1. Let \(B \subseteq \Sigma^* \) be a decidable set. For each \(y \in \Sigma^* \) let
\[
B_y = \{ x \in \Sigma^* \mid \langle x, y \rangle \in B \}
\]
Show that there is a decidable language \(C \subseteq \Sigma^* \) such that \(C \neq B_y \) for all \(y \in \Sigma^* \).

Solution:
A simple diagonal argument suffices. Let
\[
C = \{ x \mid \langle x, x \rangle \notin B \}
\]
\(C \) is decidable because \(B \) is decidable.
For each \(y \in \Sigma^* \), \(C \) differs from \(B_y \) on input \(y \), because \(y \in C \iff \langle y, y \rangle \notin B \), by definition of \(C \).
But \(y \in B_y \iff \langle y, y \rangle \in B \), by definition of \(B_y \).

2. Let
\[
A = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ has at least two strings} \}
\]
Is \(A \) semidecidable? Is \(\overline{A} \) semidecidable?

Solution:
\(A \) is semidecidable. To show this we use the certificate characterization of semidecidable.
Define a relation \(R(x, y) \) which defines the following condition:
\[[x = \langle M \rangle] \text{ for some Turing machine } M, \text{ and } y \text{ codes a tuple } \]
\[
y = \langle x_1, C_1, x_2, C_2 \rangle
\]
where \(x_1 \neq x_2 \) and \(C_i \) codes an accepting computation of \(M \) on input \(x_i \), for \(i \in \{1, 2\} \).
Then \(R \) is decidable, and
\[
\langle M \rangle \in A \iff \exists y R(\langle M \rangle, y)
\]
\(\overline{A} \) is not semidecidable.
It suffices to show \(\overline{HB} \leq_m \overline{A} \), since \(\overline{HB} \) is not semidecidable.
This is equivalent to showing \(HB \leq_m A \). Here is that reduction: Given a Turing machine \(M \), we define a Turing machine \(M' \) which does the following:
\(M' \) on input \(x \) runs \(M \) on a blank tape. If \(M \) halts, then \(M' \) accepts \(x \).
Thus if \(\langle M \rangle \in HB \) then \(M \) halts on a blank tape, so \(L(M') = \Sigma^* \), so \(\langle M' \rangle \in A \).
If \(\langle M \rangle \notin HB \), then \(L(M') = \emptyset \), so \(\langle M' \rangle \notin A \).
3. Prove that every infinite semidecidable set has an infinite decidable subset.

Hint: Consider enumerators.

Solution:
Suppose that A is semidecidable. Then A is the output of some enumerator E. Now define B by the condition

$$x \in B \iff x \text{ is output by } E, \text{ and when } x \text{ is output by } E \text{ for the first time,}$$

$$E \text{ has not yet output any string that is lexicographically larger than } x.$$

Then clearly $B \subseteq A$, because every member of B is output by E.

Further, B is decidable, because to determine whether a given string x is in B, just watch the output of E until either some string lexicographically larger than x is output before x is output (in which case x is not in B) or x is output, in which case x is in B.

Finally B is infinite, because for every string x in B, when x is output by E for the first time, since A is infinite there must be a first time after this that E outputs a string y which is lexicographically larger than x, and this y is also in B.