nonleaf x can be thought of as “x can be
proved once all direct descendants of x have been proved ” Suppose that in addition
to the black markers mentioned above, we also had an unlimited supply of white
markers. Then if y, a direct descendant of , had not yet been proved we could place a
white marker on y to “‘remember” that at a later date, we had to prove y. The rule for
placing a black marker on x would then become "“if there is a black marker or a white
marker on each direct descendant of a node x, then a black marker can be placed on x.”

The progress of the game will be described by listing nodes that have markers on
them. A configuration of a dag (V, E)is a pair (W, B), where W, B C Nand W B = gb.

A move of the game is specified by relating configurations. (¥, By =, (W', B)
read “(W, B} directly dertves (W', B') using k markers” if and only if

(i) Ywe Wwisaterminal or we 7 or all direct descendants of 2 are in WU B,
(i) YbeB'bisaterminalor b e B or all direct descendants of 4 are in W' U &',
and
(@) | W +{BI <k W[+|BI<k

A computation is a sequence of configurations: (W, B) derives or computes (W', B')
using k markers, written (W, B) &, (W, B) if and only if there exists a sequence of
configurations

(W, B) = (W,, By), (Wy, By) .. ,(W,, B,) = (W', B
such that Vi, | i € »n, (W, B,;) =, (W;, B).

The computation begins with (W, B),
ends with (I, B"),
uses k markers,
has fength =

-

When not interested in the number of markers used we will drop k in writing =,
or &,

Figure | gives an example of a computation that ends with a black marker on the
root of the dag and uses four markers.

Blacks go up and whites go down, but the rules governing them are duals. The next
lemma is an immediate consequence of the definition of = and states that if blacks and
whites are interchanged a computation can be made to run backward.

28 COOK AND SETHI

Lemma | (W, B) &, (W', B) if and only if (B', W') . (B, W)
Proof. From symmetry, we need oaly show that if
(W, B) &, (W', B} then (B, W) 5%, (B, W)}

From the definition of move it follows that if (W, B) =, (W', B'), then (B, WY =y
(B, W). A simple induction establishes the result. B

Figure 1 contains a very special kind of dag, and it is for just such a dag that the
computations we will consider use a lot of markers. A pyramid S, is a dag with
m - {m + 1)j2 nodes. The rodes are divided into m levels with ¢ nodes at level £, i.e,
levels go top down. Node j at level iis 2 direct ancestor of nodes j and j + | at level
i+ 1, for 1 <1 < m The node at tevel | is the only root of the pyramid and is
called .

The computations on the pyramid that we will be interested in start with no markers
on the pyramid, end with a black marker on the root, and use k markers. Such com-
putations will be referred to as a-computations. The dual problem is to start with
2 white marker on the root and end with no markers on the pyramid,

«t (e $) B (P
& ({rhé) = ($:)

We define o(k) and G(£) to be the largest value of m such that there is an a-computation
or G-computation, respectively, of a pyramid S,, using & markers. From Lemma 1 it
follows that «{k) == &(k).

In the sequel we will need to relate a node x in a dag to nodes that may be some
distance from x, but “cover” it. A node ¥ is covered by a set ¥, denoted x < ¥, if
all paths from x to a terminal node pass through an element of Y. A set X is covered
byaset Vifvee X,x < 1. (See Fig. 2.)

In showing that o{k) < 2&%, it will be convenient to consider computations that
start with a certain number of black markers or end with white markers on the

Fic. Z. A confAguration of a dag. Node x is covered by the set ¥, , ¥z, ¥1, ¥4 Node r is
covered by {y,, ¥z oy Jab

STORAGE FOR POLYNOMIAL TIME LANGUAGES 29

pyramid: both gifts. We are thus considering computations of the type (4, B) %,
(¢, 17D or ($,8) B (W', {r}) There is one point, however, that has not yet been
mentioned. It is easy to see that if r < B or if r < }¥', then the number of levels in the
pyramid under guestion does not come into the picture. We will therefore insist that
¥ << Band r << W be false with B and W' as above.

Let S, be a pyramid with root r. Let (W, B) & (I, B) be a computation. A path
from 7 to a terminal is an gpen path at (W', B') for the computatien, if there is no node
from B U 1V’ on the path.

We can now define § and § computations, which relate configurations as below and
have the added restriction that the computation end with a configuration that kas an

open path "
8:{¢, B) &, (W', {r}),
5: ({r}, B) & (W,).

Note that § and & are duai computations. -computations end with a black marker
on the root, while 8-computations start with a white marker on the root. Once again
8(k)and 8(k) give the maximum number of levels m such that a 8(k) or §(k) computation,
respectively, exists for S, . From Lemma |, 8(k) = §(k).

Treorem [Let r be the root of @ pyramid S,, . Let (W, B} be a configuration of S,
with r & W. If there exists a configuration (W, B') such that (W, B} %, (W', B'), and
there is an open path at (W', B"), then m, the number of levels in S,, is such that m < 2k
Alternatively (k) < 3(k) = §(k) < 24~

CoRrROLLARY. [f there is some computation for S,, with k markers such that the root r
is marked at some point in the computation but intially and finally there are no nodes
marked, then m < 2k 4+ 1)

Proof of Corollary. If the root is marked with a black marker, then the computation
can be turned into 2n « computation

a: {¢, p) T"“"M—l (3, {r})

with & - 1 markers simply by never removing the black marker from r once it is
placed there. Similarly, i r is marked with a white marker, then the computation can be
turned into an & computation

{rid) =y (. 9)

with & -~ | markers by placing the white marker en r initially [n either case, the
theorem states that m < 2(k - 1)

Proof of Theorem 1. When & | ar 2, the result is easily secn to he true, so can-
sider & > 2,

'

30 COOK AND SETHI

Since (W, B) &, (W', B'), there exist configurations (W, B) = (W,, B,),...
(W.,B,) = (W', B} such that for all 4, 1 <{<n (Wi, B, = (W, B).
Forallf, 0 ¢ < =, let C; represent {W,, B;}. For all nodes x, let §,, . represent the
part of the pyramid below node .

We will construct a new computation in which, if x is any nede such that in C; all
markers lie on nodes in S, ;, then the same property holds for O, Crpa e

Forsome {, 0 < 7 < n, let C; be the first configuration in which ali markers are on
S 2, for some x, but in €y, , all markers are not on 8, . Construct new configura-
tions D, Dy ., D, , by deleting from C;, Cy,, ..., O, those nodes that are not in
S,z - By definition ©; = D, . Clearly for all j, { <0 < =, since C;_; =, Cj it follows
that D;_, =, D;. And if D,, == (", B"), there is an open path at (}/", B"). Moreover,
r & . Thus we need consider only those computations in which, if all markers are on
Sz in come ednfipuration € for some x and 7, then for all f > 4, all markers in C;are
on S, ..

When the computation starts at (W, B), there Is no open path since r& W. So
consider the first configuration C; at which there is an open path P. From the definition
of open paths, there is no nade from B\ W; on path P. In particular there is no node
from B on path P. Since P is not open in Cr_, , there must be a white marker on some
node of Pin C,_, . In the open path P, let x be the node nearest the root (x may even be
the root), on which there was a white markerin C;_, .

Consider path P from the root down to node x. As in {2] we will look at paths that
“diverge” off P. From each node x of P there is a unique path that agrees with P from
the root down to nede = and then diverges from P by continuing in a straight line to
the terminals. An example of a path diverging off P is given in Fig. 3 for S; .

Fig. 3. Path Pin 5, is indicated by a double fine. At each nonterminal node alang path P,
paths indicated by dotted lines diverge off P. For example, P, diverges off P at node x.

Since all paths diverging off P were not open in C,, , on each such path there is a
node either in B or in W,_, . Since at most & markers are used in the computation,
node x may be no more than 2k levels below the root.

Let us now turn to the conditions under which 2 white marker at x can be picked up.
The first case is that x is a terminal. But then the level of x is m, given that the pyramid
is §,, . Since x may not be more than 24 levels below the root it follows that m < 2k

STORAGE FOR POLYNOMIAL TIME LANGUAGES 31

which is less than 2&* for & > 1. The remaining possibility is that both direct des-
cendants of x have markers in C;_; . Let y be the direct descendant of x that is on the
open path P. Since y is a direct descendant of x, y may be no more than 2k < | levels
below the root.

Consider the part of the computation C,, Cy,.., C;_, that is restricted to Sy -
Since x is not in S, , , in each configuration before C; there must have been a marker
noton 5, ,, so at most & — | markers may have been used on S, , .

The marker on node y in C;_; may have been either black or white. If the marker
was white then for path P to be open in C the marker at y can also be picked up in
Ci-y - From the definition of =, both direct descendants of y must have markers on
therm in C,_;. Consider the configuration |, formed from Ci.; by changing the
marker at y to a black marker. From the definition of =, since there are markers on
bath direct descendants of y in Cj_; , y is allowed to have a black marker on it. Therefore
Cia=Ciy

Since path P is open at C; the inductive hypothesis can be applied to the computation
restricted to .S, , and ending with a black on y, the root of S,, , . Thus the node y is at
most 2(k - 1)* levels from: the terminals. Therefore

mL A — 1P+ 2k L1 <28 for k22 |

Phrased differently, Theorem I shows that there exists a dag with Ofm?) nodes that
requires Om*/) markers, or O(n) nodes and O(n'/?) markers. While Theorem | is
adequate for our purposes since it shows a lower bound that is significantly greater
than (leg #)%, it would be aesthetically satisfying to determine o(k) and 8(k). We
conjecture that bath functions are O(k)

3. PatH MACHINES

In [2] a certain set SP of strings was defined which has the property SPe 2, and if
SP has tape complexity {log n)¥, then every member of & has tape complexity (log n)*.
Tt was conjectured there that the latter is false for every &, so in fact SP requires more
starage than (log n)*. We have no techniques at present for proving such a statement
for Turing machines in general, and it is the purpose of this section to prove the
theorerm for a suitably restricted type of machine. -

The set SP defined in [2] consists of all strings which code “solvable path systems.”
The definition below is the same as that in [2], except a restriction making the relation
R acyclic has been added.

Derivition. A path systent is a quadruple & = (N, R, §, T, where N is a finite
set (of nodes), R is a three-place relation on N (the incidence relation), ST N (S is
the set of source nodes), and T'C N (T is the set of terminal nodes).

32 COOK AND SETH!

The admissible nodes of & are the least set 4 such that T'C 4 and such that if y,
z& A and R(x, v, 2} holds, then x & 4. We say & is solvable iff at least one admissible
node is a source node {i.e., 2 member of S},

The relation R must be acyclic in the following sense. There is no eycle of nodes
%y 5o ¥ Such that x, = x, and forall 4, | <7 < &, there is a node y such that ejther
R(x;, x4y,) holds or R(x;, y, %;,,) holds. The acyclic restriction on R is necessary
te ensure the soundness of the white~black strategy for path systemns given below.

1f a dag D = (N, E} has either exactly zero or two edpes leading out of each node,
then D gives rise in a natural manner to a path system $(D) = (N, R, S, T) as
follows. N{nodes of D) = N (nodes of &(D)), R(x, ¥, 3) holds iff there are edges
leading from x to y and =z, S is the set of roots of D, and T is the set of leaves of D.
All nedes on such 2 system are 2dmissible, and the path system is solvable. If, however,
the dag D is disconnected, and we let T be the leaves on one component and S the
roots of another component, then only those nades which lie in the same component
as T will be admissible, and the path system will not be solvable.

Not all path systems arise naturally from dags, however, because we might have
R(x, ¥, 5} and R{x, v, u) true, but R(x, u, z) false. Thus the relation R contains more
information than can be simply represented with directed arcs.

Notice that the white-black game described for dags in the previous section can
easily be adapted to form a nondeterministic strategy for establishing that an arbitrary
path system is solvable. Thus we have the following definitions for a path system 5.

A white-black configuration for & (ov simply configuration) is a pair (W, B) of sets
of nodes of &°. We say (W, B) —, (W', B} if

(iy YwelW, we T or we W' or R(w,y, ¢) holds for some y, & WU B;
(ify Ybe B, be TorbeBor R(b,y, =) holds for some y, z& W' U B'; and
) |W|+ Bl <k |W| +|B|<k

~ The relation %~ is the reflexive, transitive closure of — , just as for dagsqﬁt is not
hard to see that a path system & is solvable iff (¢, ¢) 2, (¢, {r}) for some 7 € S and £
By duality, & is solvable iff ({7}, 4} 2+, (¢, #) for some r & S and some k. Further, it is
clear that the lower bounds for & in terms of m derived there for S, also apply to the
path systems associated with S,, . That is, it follows from Theorem [that if ({r}, ¢) £,
(¢, ¢) for a path system %°(S,,), then & > (Im)/2
The lower bound on %, the number of markers, represents z lower bound on storage
for any Turing machine using the white-black method for determining whether a
given path system is solvable. More precisely, any Turing machine using the white~
black method to accept the set SP would require storage at least ci'/% for some ¢ > O
Qur purpose now is to define a class of machines which is general enough that any
methad similar to the white-black method for determining solvability of path systems
can be realized on a machine in the class, but special enough so that a lower bound on

7

i

STORAGE FOR POLYNOMIAL TIME LANGUAGES 33

storage can still be proved. It seems that the difficulty in proving lower bounds for
arbitrary Turing machines is that the latter have the capacity to do tricks from number
theory. So we want to avoid any ability to count, or systematically search through all
the nodes of a given input path system. Our new kind of machine wili be 2 non-
deterministic device with a limited number of markers which can be placed on arbitrary
nodes of the input. The strategy used and the criteria for accepting the input will
be established by an arbitrary finite state control. Thus most of our path machines wil}
not work, in the sense that they will accept unsolvable path systems. But we will use
"Theorem | to prove a lower bound on the number of markers required for any such
machine which does work. There are machines in the class which use the white-black
method. And presumably if someone invents a similar strategy using white, black, and
red markers, some machine in the class will be able to use that too.

Dermiirion. A path machine {Q, M, 8, q,, g.> consists of a finite set Q of states,
a finite set 3 = {m, .., m;} of markers, a (nondeterministic) transition function &
which maps @ into subsets of O x A, where & is the set of displays defined below,
and initial and accepting states g, , g, € 0.

An instantaneous description {ID) of a path machine Z = (Q, M, 8, g, , g,> with
an input path system % = (N, R, S, T is a pair {q, §>, where geQ and o M —
N U {ng}. Thus if m; is a marker then yi{(m,) is the nede currently marked by m, , and
this will be a node of the path system & The symbol n, represents a “dummy node”
notin N. The display D(I) of an ID, I = (g, 4> consists of 2 quintuple ¢g, £,, R,, S,, T3,
where E| is the equivalence relation on the markers M defined by m.Epm; iff i(m,) =
$lmy), Ry = §~YR) (i.e., R, is a three-place relation on 3/ defined by R,(m, , m; , m,)
iff R{(my), Ylamy), b(m)))s Sy = §X(S), and Ty = §=)(7). Thus the display of an
instantaneous description tells the path machine everything there is to know about
the currently marked nodes of the input path system. That is, it tells which pairs of
markers are on the same node, which triples 6f marked nodes satisfy the incidence
relation R, which marked nodes are source nodes, and which marked nodes are terminal
nodes. ’

Suppose the path machine Z currently has an instantaneous description I = (g, ¢
(Z is in state g with markers on the nodes given by). The possible next moves depend
only on the display D(I), and are determined by the transition function §. A maove
consists simply of placing the ith marker (for some particular 1) on an arbitrary new
node, and assuming a new state. Precisely, we write [— I', where I' = {g' ">, f and
only if for some marker m; , 1 i <Ck, (g7, m,)e8(D(I)), and /' {m,) = of(m,) for allj = +.

A computation of Z with input & is a sequence I, I, , ., I, of ID’s such that
Iy - I, foreachi 2= 0,and I, = (g, ty), where g, is the initial state and gl =y
for 1 <7 < & (recall n, is the “dummy node™). The computation is accepting iff the
final state is the accepting state g, . We say Z accepts & iff there is some accepting
computation.

34 COOK AND SETHI

We would like to study only those path machines which accept precisely the solvable
path systems, but no one path machine can do this because jt only has a fixed number &
of markers, Thus we say a path machine Z is sound iff accepts only solvable path
systerns. We will be interested in finding the largest # so some sound path machine
with & markers accepts all solvable path systems with # or fewer nodes.

The first thing to observe is that our notion of path machine is general enough to code
the white-black method. Thus a sound path machine with & markers can accept every
pyramid path system $(S,,) for each m < & — 1. The idea is that the machine would

were black, and the state transition function would not classify 2 marker as black
unless it were placed immediately “above !
it would not allow remeving any white marker unless there were two marked nodes
immediately below it {or it was on a node in 7). Finally, the machine would accept the
input if and only if at some point in the computation a sgurce node was marked, and
at the end of the tomputation no white markers remained (except possibly on the
dummy node).

We now show how o apply Theorem | to derive a lower bound on the number of
markers (and hence the storage) required by sound path machines to accept solvable
path systems with a given number of nodes.

THEGREM 2. No sound path machine with k markers accepls any pyramid F(S,) if
m 2z Ak 12

CorarLary. Jf a sound path machine with b markers accepts all solvable path systems
with n or fewer nodes, then k ~> Hnptd o p

Proof of Theorem 2. Suppose a path machine Z with & markers accepts FS,),
and suppose m > 20k -+ 1)*. We construet a second path system S” which looks
locally like H(8,,), but which is not sofvable,

Let & = (N, R, S, Ty and & = NV, R, S8, T be two disjoint isomorphic
copies of the path system S(Sn)s and let 32 ¥ — N’ be an isomorphism between &
and &, We construct another path system & — N, R", 8", T s follows.
N" = NU N, R(x, , z) holds iff R{y'(2), ¥'(3), ¥'(=) holds, except R"(x, y, ¥} is
always false if x & N and bath ¥ #€ N, where o' is the extension of yto NUN by
setting 3(x) = x for x e V", (In other words, if x, yreNx ¥ 2 e N, ¥(x) = x',
¥) =¥, 9(2) = =, and R(x, 3, z)and R'(x", y, ') hold, then R"(x, y, 2), Ri{x, ¥, 2),
R'(x, ',), R'(x, y, 2"), R"(x", I)R, ¥, z), R'(x', 3, =) all hold, but R'(x', y,2)
is false.) We set 57 = Sy and T" = T. Then the admissible nodes of & comprise
precisely the set V, and so $°” is not solvable,

Nowlet € = (7,, 5wy D) bean accepting computation of Z with input 5. We will
construct from C a computation " = ({g, I} of Z with input %, such that

STORAGE FOR POLYNOMIAL TiME EANGUAGES 3'5

D) = DU, 0 < { < ¢ Since the two computations have identical displays, € will
also be accepting, and since " is not solvable it follows that Z is not sound. The idea
is that each time a marker is placed on a node x during the computation C, we place
the marker on either x or p(x) for the corresponding step in the computation ",
according to a certain rule, We will give a recursive definition of a set 7 of ordered pairs
of numbers, and then if the step I;_, — I; of the computation C involves placing a
marker m; on a nede x, the corresponding step 17, — I} of C" will involve placing m;
on x if (i,jeF, and placing m; on y(x) otherwise. F is defined in such a way that
the markers placed on N by this rule will provide a white-black computation for &.
The idea is that if C places 2 marker on x, then C” will place the marker on y(x), unless
C'is forced to place it on x in order for the displays of C and C” to be identical.

Basi: (i) e F if step I, ; — I; involves placing m; on a member of 7.

Rec.rsion. X (iy, fy) € F and (42, jo) € F, and if the step /; ., — [; involves placing
marker m; on node x,, [= 1, 2, 3, and if there exists a time ¢ at which all three nodes
Xy, ¥y . ¥; had markers simultaneously in C, and for each /, x, was marked continuously
betwes1 step ¢ and step £, (or between step i, and step £}, and R{xy, x; , Xy} holds, then
{ia.j5 = F.

The above description completely specifies the sequence of moves for C”. To
complete the definition of C, we need only say that the state sequence of C is identical
to that of C. Thus if € = (Ly, . I)) = {{gg . oy {Gu s Y0}, then O = ({gy , di>
gy, 1), where the ¢] are the marker positions defined by the moves described above.

It is clear (by induction on) that the marker positions f; atstep £, 0 < K ¢, of the
computation of C are the same, up to possible application of y, as the marker positions
7 at step ¢ of C". In other words, y o f; = y o ¢/ {where we define y(ny) =).
Lemrma | below makes a further claim.

Lemma | For each x e N, x and y{x) are rever marked simultaneously during C".
In other words, we cannot have Pj(m;) = x and §ij{m) = p(x) for ze N, 0 < i <8,
and any distinet markers m; , my, .

Proaf. 1f step I requires placing m; on x {so (4,7} is in F) then no marker m, could
be on y(x), since the criterion used in the definition of F to place m; on x would also
place :m, on x. Similarly the definition of F would never place a marker on y{x) if x is
currently marked.

It remains to show that C” is a valid computation.

LemMa 2. C" is a valid computation for the path machine Z with input &", and
the display sequences of C and C” are identical.

Proof. 1t is sufficient to show the two display sequences are identical, since by
assumption C is a valid computation for Z. Recall that the display D(I} of an ID

36 COOK AND SETHI

! = {g, 4 is a gquintuple <g, £;, R;,S;, T;). We know the state components g of
the corresponding displays for € and C” are the same by definition. The equivalence
relation [, is the same for both computations by Lemma | and the remark preceding it.
T see that the relation R, is the same for both computations, note that by definition
of R, the only way R, can differ for the two computations is for some three markers to
occur on nodes x, y, and =z, respectively, at some time { in the computation C, where
R(x, y, %} holds, but for the same markers to occur on nodes y(x}, v, and ¢ at the
corresponding time { in € (note that R"(p(x), y, 2) fuils to hold). But this cannet
happen, because this time ¢ will satisfy the condition for ¢ in the recursion step of the
definition of F, so the marker for y(x) should have been placed on x instead of y(x).

The relation T, is the same for both computations by the basis step in the definition
af F.

To see that S; is the same for both computations is more difficult. In fact, we will
show that whenever a marker is placed on the source node r of & during the computa-
tion C, the corresponding move in C” places a marker on p{r). This will suffice, since
§" = §". More exactly, we will show that there is a white-black computation Cyp
for & in the sense of the previous section which uses at most & markers, and such that
for every marker placed on # node of N during C", some marker is placed on the same
node during Cyp - Furthermore, Cyy starts and ends with no markers on V. Since
m = 2k -+ 1) it follows from the corollary to Theorem 1 that the source node r is
never marked during Cyp , and hence r is never marked during €.

The computation Cyg 15 defined from € as follows. We will maintain an induction
hypathesis stating that every marked node of N duriag (" is marked with exactly one
marker at the corresponding steps in Cip - Initially there are no markers on N for
Cywp - In general, suppose a given step of C” involves moving marker m; from node
to node y in VU N"U {n}. This results in two corresponding moves o, and o, in
Cwa {and possibly maore), either or both of which may be vacuous. If x& N' U {n,),
or if v has more than one marker on it before the move ot £, then oy is vacuous If
x €V arid x has a single marker on it before the move in €7, then (by the induction
hypothesis) x will have a single marker on it for Cyy , and o, consists of removing that
markur VWe arpue below that that marker is black. If ¥ € N"\ {n;} or if ¥ has two or
meore muarkers after the move of C” is executed, then o, is vacuous. Otherwise o,
consists of placing a marker on y This marker is black if y is terminal or if both
immediate descendants of y are already marked in Cyp , and white otherwise. Now if
placing this marker on v allows some white marker on some square z to turn black
{because now both direct descendants of z are marked), then the following two
additional moves are made in Cywy: the white marker on 2 is removed, and it is replaced
with a black marker. These two maoves are repeated if there is more than one such =

Finally, after all moves of C” have been completed, Cwy is terminated by removing
all remaining markers {which will be black by the argument below),

Tt remmains to argue that no white marker is ever removed during Cyy, except by

STORAGE FOR POLYNOMIAL TIME LANGUAGES 37

the “twa additional moves” construction above which turns a white marker into a
olack. This is because no marker is ever placed on a node » during Cyyp unless a marker
is placed on x during the corresponding step of C". By definition of the set F, this will
not happen unless either x is terminal or there is a time ¢ at which x and its two im-
mediate descendants are marked in the computation C. By Lemma 1, x and its two
immediate descendants in N are also marked at time { in the computation C”, and
hence they are marked at the corresponding time in Cyy . At this time {or before)
the “two additional moves” construction in the definition of Cws will cause the white
marker on x to be replaced by a black marker, if it is not already black. Hence all white
markers turn black before being removed in Ciwp » 30 Cyyp is a valid white-black com-
putation. This completes the proof of Lemma 2 and Theorem 2.

ACKNOWLEDGMENT

The authors are grateful to John Bruno for helpful discussions.

REFERENCES

1. R. V. Boog, Comparing cornplexity classes, J. Comput. System Sci. 9 (1974), 213229,
- 8. A Coox, An observation on time-gtorage tradeoff, I Comput, System Sci. 9 (1974),
308-316.

3. L. H. Hanes, Serjat compilation and the 1401 Fortran compiler, IBM Systems 1.4 (1963),
73-80.

4. N D Jones amp W T, Laaser, Complete problems for determinitie polynomial time, i
“Proceedings of the Sixth Annual ACM Symposium on Theory of Computing" (May 1974,
pp. 40-44.

3. P M. Lezwis, R E. STEARNS, AND] Hartoranis, Memory bounds for the reécognition of
context free and context sensitive languages, in “IEEE Conference Record on Switching -
Cireuit Theory and Logical Design,” (1965}, pp. 191-202.

6. M. 5. Paterson anp C. E. HewrrT, Comparative schematology, in “Record of Project MAC
Conference on Concurrent Systems and Paraile] Computation” (June 1570), pp. 119-128,
ACM, New Jersey (Dec. 1970,

7. R. SgThi, Complete ragister allocation prablems, STA4M J. Computing 4 {1975), 226-248.

8 8 A Warksr anp . R. STRONG, Characterization of fowchartable recursions, J. Comput.
System Sei 7 (1973), 404447,

% D H Youwncer, Recognition and parsing of context free languages in time O, Inform.
Contr. 10 (1967), 189-208.

o

Printed by the St Catherine Presy Ltd,, Tempelhof 37, Bruges, Belgium,

