[10] 1. Prove that if A is a language and both A and \overline{A} are semidecidable, then A is decidable.

Solution:
Suppose $A = \mathcal{L}(M_1)$ and $\overline{A} = \mathcal{L}(M_2)$. We define a Turing Machine M_3 to execute the following algorithm:

On input $w \in \Sigma^*$
for $t = 1 \ldots \infty$
 run M_1 and M_2 on input w for t steps.
 if M_1 accepts w then ACCEPT
 else if M_2 accepts w then REJECT
end for

Clearly M_3 halts on all inputs, and accepts w iff $w \in A$.
Let E be an enumerator, and let $\mathcal{L}(E)$ be the set of strings enumerated by E. If every string in $\mathcal{L}(E)$ has the form $\langle M \rangle$, where M is a decider (i.e. M is a Turing machine which halts on all inputs), is it possible that for every decidable set A there is a string $\langle M \rangle$ in $\mathcal{L}(E)$ such that $\mathcal{L}(M) = A$? Justify your answer.

Solution:
The answer is NO.
We may assume that $\mathcal{L}(E)$ is infinite, because there are infinitely many decidable languages. Let

$$\Sigma^* = w_1, w_2, w_3, \ldots$$

in lexicographic order.

For $i = 1, 2, \ldots$ let $\langle M_i \rangle$ be the ith string output by the enumerator E.

Define $A = \{w_i \mid w_i \notin \mathcal{L}(M_i)\}$.

Then A is decidable, since M_i is a decider and halts on all inputs, and given w_i, the number i can be determined, and hence $\langle M_i \rangle$ can be determined by counting the outputs of the enumerator until the ith output has been written.

Now suppose $A = \mathcal{L}(M_n)$ for some $n \in \mathbb{N}$.

Then $w_n \in A \iff w_n \in \mathcal{L}(M_n)$ because $A = \mathcal{L}(M_n)$,

but $w_n \in A \iff w_n \notin \mathcal{L}(M_n)$ by definition of A.

This is a contradiction. Hence the decidable set $A \neq \mathcal{L}(M)$ for all $\langle M \rangle \in \mathcal{L}(E)$.

3. Let $B = \{ (G, G') | G$ and G' are context free grammars and $\mathcal{L}(G) \subseteq \mathcal{L}(G') \}$. Is B semidecidable? Is \overline{B} semidecidable? Justify your answers using results presented in lectures. (You may complete your answer on the next page.)

Answer:

(1) B is not semidecidable, but (2) \overline{B} is semidecidable.

To prove (1), we show $\text{All}_{CFG} \leq_m B$.

This proves (1) because All_{CFG} is not semidecidable.

Recall that $\text{All}_{CFG} = \{ (G) | G$ is a CFG and $\mathcal{L}(G) = \Sigma^* \}$.

Given (G) (where G is a CFG) we must construct a pair (G_1, G_2) of CFG’s such that

$$\mathcal{L}(G) = \Sigma^* \Leftrightarrow \mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$$

Let G_1 be any CFG such that $\mathcal{L}(G_1) = \Sigma^*$, and let $G_2 = G$.

Clearly this suffices.

To prove (2), it suffices to use the certificate characterization of SD. Given a pair (G, G') of CFG’s, a certificate showing $\mathcal{L}(G) \not\subseteq \mathcal{L}(G')$ is a string w such that $w \in \mathcal{L}(G)$ and $w \notin \mathcal{L}(G')$. Here we use the fact that A_{CFG} is decidable, where

$$\text{A}_{CFG} = \{ (G, w) | G$ is a CFG and $w \in \mathcal{L}(G) \}$$