1. (a) Define what it means for a set $A \subseteq \Sigma^*$ to be semi-decidable. (Sipser’s book calls this Turing- recognizable.)

(b) Recall that the certificate definition of A to be semi-decidable is that there exists a decidable relation $R(x, y)$ such that $x \in A$ iff there exists y such that $R(x, y)$ holds.

Show that the definition in (a) is equivalent to this definition.

(You may continue your solution on the next page.)
Continue your solution to Question 1b here.
2. Let PAL be the set of even length palindromes. Thus

$$P AL = \{ww^R \mid w \in \Sigma^*\}$$

Let

$$A = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \subseteq PAL\}$$

Is A semi-decidable?
Is \overline{A} semi-decidable?
Justify your answers.
You may continue your solution on the next page.
(Continue your solution from the previous page.)
Let A be an infinite set of Turing machine descriptions such that for each $\langle M \rangle \in A$

(a) M is a Turing machine that halts on all inputs, and
(b) M computes a function $f_M : \Sigma^* \to \Sigma^*$.

Suppose that A is semi-decidable. Use a diagonal argument to define a total computable function $g : \Sigma^* \to \Sigma^*$ such that $g \neq f_M$, for all $\langle M \rangle \in A$. (Make sure that $g(w)$ is defined for all strings $w \in \Sigma^*$.)

Suggestion: It might be helpful to use an enumerator for A.
