DIRECTIONS: For each of the following languages A, determine whether A is semidecidable, and whether \overline{A} is semidecidable. Justify your answers but DO NOT USE RICE’s THEOREM.

1. Let A_1 be the set of all Turing machine descriptions $\langle M \rangle$ such that the computation of M on a blank tape writes a nonblank symbol at some point.

Solution:

A_1 is decidable (and hence $\overline{A_1}$ is also decidable, and both are semidecidable).

Here is an algorithm for deciding whether a given string w is in A_1.

If w is not of the form $\langle M \rangle$ for some TM M, then REJECT. Otherwise suppose $w = \langle M \rangle$, where M is a TM. Let Q by the set of states of M, and let $s = |Q|$ (so s is the number of states in M’s finite state control).

Simulate M for s steps, starting on a blank tape in state q_0. If M prints a nonblank symbol during the simulation, then ACCEPT, otherwise REJECT.

The algorithm is correct, because if M does not write a nonblank symbol within s steps, then it never will. This is because after s steps (if not before) it either will halt or it will repeat a state, and so it will be caught in a loop in which it always reads a blank symbol and always writes a blank symbol.

2. Let A_2 be the set of all Turing Machine descriptions $\langle M \rangle$ such that M, during the computation starting with a blank tape, never attempts to move its head left when its head is on the left-most tape square. (Here we use the textbook’s convention that the tape is one-way infinite to the right.)

Solution:

A_2 is not semidecidable, but $\overline{A_2}$ is semidecidable.

To show that A_2 is not semidecidable we show

$$\overline{HB} \leq_m A_2$$

Thus we need a computable function f such that for all Turing machines M

$$\langle M \rangle \in \overline{HB} \iff f(\langle M \rangle) \in A_2$$

That is, we want $f(\langle M \rangle) = \langle M' \rangle$ where M' is a Turing machine, and M fails to halt on a blank tape iff M' never attempts to move its head left of the left-most square, starting on a blank tape.

We design M' to be similar to M, except that M' has an extra tape symbol $\#$. The computation of M' (on a blank tape) begins by writing the symbol $\#$, shifting the head right, and entering the initial state of M. Then M' runs M modified so that if at any
step \(M' \) scans the symbol \# in a state \(q \), then \(M' \) shifts its head right and remains in state \(q \) (thus simulating the action of \(M \) if it attempted to shift left from the left-most tape square). Note that so far \(M' \) has not attempted to shift its head left from its left-most square (which contains \#).

If \(M \) halts, then \(M' \) moves its head left repeatedly until it scans \#, and then attempts to shift its head left again.

It is easy to see that \(M' \) has the required property, as expressed above.

To show that \(A_2 \) is semidecidable, just note that a certificate showing that \(M \) attempts to move its head to the left of the left-most tape square, is the computation of \(M \) on a blank tape, up to the time \(M \) makes that attempt.

3. Let \(A_3 \) be the set of all \(\langle M \rangle \) such that \(M \) is a Turing machine and \(L(M) \) contains infinitely many even length palindromes. (Recall that these are strings of the form \(ww^R \), where \(w^R \) is \(w \) written backwards). Here we assume that \(\Sigma = \{0, 1\} \).

Solution:

Neither \(A_3 \) nor \(\overline{A_3} \) is semi-decidable, and hence neither is decidable.

To show that \(\overline{A_3} \) is not semidecidable, it suffices to show \(HB \leq_m A_3 \) (because it follows that \(\overline{HB} \leq_m \overline{A_3} \), and \(\overline{HB} \) is not semi-decidable).

To show \(HB \leq_m A_3 \), we show how to computably map \(\langle M \rangle \) to \(\langle M' \rangle \), where \(M \) is any Turing machine and \(M' \) is a TM such that \(M \) halts on a blank tape iff \(L(M') \) contains infinitely many palindromes.

We define \(M' \) as follows: On input \(w \), \(M' \) runs \(M \) on a blank tape. If \(M \) halts, then \(M' \) accepts \(w \).

Thus if \(M \) halts on a blank tape, then \(L(M') = \Sigma^* \), so \(L(M') \) contains infinitely many even palindromes. Conversely, if \(M \) does not halt on a blank tape, then \(L(M') = \emptyset \), so \(L(M') \) does not contain any even palindromes.

To show that \(A_3 \) is not semidecidable, we show that \(\overline{HB} \leq_m A_3 \). To do this, we show how to computably map \(\langle M \rangle \) to \(\langle M' \rangle \), such that \(M \) fails to halt on a blank tape iff \(L(M') \) has infinitely many even palindromes.

We define \(M' \) as follows: On input \(w \), \(M' \) runs \(M \) on a blank tape for \(|w| \) steps. If \(M \) halts, then \(M' \) rejects \(w \). Otherwise \(M' \) accepts \(w \). Thus if \(M \) halts on a blank tape (say in \(t \) steps) then \(L(M') \) does not contain any string \(w \) with \(|w| \geq t \), so \(L(M') \) is finite. Conversely, if \(M \) fails to halt on a blank tape, then \(L(M') = \Sigma^* \), so \(\langle M' \rangle \in A_3 \).

4. \(A_4 \) is the set of all \(\langle G_1, G_2 \rangle \) such that \(G_1 \) and \(G_2 \) are context-free grammars, and \(L(G_1) = L(G_2) \).

Solution:

\(\overline{A_4} \) is semi-decidable but not decidable. \(A_4 \) is neither semi-decidable nor decidable.

To show that \(\overline{A_4} \) is semi-decidable, we give a TM \(M_0 \) such that \(L(M_0) = \overline{A_4} \). To do this we use the fact that \(A_{CFG} \) is decidable. That is, it is decidable, given \(\langle G, w \rangle \), whether \(w \in L(G) \).
The machine M_0 uses the following algorithm on input $\langle G_1, G_2 \rangle$: (here $s_0, s_1, ...$ is an enumeration of the strings in Σ^*):

for $i : 0..\infty$
 if $s_i \in \mathcal{L}(G_1)$ and $s_i \notin \mathcal{L}(G_2)$ then ACCEPT
 if $s_i \in \mathcal{L}(G_2)$ and $s_i \notin \mathcal{M}(G_1)$ then ACCEPT
end for

It is easy to see that $\mathcal{L}(M_0) = \overline{A_4}$.

To show that A_4 is not decidable, we use the fact that ALL_{CFG} is not decidable, and we show

$$\text{ALL}_{CFG} \leq_m A_4$$

Given an input $\langle G \rangle$ to ALL_{CFG} we compute an input $\langle G_1, G_2 \rangle$ to A_4 such that $\mathcal{L}(G) = \Sigma^*$ iff $\mathcal{L}(G_1) = \mathcal{L}(G_2)$. To do this, we take $G_1 = G$ and G_2 to be any grammar that generates all strings in Σ^*.