1. Recall that a set $A \subseteq \Sigma^*$ is semidecidable iff $A = L(M)$ for some Turing machine M.

Recall that an enumerator E is a Turing machine which has one ‘work tape’ and one write-only output tape. E enumerates a set $A \subseteq \Sigma^*$ by starting with a blank work tape, and writing the members of A (in any order, and possibly with repetitions) on its output tape. If A is infinite, then E never halts.

Show that a set A is semidecidable if and only if A is enumerated by some enumerator.

Solution:

(\Leftarrow) Let A be the set enumerated by an enumerator E. Define a Turing machine M_A to do the following:

M_A on input w runs the enumerator E. If E writes w on its output tape, then M_A accepts w. Otherwise M_A never halts.

Clearly $L(M_A) = A$. Hence A is semidecidable.

(\Rightarrow) Let $A = L(M)$ for some TM M. Let $\Sigma^* = \{w_1, w_2, \ldots\}$ where we have written w_1, w_2, \ldots in lexicographic order.

Let an enumerator E follow the algorithm below:

for $t = 1, \ldots, \infty$
 for $i = 1 \ldots t$
 Run M on input w_i for t steps.
 If M accepts w_i then write w_i on output tape.
 end for
end for

Then E enumerates A. Clearly every w_i written is in A, and if $w_i \in A$, then M accepts w_i in at most t steps for some t, and hence w_i is written on the output tape.

2. For this problem assume $\Sigma = \{0, 1\}$. Recall that $\text{PAL} = \{ww^R \mid w \in \{0,1\}^*\}$.

Let

$$A = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \subseteq \text{PAL}\}$$

Is A semidecidable? Is \overline{A} semidecidable. Justify your answers.

DO NOT USE RICE's THEOREM

(You may continue your solution on the next page.)

Solution:

$A \not\in SD$ but $\overline{A} \in SD$.

To prove $\overline{A} \in SD$ we use the certificate characterization of SD. Define $R(x, y)$ to be true iff either x is not of the form $\langle M \rangle$, where M is a TM, or $x = \langle M \rangle$ for some TM M and y codes an accepting computation of M on some input w such that $w \notin \text{PAL}$. Clearly $R(x, y)$ is computable. Also $x \in \overline{A}$ iff $\exists y R(x, y)$.
To prove $A \not\in SD$ we show $\overline{HB} \leq_m A$. This suffices, because $\overline{HB} \not\in SD$. Given a TM M we construct a TM M' such that M' on input w runs M on a blank tape. If M halts, then M' accepts w.

Thus if $\langle M \rangle \in \overline{HB}$, then $L(M') = \emptyset$, so $\langle M' \rangle \in A$.

If $\langle M \rangle \in HB$, then $L(M') = \Sigma^*$, so so $\langle M' \rangle \not\in A$.

3. Let B be an infinite set of Turing machine descriptions such that for each $\langle M \rangle \in B$

 (a) M is a Turing machine that halts on all inputs, and

 (b) M computes a function $f_M : \Sigma^* \rightarrow \Sigma^*$.

Suppose that B is semi-decidable. Prove that there is a computable function $g : \Sigma^* \rightarrow \Sigma^*$ such that $g \neq f_M$, for all $\langle M \rangle \in B$. (Make sure that $g(w)$ is defined for all strings $w \in \Sigma^*$.)

Solution:

We use a diagonal argument.

Since $B \in SD$, there is an enumerator E which enumerates $L(B)$. Let the output of the enumerator be $\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \ldots$.

Let $\{w_1,w_2,w_3,\ldots\}$ be Σ^* in lexicographic order.

Define $g(w_i) = f_{M_i}(w_i)a$, where $a \in \Sigma$.

Then g is computable, because, given w_i, we can watch the output of E to find $\langle M_i \rangle$, and then compute $f_{M_i}(w_i)$, and then add a.

If $g = f_M$ for some $M \in B$, then $g = f_{M_i}$ for some i. But $g(w_i) = f_{M_i}(w_i)a \neq f_{M_i}(w_i)$, so $g \neq f_{M_i}$. Therefore $g \neq f_M$, for all $\langle M \rangle \in B$.
