
JOURNAL OF ALGORITHMS 8,385-394 (1987)

Problems Complete for Deterministic
Logarithmic Space*

STEPHEN A. COOK

Department of Computer Science, University of Toronto,
Toronto, Ontario, Cana& M5S IA4

AND

PIERRE MCKENZIE

DPpartement d’informatique et de recherche op&ationnelle, VniversitP de Mont&al,
C.P. 6128, Succ “A”, MontrPal, Qukbec, Canada, H3C 3 J7

Received March 24,1986

* We exhibit several problems complete for deterministic logarithmic space under
NC’ (i.e., log depth) reducibility. The list includes breadth-first search and depth-first
search of an undirected tree, connectivity of undirected graphs known to be made
up of one or more disjoint cycles, undirected graph acyclicity, and several problems
related to representing and to operating with permutations of a finite set. Q 1987
Academic Press, Inc.

1. INTRODUCTION

Let FL denote the class of problems solvable by a deterministic Turing
Machine in logarithmic space (see [HoU179, Co85]), and consider the class
NC1 of all problems solvable in logarithmic depth by a uniform family of
Boolean circuits of bounded indegree (see [Pi79, Co85]). It is known that
NC’ c FL ([FiPi74, Sc76, Bo77]), but proper inclusion has thus far eluded
proof. Barrington’s recent characterization of NC’ in terms of bounded-
width polynomial-size branching programs [Ba86] revived interest in the
relationship between NC’ and FL (the latter being characterized in terms
of polynomial-size branching programs without width restrictions). To our
knowledge only two problems have been shown in the literature complete

*Research supported by the Natural Sciences and Engineering Research Council of Canada

385
0196-6774/87 $3.00

Copyright 0 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.

386 COOK AND MCKENZIE

for FL under NC’ (i.e., uniform logarithmic depth) reducibility: the
“cycle-free problem” for undirected graphs and the “graph accessibility
problem” for directed graphs of outdegree one ([HoSO, Jo75, HaImMa781,
see [Co81]). Likely, these problems do not belong to NC’ (otherwise
NC’ = FL). The purpose of this paper is to exhibit other problems com-
plete for FL under NC’ reducibility.

We follow [Co851 and let FL denote the class of problems (as opposed to
just sets) solvable in deterministic log space. Here a problem is a multiple
valued function, and the problem is solved by giving any one of its possible
values for a given input. For example, the Depth-First Search problem is
solved for a given input tree by listing the nodes of the tree in any order
consistent with the recursive paradigm: “visit a node and then visit each of
its subtrees.” Similarly NC’ is the class of problems (in the above sense)
solvable in uniform log depth. Also NC’ reducibility is defined using
uniform families of log depth circuits with oracle nodes. These notions are
as defined in [Co85], except for the type of uniformity, which will not be
discussed here. It is clear in all cases that the circuit families presented here
are log space uniform (see [Ru81]), and that criterion is sufficient for our
purposes of classifying problems in FL as either complete for FL or in the
subclass NC’. Our circuit families in fact almost certainly meet the more
stringent uniformity conditions introduced in [Ru81] and used in [Co85].

Consider a permutation II of the set 0 = { 1, . . . , n }. v can be repre-
sented pointwise (as n(l), . . . , r(n)) or as a product of disjoint cycles. For
example, the permutation of { 1,2,3,4,5} whose pointwise representation is

has

(143) (25)

as its lexicographically first disjoint cycle representation. If u is another
permutation of the set Sl, we define the product no as the permutation
whose pointwise representation is a(m(l)), . . . , a(a(n)) (hence we read
products from left to right). The problem of transforming a given permuta-
tion from its disjoint cycle to its pointwise representation belongs to NC’,
but the reverse transformation appears to require logarithmic space. This
motivated our investigation of the problems discussed here.

2. CONSTRUCTION

We describe a construction which is then used repeatedly. Let G = (V, E)
be an undirected graph in which the edges incident with each node are

DETERMINISTIC LOG-SPACE 387

assigned an order. We construct from G two permutations, denoted Q- and
uc, which permute labels assigned to the edges in the graph. (We assign two
labels to each edge, corresponding to each “end” of the edge.) Say w E V
has degree d(w); then the “edge ends incident with w ” are labelled, in their
assigned order, wl,. . . , wd(,,,) (these labels will be referred to as the labels
incident with IV). Once each edge is assigned its two labels, we define ~c as
the permutation having disjoint cycle representation

and we define IS, as the permutation having disjoint cycle representation

(2)

where e, and e- denote the two labels assigned to edge e E E.

EXAMPLE. Let G=(V,E) with V={a,b,c,d,f} and E=
{ ab, bc, bf, cd }. A possible result of the construction is TV =
(ulXblb*b~XclczXdlXfi) and ac = (albl)(b2cl)(b~fiXc2d,).

PROPOSITION 1. Let G = (V, E) be an acyclic undirected graph with no
isolated node and let permutations ITS and oo be constructed as above. Then
the number of connected components in G is equal to the number of cycles in
the disjoint cycle representation of the product wcao.

Proof. No product of the permutations 7rc and uc can mix labels
pertaining to distinct connected components of G, so there are at least as
many cycles in the permutation as components of G. The reverse inequality
is proved by showing that the given permutation corresponds to a depth-first
traversal of each component of the graph. More precisely, let H be a
connected component of G and let y be a cycle in 7rcuc which contains a
label wi incident with some node w in H. Suppose that rc(wi) = wj and
ac(wj) = vk, where (w, v) is an edge in G whose edge end ok is incident
with v. Let H,” be the subtree of H rooted at v consisting of the
v-component of the result of removing edge (w, v) from H. Then there is a
smallest positive integer b such that (~cu~)~(w~) = wj, and H,” consists
precisely of those nodes u such that (~-uc)‘(w~) = u, for some integer c
with 1 IS c -x b and some edge end uI incident with u. This fact is proved
for all edges (w, v) by induction on the size of H,“. The fact implies that y
“hits” all nodes in H. •I

Observe that, given an undirected graph G, both the pointwise and the
disjoint cycle representations of the permutations TV and uc can be
constructed in NC’. Moreover, the pointwise representation of the product

388 COOK AND MCKENZIE

+rrouc (or of the product of any fixed number of permutations for that
matter) can be computed in NC’.

3. COMPLETENESS FOR FL

THEOREM 2. The following problems are complete for FL under NC’
reducibility (whenever relevant, “points” are elements of S?, = { 1,. . . , n} and
permutations are permutations of 9; we assume any reasonable encoding of
the inputs over the binary alphabet (see [M&4])):

DCA (Disjoint Cycle Accessibility)
Given: permutation presented pointwise and points a and b.
Problem: determine whether a and b belong to the same cycle in the

disjoint cycle representation of the permutation.
Remark: remains complete when the given permutation has precisely

two disjoint cycles.
DCR (Disjoint Cycle Representation)

Given: permutation presented pointwise.
Problem: compute the disjoint cycle representation of the permutation.
Remark: remains complete when the given permutation consists of a

single cycle.
SCP (Single Cycle Permutation)

Given: permutation presented pointwise.
Problem: determine whether the permutation consists of a single cycle.

DFA (Directed Forest Accessibility)
Given: acyclic directed graph of outdegree zero or one, nodes u and v.
Problem: determine whether there is a directed path from u to v.
Remark: remains complete when the given graph has exactly two

weakly connected components.
UFA (Undirected Forest Accessibility)

Given: acyclic undirected graph, nodes u and v.
Problem: determine whether there is a path between u and v.
Remark: remains complete when the given graph has exactly two

connected components.
CFP (Cycle-Free Problem) [Co811

Given: undirected graph.
Problem: determine whether the graph is acyclic.
Remark: remains complete when the given graph contains at most one

cycle.
DFS (Depth-First Search)

Given: rooted undirected tree.
Problem: compute a depth-first traversal of the tree starting at the

DETERMINISTIC LOG-SPACE 389

root (i.e., list the nodes of the tree in any order consistent
with the recursive paradigm: “visit a node and then visit
each of its subtrees”).

BFS (Breadth-First Search)
Given: rooted undirected tree.
Problem: compute a breadth-first search of the tree starting at the root

(i.e., list the nodes in some order such that nodes farther
from the root come after nearer nodes).

PP2 (Permutation Product)
Given: permutations g and h represented as disjoint cycles.
Problem: compute the disjoint cycle representation of gh.
Remark: belongs to NC’ when only the pointwise representation of

g/r is required.
PP (Permutation Product)

Given: permutations g,, . . . , g, represented as disjoint cycles.
Problem: compute the disjoint cycle representation of the product

g1 -* * &

Remark: remains complete when only the pointwise representation of
the product is required.

PPOW (Permutation Powering)
Given: permutation g presented pointwise and integer m in binary

notation.
Problem: compute the pointwise representation of g”.
Remark: remains complete when m is in unary or when the problem is

to compute the image of a given point under g”‘; belongs to
NC’ when g is presented as disjoint cycles.

Proof. First we show that DFA is NC’-hard for FL. Then we exhibit a
number of NC’ reductions (“ I ” stands for “NC’-reduces to”):

and

DFA < UFA I DCA I SCP,
DFA 5 DFS 5 DCR,

DFA I BFS,
UFA I CFP 5 PP2,

UFA I PPOW,

UFA < PP.

This will show that each of the problems in question is NC’-hard for FL.
To show that the problems are in FL, it suffices to show that the end points
of the reduction chains (namely SCP, DCR, BFS, PP, and PPOW) are each
in FL. (To be accurate, our reduction DCA 2 SCP only applies to the
special case DCA with two cycles, but it is clear that DCA in general is in
FL.) It is straightforward to show that SCP, DCR, and PP are in FL. To

390 COOK AND MC KENZIE

show that BFS (Breadth-First Search) is in FL, for each i enumerate all
nodes at level i using a depth-first search. As for PPOW, [Mc84] (and also
[McCo85]), contains a proof that Permutation Powering belongs to NC’
provided the permutation is represented as disjoint cycles; but then DCR is
in FL.

DFA is NC’-Hard for FL

It suffices to show hardness for L = DSPACE(log n) [Co85]. Jones [Jo751
proved that the graph accessibility problem for directed graphs of outdegree
one is hard for L by observing that the set of configurations of a Turing
machine with a fixed input w forms the vertices of such a graph G, and the
(unique) accepting configuration is accessible from the initial configuration
iff the Turing machine accepts the input w. In the present proof we need
only add that the graph G can be made acyclic using the time stamp idea
used in the proof that the cycle free problem is hard for FL [Co81]. The
idea is to associate a time stamp with each node, and insist that an edge
always joins a configuration at time t to a configuration at time t + 1. If T
is an upper bound on the computation time of the Turing machine with
input w, then we let the node u in the DFA instance be the accepting
configuration with time stamp T, and u will be the initial configuration
with time stamp 0. In order to make sure that the graph has precisely two
weakly connected components, we create a “sink node” s, and create an
edge from every node of outdegree 0 except u to s. The edge leading out
from u should be removed, if it exists. Thus s and u are the only two nodes
of outdegree 0 and represent the two components.

DFA 5 UFA

First we remove the only edge out of node u (if any) in the DFA
instance, on the grounds that no path from u to u can use this edge. The
outdegree of u is now zero, so viewing each edge in the resulting digraph as
undirected yields an undirected forest with the following property: u and u
belong to the same tree if and only if a directed path existed from u to u in
the original digraph. Note that if in the original directed forest u has
outdegree 0 and there are precisely two weakly connected components (as
was the case in the proof that DFA is hard for FL), then the resulting
undirected forest has precisely two components.

UFA 5 DCA

Let G be the undirected graph instance of UFA (assuming that neither u
nor u is isolated). First we construct the permutations 7rc and uc corre-
sponding to G (see construction). Then (in NC’) we compute the pointwise

DETERMINISTIC LOG-SPACE 391

representation of the product qu,. By the proof of Proposition 1, the
labels ut and ur occur on the same cycle of this permutation if and only if
u and u belong to the same component of G. Note that by Proposition 1,
the permutation has precisely two cycles if G has precisely two components.

DCA (with two cycles) I; SCP

Assume that the DCA instance has exactly two disjoint cycles. Modify
the permutation by sending a to b and the predecessor of b to the
successor of u. The resulting permutation has a single cycle iff a and b are
on different cycles in the original permutation.

DFA zz DFS

Starting from the DFA instance, we define a rooted undirected tree as
follows. As in the reduction DFA < UFA, we first remove the edge (if any)
out of node u and we view each edge in the resulting digraph as undirected.
Then we add a node r (for “root”), and, for each node w such that w = u
or w had outdegree zero in the original digraph, we join r and w with an
undirected edge. This yields an undirected tree with the property that node
t(belongs to the subtree of r rooted at u if and only if a path existed from
u to u in the original digraph.

To complete the reduction to DFS, consider any depth-first traversal of
the tree starting at r: u belongs to the subtree of r rooted at u if and only if
u is visited after u and no immediate son of r is visited after u but before u
(neglecting the trivial case in which u has outdegree zero in the DFA
instance). The reader can verify that constructing the tree and checking that
no immediate son of r appears between u and a in the depth-first list of the
nodes (computed by a DFS oracle) can be performed in NC’.

DFA I BFS

Starting from the DFA instance construct an undirected tree exactly as in
the reduction above, except let the tree be rooted at u instead of r. Then a
path from u to u exists in the original digraph iff in the tree constructed the
distance from u to u is less than the distance from u to r, and hence iff u is
enumerated before r by the BFS oracle applied to the tree.

DFS I DCR

Applying our construction to the single tree instance G of DFS, we
compute in NC’ the pointwise representation of the permutation product
q-q. By Proposition 1 this product must consist of a single cycle. Now in

392 COOK AND MCKENZIE

proving Proposition 1 we showed that the following procedure, applied to
the disjoint cycle representation of QIJ~ (obtained by a DCR oracle), yields
a depth-first traversal of the tree: Starting at any label incident with the
root, list the nodes w in the order in which some edge end incident to w
first appears in the cycle.

UFA I CFP

Let G be the acyclic undirected graph instance of UFA and assume no
edge between u and u. If a path between u and u exists in G, then the new
graph obtained by adding edge (u, u) to G contains exactly one cycle;
otherwise the new graph remains acyclic.

CFP I PP2

Remark. This reduction is included mainly to show that CFP is in FL.

Let G be the undirected graph instance of CFP and consider a cycle y in
the disjoint cycle representation of the permutation ~cuo, obtained in NC’
with the help of a PP2 oracle gate (see construction). Then y describes a
closed walk in G in the obvious way; the walk starts at an arbitrary node u
with some edge end ui occurring in y. Expanding on an argument in
[Ho80], we make the

Claim. G is acyclic if and only if for each cycle y in ~cuc and each edge
(u, u) traversed in the direction u to u in the walk described by y, the walk
does not again visit node u until the edge is visited in the reverse direction
(from u to u).

The on& if follows from the proof of Proposition 1. Conversely, suppose
that ut,~,..., uk are nodes forming a cycle in G. Then the walk described
by some cycle y of Q+,- traverses the edge (u,, u2) in the direction ui to u2.
The condition of the Claim and the definition of q-u, imply that each edge
incident with node u2 is traversed first in the outward direction and then in
the reverse direction, until eventually the edge (ul, u3) is traversed in the
indicated direction (u2 to uj). Furthermore, this traversal from u2 to uj
occurs before any return visit to ui, because such return visit must be via
edge (uz, ul) by the Claim condition. Applying the same reasoning to node
ug instead of u2, it follows that the walk traverses the edge (q, u4) before
returning either to u2 or ur. Continuing this reasoning, we see that the walk
eventually traverses edge (uk, ui) before returning to node ui, in violation
of the condition of the Claim.

Note that the conditions of the Claim can be checked in NC’ given the
disjoint cycle representation of QUA and the input graph G.

DETERMINISTIC LOG-SPACE 393

UFA I PPOW

Recall the proof that UFA s DCA, up to the point where it remains to
check, given the pointwise representation of ~r,u,, whether two dis-
tinguished labels ui and ui belong to the same cycle of ~a,. Checking can
be done using parallel PPOW oracle gates with inputs (rcuc, i), for
i= I,2 , . . . , n - 1, where n is the total number of labels involved: indeed
ui and ui belong to the same cycle of rGuc iff (~uc)~ maps ui and ui for
at least one such value i. Observe that i < n can be produced in unary or in
binary notation, and that only the image of ui under the ith power of Q-U~
is really required.

UFA I PP (with product required onb in pointwise representation)

The argument is the same as that in UFA < PPOW, with the added
observation that in NC’, (ncuc)’ for i c n can be written as ~GuG~GuG . . .
7rGuG and fed into a PP oracle gate, thus allowing computation of the image
of ui under (QQ)‘. (Recall from the construction that disjoint cycle
representations of 11~ and of uc were each available in NC1.)

This completes the proof of Theorem 2. 0

It is interesting to note that with respect to NC’ reducibility, from the
pointwise representation of a permutation it is as difficult to determine
whether two points belong to the same disjoint cycle as it is to order the
points within a cycle (DCA and DCR (with a single cycle) are each
NC’-complete for FL).

An interesting open question is whether undirected graph connectivity
(UCONN) is in FL. By Aleliunas et al. [AKLLR79] this problem is in
nonuniform log-space and in a restricted form of probabilistic log space.
Further, UCONN restricted to cycle free graphs is clearly in NC’, since
such a graph is connected iff it has one more vertex than edges. On the
other hand UCONN in general is at least hard for FL. To see this, note that
a permutation presented pointwise is also a presentation of an undirected
graph whose vertices are the points permuted and whose edges indicate the
predecessor and successor relation. Hence SCP 5 UCONN. This proves

THEOREM 3. Undirected graph connectivity is NC1-hard for FL. When
the given graph is known to be a disjoint union of cycles, the connectivity
problem is NC’-complete for FL.

ACKNOWLEDGMENT

We thank Mike Luby for help in showing the completeness of DCR.

394 COOK AND MC KENZIE

REFERENCES

[AKLLR79] R. ALELIUNAS. R. KARP, R. LIPTON, L. LOVASZ. AND C. RACKOFF, Random
walks, universal traversal sequences, and the complexity of maze problems, in
“Proc. 20th IEEE FOCS.” pp. 218-223, (1979).

[Ba86] D. A. BARRINGTON, Bounded-Width Polynomial-Size Branching Programs
Recognize Exactly Those Languages in NC’, in “Proc. 18th ACM STOC,”
pp. l-5. 1986.

[Bo77] A. BORODIN, On relating time and space to size and depth, SIAM J. Comput. 6,

(1977). 733-744.
[Co811 S. A. COOK, Towards a Complexity Theory of Synchronous Parallel Computa-

tion. ,n “L’enseignemenr murhhmutique, SCrie II.” Vol. XXVII, fast. 1-2, 1981.
[Co851 S. A. COOK, A taxonomy of problems with fast parallel algorithms, Inform. and

Control 64 (1985), 2-22.
[FiPi74] M. FISHER AND N. PIPPENGER, “M. J. Fisher Lecture Notes on Network

Complexi+-.” Universitat Frankfurt, 1974.
[HaImMa78] J. HARTMANIS, N. IMMERMAN. AND S. MAHANEY. One-way log tape reductions,

[Ho801

[HoU179]

[Jo751

[M&4]

[McCo85]

[Pi791

[Ru81]

[Sc76]

in “Proc. 19th IEEE FOCS.” pp. 65-71, (1978).
J. W. HONG, On some space complexity problems about the set of assignments
satisfying a Boolean formula, in “Proc. 12th ACM STOC,” pp. 310-317,198O.
J. E. HOPCROFT AND J. D. ULLMAN, “Introduction to Automata Theory, L.un-

guuges. und Computution .” Addison- Wesley, Reading, MA, 1979.
N. D. JONES, Space-bounded reducibility among combinatorial problems, J.
Compur. Svsrenz Sci. 11 (1975), 68-85.
P. MCKENZIE, “Purullei Complexin, and Permutution Groups,” Doctoral thesis,
Department of Computer Science, Tech. Rep. No. 173/84, Univ. of Toronto,
1984.
P. MCKENZIE AND S. A. COOK. “The Purullel Complexity of Abelian Permutation

Group Problems,” Tech. Rep. No. 181/85, Department of Computer Science,
Univ. of Toronto, April 1985.
N. PIPPENGER, On simultaneous resource bounds, in “Proc. 20th IEEE FOCS,”
pp. 307-311.1979.
W. L. RUZZO, On uniform circuit complexity, J. Comput. System Sci. 22 (1981)
365-383.
C. P. SCHNORR, The network complexity and the Turing machine complexity of
finite functions, Actu Informu. 7 (1976) 95-107.

