Due: Friday, March 13, beginning of tutorial

1. Given an undirected graph $G = (V, E)$ and a subset $V' \subseteq V$, we say V' is a node cover
for G if for every node $v \in V - V'$ there is $v' \in V'$ such that v and v' are connected by
an edge in G.

Consider the following decision problem:

Node-Cover

Instance:
$\langle G, k \rangle$, where G is an undirected graph and k is a positive integer.

Question:
Does G have a node cover of size k?

Prove that **Node-Cover** is NP-complete.

(Do not confuse **Node-Cover** with **Vertex-Cover**, but you may use the fact that the
latter is NP-complete.)

Suggestion: Modify a given graph G as follows: If (u, v) is an edge in G, put in a
new vertex w_{uv} and new edges connecting w_{uv} with both u and v.

Solution:
Note: The usual term for node cover is dominating set.

To show that **Node-Cover** is in NP we use the following ‘Guess and Check’ algorithm:

To verify that an instance $\langle G, k \rangle$ of **Node-Cover** is a YES instance we guess a subset $V' \subseteq V$ (where V is the set of vertices of G) and verify that V' has size k and for every vertex $v \in V \setminus V'$ there is $v' \in V'$ such that there is an edge between v and v'.

(In other words, V' is the certificate showing that that $\langle G, k \rangle$ is in **Node-Cover**.)

To show that **Node-Cover** is NP-hard we show

$$\text{Vertex-Cover} \leq_p \text{Node-Cover}$$

Given an instance (G, k) of **Vertex-Cover**, with $G = (V, E)$, we construct (in polynomial time) an instance (\hat{G}, \hat{k}) of **Node-Cover** such that G has a vertex cover of size k iff \hat{G} has a node cover of size \hat{k}.

First note that if G has any isolated nodes (i.e. nodes not touching any edge) then these can be deleted from any vertex cover for G and the result is still a vertex cover. Hence we may assume that k is at most the number of non-isolated nodes in V, since otherwise (G, k) is trivially a YES instance of **Vertex-Cover** (if $k \leq |V|$) or trivially a NO instance (if $k > |V|$).

Let \hat{G} be obtained from G by first deleting all the isolated nodes of G and then applying the modification given by the **Suggestion:** in the question.

Let $\hat{k} = k$.
CORRECTNESS PROOF: Note that deleting the isolated nodes of \(G \) does not change the answer to the question of whether \((G, k)\) is a YES instance of VERTEX-COVER, as explained above.

Thus we may assume that \(G \) has no isolated nodes.

Suppose that \(G \) has a vertex cover \(V' \) of size \(k \). Then we claim that \(V' \) is a node cover (i.e. dominating set) of \(\hat{G} \). This is because that every node in \(\hat{G} \) is either in \(V' \) or is touching an edge in \(\hat{G} \) whose other end is a \(V' \).

Conversely, suppose that \(V' \) is a node cover of size \(k \) of \(\hat{G} \). Then modify \(V' \) to form a subset \(V'' \) of \(V \) of size at most \(k \) as follows. For each node in \(V' \) of the form \(w_{uv} \) (i.e. one of the nodes added to \(V \)), delete it if both \(u \) and \(v \) are in \(V' \), and otherwise replace it by a node in \(\{u, v\} \) which is not in \(V' \). Note that each of the triangles \(\{u, w_{uv}, v\} \) must have at least one node in \(V' \) since otherwise the node \(w_{uv} \) would not be adjacent to any node in \(V' \), contrary to the definition of node cover. Hence \(V'' \) is a vertex cover for \(G \) of size at most \(k \). (To increase the size of \(V'' \) to exactly \(k \), add any nodes in \(V \). We may assume that \(k \leq |V| \), since otherwise \((G, k)\) is trivially a NO instance of Vertex-Cover.)

2. Consider the following decision problem:

\textbf{Marking-Set}

\textbf{Instance:}
\[\langle k, n, S_1, \ldots, S_m \rangle, \] where \(k \) and \(n \) are positive integers given in unary notation, and \(S_i \subseteq \{1, \ldots, n\} \) for \(1 \leq i \leq m \).

\textbf{Question:}
Is there a subset \(T \subseteq \{1, \ldots, n\} \) such that \(|T| \leq k \) and \(T \cap S_i \neq \emptyset \) for \(1 \leq i \leq m \).

(i) Show that \textbf{Marking-Set} is in \textbf{NP}.

\textbf{Solution:}
Note that \textbf{Marking-Set} is usually called \textbf{Hitting-Set}.

A certificate for the above instance of \textbf{Marking-Set} is a set \(T \subset \{1, \ldots, n\} \) such that \(|T| \leq k \) and \(T \cap S_i \neq \emptyset \) for \(1 \leq i \leq m \). Given \(T \), it is easy to verify the conditions in polynomial time.

(ii) Define the corresponding (optimization) search problem \textbf{Marking-Set-Search}.

\textbf{Solution:}
\textbf{Marking-Set-Search}

\textbf{Instance:}
\[\langle n, S_1, \ldots, S_m \rangle, \] where \(n \) is a positive integer and \(S_i \subseteq \{1, \ldots, n\} \) for \(1 \leq i \leq m \).

\textbf{Output:}
A set \(T \subseteq \{1, \ldots, n\} \) such that \(|T| \) is as small as possible subject to the conditions \(T \cap S_i \neq \emptyset \) for \(1 \leq i \leq m \).

(iii) Show that \textbf{Marking-Set-Search} \(p \rightarrow \textbf{Marking-Set} \). (For a definition of \(p \rightarrow \), see page 8 of the Lecture Notes “Turing Machines and Reductions”.)
Solution:
Given an instance \(\langle n, S_1, \ldots, S_m \rangle \) of \textbf{Marking-Set-Search} we are to find (in polynomial time) a smallest hitting set \(T \subseteq \{1, \ldots, n\} \), using an oracle for the decision problem \textbf{Marking-Set}.

The algorithm has two parts. The first part is to find the size \(k \) of the smallest hitting set. This is easily done as follows:

\[
k \leftarrow n \\
\text{for } i : n \text{ downto } 1 \\
\quad \text{if } \langle i, n, S_1, \ldots, S_m \rangle \in \text{Marking-Set} \\
\quad \quad \text{then } k \leftarrow i \\
\text{end for}
\]

Now a hitting set of size \(k \) can be found by removing each element \(i \) one at a time from each \(S_j \) and checking whether there is still a hitting set of size \(k \). If not, then \(i \) must be replaced.

\[
T \leftarrow \{1, \ldots, n\} \\
\text{for } j = 1..m \\
\quad S'_j \leftarrow S_j \\
\text{end for} \\
\text{for } i : 1..n (\ast) \\
\quad \text{if } \langle k, n, S'_1 - \{i\}, \ldots, S'_m - \{i\} \rangle \in \text{Marking-Set} \\
\quad \quad \text{then for } j : 1..m \\
\quad \quad \quad S'_j \leftarrow S'_j - \{i\} \\
\quad \quad \quad T \leftarrow T - \{i\} \\
\quad \text{end for} \\
\text{end for}
\]

Output \(T \)

(\ast) Loop Invariant: There is a hitting set \(T' \subseteq T \) for the original input such that \(|T'| = k \) and \(T - T' \subseteq \{i, \ldots, n\} \).

The Loop Invariant is proved by induction on the number of times the loop has been executed. After exiting from the Loop, in effect \(i = n + 1 \), so \(T - T' = \emptyset \), so \(T = T' \) is a hitting set of size \(|T| = k \).

3. Recall that if \(G \) is an undirected graph, then a \textit{Hamiltonian path} in \(G \) is a path that hits each node exactly once, and a \textit{Hamiltonian cycle} in \(G \) is a cycle that hits each node exactly once.

Let \textbf{UHamPath} be the set of triples \(\langle G, s, t \rangle \) such that \(G \) is an undirected graph with a Hamiltonian path from \(s \) to \(t \), and let \textbf{UHamCycle} be the set of undirected graphs \(G \) which have a Hamiltonian cycle.

Give explicit reductions showing each of the following (and justify your reductions):
i) UHamCycle \leq_p CNF-SAT

Solution:
Given an undirected graph $G = (V, E)$ we want to find (in polynomial time) a Boolean CNF formula φ such that G has a Hamiltonian cycle iff φ is satisfiable.

Suppose $V = \{v_1, \ldots, v_n\}$. The formula φ has variables $p_{ij}, 1 \leq i, j \leq n$, where p_{ij} is intended to mean that node v_i is the j-th node in the Hamiltonian cycle.

Then $\varphi = \psi_1 \land \psi_2 \land \psi_3$, where the ψ_i are defined as follows:

ψ_1 asserts that each node v_i occurs somewhere on the cycle:

$$\psi_1 = \bigwedge_{i=1}^{n} (p_{i1} \lor \cdots \lor p_{in})$$

ψ_2 asserts that no two nodes can both be at the same position in the cycle:

$$\psi_2 = \bigwedge_{1 \leq i < k \leq n} \bigwedge_{1 \leq j \leq n} (\overline{p_{ij}} \lor \overline{p_{kj}})$$

ψ_3 asserts that successive nodes in the cycle must form an edge in G:

$$\psi_3 = \bigwedge_{(v_i, v_k) \notin E} \left[(\overline{p_{in}} \lor \overline{p_{k1}}) \land \bigwedge_{j=1}^{n-1} (\overline{p_{ij}} \lor \overline{p_{k,j+1}}) \right]$$

Justification: If G has a Hamiltonian cycle, then we assign each variable p_{ij} to be 1 (true) iff v_i is the j-th node in the cycle. Then each of ψ_1, ψ_2, ψ_3 are true under this assignment, because the English description preceding each of these formulas is true, and the formulas correctly implement the description. Hence φ is satisfiable.

Conversely, suppose that φ is satisfied by some assignment τ. Then since τ satisfies ψ_1 and ψ_2 it follows that for each $j, 1 \leq j \leq n$ there is precisely one $i = i_j$ such that τ satisfies $p_{i_j,j}$. Then the sequence of nodes

$$v_{i_1}, v_{i_2}, \ldots, v_{i_n}$$

forms a permutation of the sequence v_1, v_2, \ldots, v_n, and ψ_3 assures that there is an edge between adjacent nodes in the sequence, and between v_{i_n} and v_{i_1}.

ii) UHamCycle \leq_p UHamPath

Solution:
Given an instance $\langle G \rangle$ of UHamCycle we must compute (in polynomial time) an instance $\langle G', s, t \rangle$ of UHamPath such that

G has a Hamiltonian cycle iff G' has a Hamiltonian path from s to t.

Suppose $G = (V, E)$, where $V = \{v_1, \ldots, v_n\}$. We assume that $n \geq 3$, since every cycle must have at least 3 nodes, so if $n < 3$ then make $\langle G', s, t \rangle$ any NO instance of UHamPath.
The idea for G' is to split node v_1 into the two nodes s and t, and connect both s and t to the same nodes that v_1 is connected to.

Thus let $G' = (V', E')$, where $V' = \{s, t, v_2, \ldots, v_n\}$, and

$$E' = E \cup \{(s, v_j), (t, v_j) \mid (v_1, v_j) \in E\} - \{(v_1, v_j) \mid (v_1, v_j) \in E\}$$

Proof of correctness:

(\Rightarrow): Suppose the sequence $v_1, v_{i_2}, \ldots, v_{i_n}, v_1$ forms a Hamiltonian cycle in G. Then $s, v_{i_2}, \ldots, v_{i_n}, t$ forms a Hamiltonian path from s to t in G'.

(\Leftarrow): Suppose $s, v_{i_2}, \ldots, v_{i_n}, t$ forms a Hamiltonian path from s to t in G'. Then $v_1, v_{i_2}, \ldots, v_{i_n}, v_1$ forms a Hamiltonian cycle in G.
