
CSC463S Solutions to Problem Set 4 Winter, 2018

Due: Monday, April 2, beginning of lecture

1. By definition, EXPTIME =
∑

k DTIME(2nk
).

Prove that DSPACE(2n) is not equal to EXPTIME.

Hint: See problem 9.15 in the text, and its solution.

Solution:
Assume to the contrary that

EXPTIME = DSPACE(2n) (1)

We will derive a contradiction.

(See the definition of pad(A, f) in problem 9.13 in the text.)

By the Space Hierarchy Theorem (Theorem 9.3) there is a language A in DSPACE(2n2
)

but not in DSPACE(2n).

But then pad(A, n2) ∈ DSPACE(2n), since an input of length m = n2 to pad(A, n2)
consists of a string w of length n followed by a string of #’s, and a TM can determine
whether w is in A in space O(2n2

) = O(2m). Therefore pad(A, n2) is in DSPACE(2n),
so by our assumption (1), pad(A, n2) is in EXPTIME. Thus pad(A, n2) is in DTIME(2nk

)
for some k.

But then A is in DTIME(2n2k
), because an input w to A of length n can be padded

to length m = n2 and accepted in time O(2mk
) = O(2(n2)k) = O(2n2k

). Hence A is in
EXPTIME so by our assumption (1), A is in DSPACE(2n). But this contradicts
our assumption on A.

2. A directed graph is doubly connected if every two vertices are connected by a directed
path in each direction. Let

DCG = {〈G〉 | G is a doubly connected graph}

Prove that DCG is NL-complete. (You may use the fact that PATH is NL-complete.)

Solution:
First we show that DCG ∈ NL. Given a directed graph G = (V,E) a nondeterministic
TM enumerates all pairs (u, v) of nodes in V and for each pair, guesses a path from
u to v. If the guess fails, then the machine rejects. If all guesses succeed, then the
machine accepts. Thus there is an accepting computation iff G is doubly connected.
The space required is O(log n), since the TM just needs to remember the current pair
u, v, and the current node on the the guessed path. (We may code each node vi by a
binary number i, so this requires O(log n) space, where n is the number of nodes in
G.)

Now we show that PATH ≤L DCG. This will show that DCG is NL-complete, since
PATH is NL complete.

1

Given an input 〈G, s, t〉 to PATH we must compute (in log space) an input 〈G′〉 to
DCG such that G has a path from s to t iff G′ is doubly connected. Let G = (V,E).
Then G′ = (V ′, E ′) where V ′ = V and

E ′ = E ∪ {(v, s) | v ∈ V, v 6= s} ∪ {(t, v) | v ∈ V, v 6= t}

It is easy to see that G′ can be computed in log space.

CORRECTNESS =⇒: If there is a path in G from s to t then for any pair u, v of nodes
in V there is a path in G′ from u to v as follows: use the edge (u, s), followed by the
path from s to t, followed by the edge (t, v).

CORRECTNESS ⇐=: If G′ is doubly connected, then there is a path from s to t in
G′. Consider a shortest such path. This shortest path cannot use any of the new edges
(v, s) since this would bring the path back to the start. It cannot use any of the new
edges (t, u) until it reaches t, and then there is no use for such an edge. Hence this
shortest path connects s and t in G.

3. Consider the problem FixedLengthPath

F ixedLengthPath
Instance
〈G, s, t, d〉, where G is an undirected graph, s and t are nodes in G, and d is a positive
integer.

Question: Is there a path from s to t of length d, and no shorter such path?

(a) Show that FixedLengthPath ∈ NL.

Solution:
To see that an NL machine can verify that G has a path from s to t of length at most
d, the machine M starts at s, and then guesses successive nodes in the path, ending
at t. M has a counter which counts how many nodes are in the path, and checks that
this number is d + 1 (so the path has d edges).

This test verifies that the distance from s to t is at most d. To verify that the distance
is at least d, we use the fact that NL = coNL, and test that G does not have a path
of length d− 1 or less from s to t.

(b) Show that FixedLengthPath is NL-complete.

Hint: Show that PATH ≤L FixedLengthPath. Start with a directed graph G.
Construct an undirected graph G′ by making n copies of G. Each edge in G′ should
go from copy i to copy i + 1.

Solution:
Given 〈G, s, t〉, where G is a directed graph with nodes s, t, we must construct in
O(log n) space 〈G′, s′, t′, d〉, where G′ is an undirected graph, and G has a path from s
to t iff the distance from s′ to t′ in G′ is exactly d.

Let G = (V,E), and set n = |V |. Let d = n− 1. We construct G′ = (V ′, E ′), where

V ′ = {(u, i) | u ∈ V and 0 ≤ i ≤ d}

2

Let

E ′ = {(u, i), (v, i + 1) | (u, v) ∈ E, 0 ≤ i < d} ∪ {(u, i), (u, i + 1) | u ∈ V, 0 ≤ i < d}

Let s′ = (s, 0), t′ = (t, d) It is not hard to see that 〈G′, s′, t′, d〉 can be constructed in
O(log n) space.

CORRECTNESS PROOF: If there is a path from s to t in G, then there is such a path
of length at most n− 1. Hence there is a path from s′ to t′ in G′ of length d = n− 1;
namely follow the path through the n copies of G in G′. If the path is shorter than
n− 1, then use the edges of the form (t, i), (t, i + 1) to reach the goal (t, n− 1).

Note that there is no path of length shorter than n− 1 from s′ to t′, because any such
path must go through all the copies of G in G′.

Conversely, if there is a path from s′ to t′ in G′ of length d = n−1, then the successive
nodes on this path must be in successive layers in G′. The only alterative is that some
step in the path would go from level i + 1 to level i, but then the path would have to
have length more than d. Hence the path can be used to find a directed path from s
to t in G.

3

