
CSC 463S Notes University of Toronto, Spring, 2017

NP and NP-Completeness

NP

NP is a class of languages that contains all of P, but which most people think also contains
many languages that aren’t in P. Informally, a language L is in NP if there is a “guess-and-
check” algorithm for L. That is, there has to be an efficient verification algorithm with the
property that any x ∈ L can be verified to be in L by presenting the verification algorithm
with an appropriate, short “certificate” string y.

Remark: NP stands for “nondeterministic polynomial time”, because an alternative way
of defining the class uses a notion of a “nondeterministic” Turing machine. It does not stand
for “not polynomial”, and as we said, NP includes as a subset all of P. That is, many
languages in NP are very simple.

We now give the formal definition. For convenience, from now on we will assume that all
our languages are over the fixed alphabet Σ, and we will assume 0, 1 ∈ Σ.

Definition 1. Let L ⊆ Σ∗. We say L ∈NP if there is a two-place predicate R ⊆ Σ∗ × Σ∗

such that R is computable in polynomial time, and such that for some c, d ∈ N we have for
all x ∈ Σ∗

x ∈ L⇔ there exists y ∈ Σ∗, |y| ≤ c|x|d and R(x, y).

We have to say what it means for a two-place predicate R ⊆ Σ∗ × Σ∗ to be computable in
polynomial time. One way is to say that
{x; y | (x, y) ∈ R} ∈P, where “;” is a symbol not in Σ.
An equivalent way is to say that
{〈x, y〉 | (x, y) ∈ R} ∈P, where 〈x, y〉 is our standard encoding of the pair x, y.
Another equivalent way is to say that there is a Turing machine M which, if given xb/y on
its input tape (x, y ∈ Σ∗), halts in time polynomial in |x| + |y|, and accepts if and only if
(x, y) ∈ R.

Most languages that are in NP are easily shown to be in NP, since this fact usually follows
immediately from their definition, Consider, for example, the language SDPDD.

SDPDD (Scheduling with Deadlines, Profits and Durations Decision Problem).
Instance:
〈(d1, g1, t1), · · · , (dm, gm, tm), B〉 (with all integers represented in binary).

Acceptance Condition:
Accept if there is a feasible schedule with profit ≥ B.

1

We can easily see that SDPDD∈NP by letting R be the set of (x, y) ∈ Σ∗ × Σ∗ such that
x = 〈(d1, g1, t1), · · · , (dm, gm, tm), B〉 is an instance of SDPDD and y is a feasible schedule
with profit ≥ B. It is easy to see that membership in R can be computed in polynomial
time. Since for most reasonable encodings of this problem a schedule can be represented so
that its length is less than the length of the input, we have
x ∈ SDPDD⇔ there exists y ∈ Σ∗, |y| ≤ |x| and R(x, y).

The point is that the language is defined by saying that x is in the language if and only if
some y exists such that (x, y) satisfies some simple, given property; it will usually be clear
that if such a certificate y exists, then a “short” such y exists.

A slightly more interesting example is the language of composite numbers COMP:

COMP
Instance:
An integer x ≥ 2 presented in binary.

Acceptance Condition:
Accept if x is not a prime number.

We can easily see that COMP∈NP by letting R be the set of (x, y) ∈ Σ∗ × Σ∗ such that
x and y are integers (in binary) and 2 ≤ y < x and y divides x. It is easy to see that
membership in R can be computed in polynomial time, and for every x ∈ Σ∗

x ∈ COMP⇔ there exists y ∈ Σ∗, |y| ≤ |x| and R(x, y).

A much more interesting example is the language PRIMES consisting of prime numbers:

PRIMES
Instance:
An integer x ≥ 2 presented in binary.

Acceptance Condition:
Accept if x is a prime number.

It turns out that PRIMES ∈ P [proved by Agrawal, Kayal, Saxena 2002] but this is a much
more difficult theorem; the proof involves concepts from number theory and finite fields, and
will not be given here.

It is not, however, hard to prove that NP includes all of P.

Theorem 1. P ⊆ NP

Proof: Let L ⊆ Σ∗, L ∈ P. Let R = {(x, y) |x ∈ L}. Then since L ∈ P, R is computable
in polynomial time. It is also clear that for every x ∈ Σ∗

x ∈ L⇔ there exists y ∈ Σ∗, |y| ≤ |x| and R(x, y).

2

We now come to one of the biggest open questions in Computer Science.

Open Question: Is P equal to NP?

Unfortunately, we are currently unable to prove whether or not P is equal to NP. However,
it seems very unlikely that these classes are equal. If they were equal, all of the search
problems mentioned so far in these notes would be solvable in polynomial time, because they
are reducible (in the sense of

p−→) to a language in NP. More generally, most combinatorial
optimization problems would be solvable in polynomial time, for essentially the same reason.
Related to this is the following lemma. This lemma says that if P = NP, then if L ∈ NP,
then for every string x, not only would we be able to compute in polynomial-time whether or
not x ∈ L, but in the case that x ∈ L, we would also be able to actually find a certificate y
that demonstrates this fact. That is, for every language in NP, the associated search problem
would be polynomial-time computable. That is, whenever we are interested in whether a
short string y exists satisfying a particular (easy to test) property, we would automatically
be able to efficiently find out if such a string exists, and we would automatically be able to
efficiently find such a string if one exists.

Lemma 1. Assume that P = NP.
Let R ⊆ Σ∗ × Σ∗ be a polynomial-time computable two place predicate, let c, d ∈ N, and let
L = {x | there exists y ∈ Σ∗, |y| ≤ c|x|d and R(x, y)}.

Then there is a polynomial-time Turing M machine with the following property. For every
x ∈ L, if M is given x, then M outputs a string y such that |y| ≤ c|x|d and R(x, y).

Proof: Let L and R be as in the Lemma. Consider the language
L′ = {〈x,w〉 | there exists z such that |wz| ≤ c|x|d and R(x,wz)}. It is easy to see that
L′ ∈ NP (Exercise!), so by hypothesis, L′ ∈ P.

We construct the machine M to work as follows. Let x ∈ L. Using a polynomial-time
algorithm for L′, we will construct a certificate y = b1b2 · · · for x, one bit at a time. We
begin by checking if (x, ε) ∈ R, where ε is the empty string; if so, we let y = ε. Otherwise,
we check if 〈x, 0〉 ∈ L′; if so, we let b1 = 0, and if not, we let b1 = 1. We now check if
(x, b1) ∈ R; if so, we let y = b1. Otherwise, we check if 〈x, b10〉 ∈ L′; if so, we let b2 = 0, and
if not, we let b2 = 1. We now check if (x, b1b2) ∈ R; if so, we let y = b1b2. Continuing in this
way, we compute bits b1, b2, · · · until we have a certificate y for x, y = b1b2 · · · .

This lemma has some amazing consequences. It implies that if P = NP (in an efficient
enough way) then virtually all cryptography would be easily broken. The reason for this
is that for most cryptography (except for a special case called “one-time pads”), if we are
lucky enough to guess the secret key, then we can verify that we have the right key; thus,
if P = NP then we can actually find the secret key, break the cryptosystem, and transfer
Bill Gates’ money into our private account. (How to avoid getting caught is a more difficult
matter.) The point is that the world would become a very different place if P = NP.

3

For the above reasons, most computer scientists conjecture that P 6= NP.

Conjecture: P 6= NP

Given that we can’t prove that P 6= NP, is there any way we can gain confidence that a
particular language L ∈ NP is not in P? It will turn out that if we can prove that L is
“NP-Complete”, this will imply that if L is in P, then P = NP; we will take this as being
very strong evidence that L /∈ P.

NP-Completeness

Definition 2. Let L ⊆ Σ∗. Then we say L is NP-Complete if:

1) L ∈ NP and

2) For all L′ ∈ NP, L′ ≤p L.

If L satisfies the second condition in the definition of NP-completeness, we say
L is (ManyOne)-NP-Hard.

A weaker condition we could have used is “(Turing)-NP-Hard”, which applies to search
problems as well as to languages. Let S be a search problem or a language. We say S
is Turing-NP-Hard if for every language L′ ∈ NP, L′

p−→ S. 1 It is clear that if L is
a language, then if L is (ManyOne)-NP-Hard, then L is (Turing)-NP-Hard. (The reader
should not be concerned with the historical reasons for the choice of the qualifiers “ManyOne”
and “Turing”.)

Lemma 2. Let S be a search problem or a language that is (Turing)-NP-Hard. Then if S
is solvable in polynomial time, then NP = P. (Hence, if any (ManyOne)NP-Hard language
is in P, then NP = P. Hence, if any NP-Complete language is in P, then NP = P.)

Proof: Say that S is (Turing)-NP-Hard and solvable in polynomial time. Consider an

arbitrary language L′ ∈ NP. We have L′
p−→ S and S is solvable in polynomial time, so by

Theorem 2 in the last set of notes, L′ ∈ P. So NP ⊆ P, so NP = P.

Because of this Lemma, if a problem is NP-Hard, we view this as very strong evidence that
it is not solvable in polynomial time. In particular, it is very unlikely that any NP-Complete
language is in P. We also have the following theorem.

Theorem 2. Let L be an NP-Complete language. Then
L ∈ P⇔ P = NP.

1See Notes “Search and Optimization Problems” page 2 for the meaning of this notation.

4

Proof: Say that L is NP-Complete.
This implies L ∈ NP, so if P = NP, then L ∈ P.
Conversely, assume L ∈ P. The the previous Lemma implies P = NP.

Note that we have not proven that any language is NP-Complete. We will now define the
language CircuitSat, and prove that it is NP-Complete.

First we have to define what a “Boolean, combinational circuit” (or for conciseness, just
“Circuit”) is. A Circuit is just a “hardwired” algorithm that works on a fixed-length string
of n Boolean inputs. Each gate is either an “and” gate, an “or” gate, or a “not” gate; a gate
has either one or two inputs, each of which is either an input bit, or the output of a previous
gate. The last gate is considered the output gate. There is no “feedback”, so a circuit is
essentially a directed, acyclic graph, where n nodes are input nodes and all the other nodes
are labelled with a Boolean function. (Note that our circuits differ slightly from those of the
text CLR, since the text allows “and” and “or” gates to have more than two inputs.)

More formally, we can view a circuit C with n input bits as follows. We view the i-th gate as
computing a bit value into a variable xi. It is convenient to view the inputs as gates, so that
the first n gate values are x1, x2, · · · , xn. Each of the other gates compute bit values into
variables xn+1, xn+2, · · · , xm. For n < i ≤ k, the i-th gate will perform one of the following
computations:
xi ← xj ∨ xk where 1 ≤ j, k < i, or
xi ← xj ∧ xk where 1 ≤ j, k < i, or
xi ← ¬xj where 1 ≤ j < i.
The output of C is the value of xm, and we say C accepts a1a2 · · · an ∈ {0, 1}n if, when
x1, x2, · · · , xn are assigned the values a1, a2, · · · , an, xm gets assigned the value 1. We can
now define the language CircuitSat as follows.

CircuitSat
Instance:
〈C〉 where C is a circuit on n input bits.

Acceptance Condition:
Accept if there is some input ∈ {0, 1}n on which C accepts (that is, outputs 1).

Theorem 3. CircuitSat is NP-Complete.

Proof Outline: We first show that CircuitSat ∈ NP. As explained above, this is easy. We
just let R = {(α, a) |α = 〈C〉, C a circuit, and a is an input bit string that C accepts}. It is
easy to see that R is computable in polynomial time, and for every α ∈ {Σ∗},
α ∈ CircuitSat⇔ there exists a ∈ Σ∗, |a| ≤ |α| and R(α, a).

We now show that CircuitSat is (ManyOne)-NP-Hard; this is the interesting part. Let
L′ ∈ NP. So there is a polynomial time computable 2-place relation R and integers c, d such

5

that for all w ∈ Σ∗,
w ∈ L′ ⇔ there exists t ∈ Σ∗, |t| ≤ c|w|d and R(w, t).
Say that M is a polynomial time machine that accepts R. There is a constant e such that
on all inputs (w, t) such that |t| ≤ c|w|d, M halts in at most |w|e steps (for sufficiently long
w).

Now let w ∈ Σ∗, |w| = n. We want to compute a string f(w) in polynomial time such that
w ∈ L′ ⇔ f(w) ∈ CircuitSat. The idea is that f(w) will be 〈Cw〉, where Cw is a circuit that
has w built into it, that interprets its input as a string t over Σ of length ≤ cnd, and that
simulates M computing on inputs (w, t). There are a number of technicalities here. One
problem is that Cw will have a fixed number of input bits, whereas we want to be able to
view the possible inputs to C as corresponding to all the strings over Σ of length ≤ cnd.
However it is not hard to invent a convention (at least for sufficiently large n) whereby each
string over Σ of length ≤ cnd corresponds to a string of bits of length exactly cnd+1. So Cw

will have cnd+1 input bits, and will view its input as a string t over Σ of length ≤ cnd.

It remains to say how Cw will simulate M running on inputs (w, t). This should be easy to
see for a computer scientist/engineer who is used to designing hardware to simulate software.
We can design Cw as follows. Cw will proceed in ne stages, where the j-th stage simulates M
running for j steps; this simulation will compute the values in all the squares of M that are
within distance ne of the square the head was initially pointing at; the simulation will also
keep track of the current state of M and the current head position. It is not hard to design
circuitry to compute the information for stage j + 1 from the information for stage j.

SAT and Other NP-Complete Languages

The theory of NP-Completeness was begun (independently) by Cook and Levin in 1971,
who showed that the language SAT of satisfiable formulas of the propositional calculus is
NP-Complete. In subsequent years, many other languages were shown (by many different
people) to be NP-Complete; these languages come from many different domains such as
mathematical logic, graph theory, scheduling and operations research, and compiler opti-
mization. Before the theory of NP-Completeness, each of these problems was worked on
independently in the hopes of coming up with an efficient algorithm. Now we know that
since any two NP-Complete languages are polynomial-time transformable to one another, it
is reasonable to view them as merely being “restatements” of one another, and it is unlikely
that any of them have polynomial time algorithms. With this knowledge we can approach
each of these problems in a new way: we can try to solve a slightly different version of the
problem, or we can try to solve only special cases, or we can try to find “approximate”
solutions.

To define SAT, recall the definition of a formula of the propositional calculus. We have
atoms x, y, z, x1, y1, z1, · · · and connectives ∧,∨,¬,→,↔. An example of a formula F is
((x ∨ y) ∧ ¬(x ∧ z)) → (x ↔ y). A truth assignment τ assigns “true” or “false” (that is, 1
or 0) to each atom, thereby giving a truth value to the formula. We say τ satisfies F if τ

6

makes F true, and we say F is satisfiable if there is some truth assignment that satisfies it.
For example, the previous formula F is satisfied by the truth assignment:
τ(x) = 1, τ(y) = 0, τ(z) = 1.

SAT
Instance:
〈F 〉 where F is a formula of the propositional calculus.

Acceptance Condition:
Accept if F is satisfiable.

Another version of this language involves formulas of a special form. We first define a literal
to be an atom or the negation of an atom, and we define a clause to be a disjunction of
one or more literals. We say a formula is in CNF (for “conjunctive normal form”) if it is a
conjunction of one or more clauses. We say a formula is in 3CNF if it is in CNF, and each
clause contains at most 3 literals. For example, the following formula is in 3CNF:
(x ∨ y) ∧ (¬x) ∧ (¬y ∨ ¬w ∨ ¬x) ∧ (y). We define the language 3SAT as follows.

3SAT
Instance:
〈F 〉 where F is a formula of the propositional calculus in 3CNF.

Acceptance Condition:
Accept if F is satisfiable.

The reader should note that our definition of SAT is the same as the text’s, but different
from some other definitions in the literature. Some sources will use “SAT” to refer to the set
of satisfiable formulas that are in CNF. In any case, this variant is NP-Complete as well.

We want to prove that 3SAT is NP-Complete. From now on, however, when we prove a
language NP-Complete, it will be useful to use the fact that some other language has already
been proven NP-Complete. We will use the following lemma.

Lemma 3. Let L be a language over Σ such that

1) L ∈ NP, and

2) For some NP-Complete language L′, L′ ≤p L

Then L is NP-Complete.

Proof: We are given that L ∈ NP, so we just have to show that that for every language
L′′ ∈ NP, L′′ ≤p L. So let L′′ ∈ NP. We know that L′′ ≤p L

′ since L′ is NP-Complete, and
we are given that L′ ≤p L. By the transitivity of ≤p (proven earlier), we have L′′ ≤p L.

7

Theorem 4. 3SAT is NP-Complete.

Proof: We can easily see that 3SAT∈NP by letting R be the set of (x, y) ∈ Σ∗ × Σ∗ such
that x = 〈F 〉 where F is a formula, and y is a string of bits representing a truth assignment
τ to the atoms of F , and τ satisfies F . It is clear that membership in R can be computed in
polynomial time, since it is easy to check whether or not a given truth assignment satisfies
a given formula. It is also clear that for every x ∈ Σ∗,
x ∈ 3SAT⇔ there exists y ∈ Σ∗, |y| ≤ |x| and R(x, y).

By the previous Lemma, it is now sufficient to prove that CircuitSat ≤p 3SAT.
Let α be an input for CircuitSat. Assume that α = 〈C〉 where C is a circuit (otherwise we
just let f(α) be some string not in 3SAT). We wish to compute a formula f(C) = FC such
that
C is a satisfiable circuit ⇔ F is a satisfiable formula.

Recall that we can view C as having n inputs x1, · · · , xn, and m − n gates that assign
values to xn+1, · · · , xm, where xm is the output of the circuit. The formula FC we construct
will have variables x1, · · · , xm; it will have a subformula for each gate in C, asserting that
the variable corresponding to the output of that gate bears the proper relationship to the
variables corresponding to the inputs. For each i, n + 1 ≤ i ≤ m, we define the formula Gi

as follows:
If for gate i we have xi ← xj ∨ xk, then Gi is xi ↔ (xj ∨ xk).
If for gate i we have xi ← xj ∧ xk, then Gi is xi ↔ (xj ∧ xk).
If for gate i we have xi ← ¬xj, then Gi is xi ↔ ¬xj.

Of course, Gi is not in 3CNF. But since each Gi involves at most 3 atoms, we can construct
formulas G′i such that G′i is logically equivalent to Gi, and such that G′i is in 3CNF with at
most 8 clauses. For example, if Gi is xi ↔ (xj ∨ xk), we can let G′i be
(¬xi ∨ xj ∨ xk) ∧ (xi ∨ ¬xj) ∧ (xi ∨ ¬xk).

We then let FC = G′n+1∧G′n+2∧ · · ·∧G′m∧xm. The clauses in G′n+1 through G′m assert that
the variables get values corresponding to the gate outputs, and the last clause xm asserts
that C outputs 1. It is hopefully now clear that
C is satisfiable ⇔ FC is satisfiable.

To prove ⇒, consider an assignment a1, · · · , an to the inputs of C that makes C output 1.
This induces an assignment a1, · · · , am to all the gates of C. We now check that the truth
assignment that for each i assigns ai to xi satisfies all the clauses of FC , and hence satisfies
FC .

To prove ⇐, consider a truth assignment τ that assigns ai to xi for each i, 1 ≤ i ≤ m, and
that satisfies FC . Consider the assignment of a1, · · · , an to the inputs of C. Using the fact
that τ satisfies FC , we can prove by induction on i, n+ 1 ≤ i ≤ m, that C assigns ai to xi.
Hence, C assigns am to xm. Since τ satisfies FC , am = 1. So C outputs 1, so C is satisfiable.

8

Theorem 5. SAT is NP-Complete.

Proof: It is easy to show that SAT ∈ NP. (Exercise.)
We will now show 3SAT ≤p SAT. This is easy as well. Intuitively, it is clear that this holds,
since 3SAT is just a special case of SAT. More formally, let x ∈ Σ∗ be an input. If x is not
equal to 〈F 〉, for some 3CNF formula F , then let f(x) be any string not in SAT; otherwise,
let f(x) = x.

f is computable in polynomial time, and for all x, x ∈ 3SAT⇔ x ∈ SAT.

This previous Theorem is just a special case of the following lemma.

Lemma 4. Let L1, L2, L3 be languages over Σ such that
L1 is NP-Complete, Σ∗ 6= L2 ∈ NP, L3 ∈ P and L1 = L2 ∩ L3.
Then L2 is NP-Complete.

Proof: Exercise.

It should be noted that the text CLRS proves these theorems in a different order. After
showing that CircuitSat is NP-Complete, they show CircuitSat ≤p SAT, and then SAT ≤p

3SAT. The proof given in the text that SAT ≤p 3SAT is very interesting, and is worth
studying.

It also follows from what we have done that SAT ≤p 3SAT, since we have shown that
SAT ≤p CircuitSat (since CircuitSat is NP-Complete), and that CircuitSat ≤p 3SAT. It
is interesting to put these proofs together to see how, given a formula F , we create (in
polynomial time) a 3CNF formula G so that F is satisfiable ⇔ G is satisfiable. We do this
as follows.
Given F , we first create a circuit C that simulates a Turing machine that tests whether its
input satisfies F ; we then create a 3CNF formula G that (essentially) simulates C. It is
important to understand that G is not logically equivalent to F , but it is true that
F is satisfiable ⇔ G is satisfiable.

Using 3SAT, it is possible to show that many other languages are NP-Complete. Texts such
as CLRS typically define NP languages CLIQUE, VertexCover, IndependentSet, SubsetSum,
PARTITION, HamCycle, and TSP (Traveling Salesman) and prove them NP-Complete by
proving transformations such as:
3SAT ≤p CLIQUE ≤p IndependentSet ≤p VertexCover and
3SAT ≤p HamCycle ≤p TSP and
3SAT ≤p SubsetSum ≤p PARTITION ≤p GKD.

9

We will now define some of these languages. It is convenient to first define a number of
concepts relating to undirected graphs.

Definition 3. Let G = (V,E) be an undirected graph, and let S ⊆ V be a set of vertices.
We say S is a Clique if for all u, v ∈ S such that u 6= v, {u, v} ∈ E.
We say S is an Independent Set if for all u, v ∈ S such that u 6= v, {u, v} /∈ E.
We say S is a Vertex Cover if for all {u, v} ∈ E such that u 6= v, u ∈ S or v ∈ S.

We now define some languages. Note that in each of these three languages, it doesn’t matter
if k is expressed in unary or binary, since whenever k is bigger than the number of vertices,
the answer is trivial. The proof below that CLIQUE is NP-hard is very clever, but the
NP-hardness of IndependentSet and VertexCover follows easily from the NP-hardness of
CLIQUE.

10

CLIQUE
Instance:
〈G, k〉 where G is an undirected graph and k is a positive integer.

Acceptance Condition:
Accept if G has a clique of size ≥ k.

IndependentSet
Instance:
〈G, k〉 where G is an undirected graph and k is a positive integer.

Acceptance Condition:
Accept if G has an independent set of size ≥ k.

VertexCover
Instance:
〈G, k〉 where G is an undirected graph and k is a positive integer.

Acceptance Condition:
Accept if G has a vertex cover of size ≤ k.

Theorem 6. CLIQUE is NP-Complete.

Proof: It is easy to see that CLIQUE ∈ NP.
We will show that 3SAT ≤p CLIQUE. Let α be an input for 3SAT. Assume that α is an
instance of 3SAT, otherwise we can just let f(α) be some string not in CLIQUE.
So α = 〈F 〉 where F is a propositional calculus formula in 3CNF. By duplicating literals if
necessary, we can assume that every clause contains exactly 3 literals, and write
F = (L1,1 ∨ L1,2 ∨ L1,3) ∧ (L2,1 ∨ L2,2 ∨ L2,3) ∧ . . . ∧ (Lm,1 ∨ Lm,2 ∨ Lm,3).

We will let f(α) = 〈G,m〉 where G = (V,E) is the following graph. The idea is that V
will have one vertex for each occurrence of a literal in F ; there will be an edge between two
vertices if and only if the corresponding literals are consistent. We define two literals to be
consistent if there is no propositional letter x such that one of the literals is x and the other
is ¬x. We define
V = {vi,j | 1 ≤ i ≤ m and 1 ≤ j ≤ 3}, and
E = {{vi,j, vi′,j′} | i 6= ı′ and Li,j is consistent with Li′,j′}.
It is easy to see that f is computable in polynomial time.
We claim F is satisfiable ⇔ G has a clique of size m.

To prove ⇒, assume τ is a truth assignment satisfying F .
So there exist literals L1,j1 , L2,j2 , . . . , Lm,jm that are all made true by τ , and so every pair of
these literals are consistent. So S = {v1,j1 , v2,j2 , . . . , vm,jm} is a clique in G of size m.

To prove ⇐, Let S be a clique in G of size m.

11

By the definition of G we must be able to write S = {v1,j1 , v2,j2 , . . . , vm,jm} where Li,ji is
consistent with Li′,ji′

for i 6= i′.
Define the set of literals U = {L1,j1 , L2,j2 , . . . , Lm,jm}.
Define the truth assignment τ as follows on each propositional letter x:
τ(x) = true if x is one of the literals in U , otherwise τ(x) = false.
We claim τ makes each literal in U true (and hence satisfies F):
if Li,ji is a propositional letter x, then this is true by definition of τ ;
If Li,ji is of the form ¬x, then x is not a literal in U (otherwise two literals in U would be
inconsistent and so S wouldn’t be a clique), so τ(x) = false, so τ(¬x) = true.

Theorem 7. IndependentSet is NP-Complete.

Proof: It is easy to see that IndependentSet ∈ NP.
We will show that CLIQUE ≤p IndependentSet.
Let α be an input for CLIQUE, and as above assume that α is an instance of CLIQUE,
α = 〈G, k〉, G = (V,E). Let f(α) = 〈G′, k〉 where G′ = (V,E ′), where E ′ consists of {u, v}
such that u 6= v and {u, v} /∈ E.

We leave it as an exercise to show that G has a clique of size k ⇔ G′ has an independent
set of size k.

Theorem 8. VertexCover is NP-Complete.

Proof: It is easy to see that VertexCover ∈ NP.
We will show that IndependentSet ≤p VertexCover.
Let α be an input for VertexCover, and as above assume that α is an instance of VertexCover,
α = 〈G, k〉, G = (V,E). Let f(α) = 〈G, |V | − k〉.

We leave it as an exercise to show that a set S ⊆ V is an independent set for G if and only
if V − S is an vertex cover. It follows that
G has an independent set of size k ⇔ G has an vertex cover of size |V | − k.

We now discuss the Hamiltonian Cycle (HamCycle) and Travelling Salesperson (TSP) prob-
lems.

In an undirected graph G, a Hamiltonian cycle is a simple cycle containing all the vertices.
We shall omit here the difficult proof that HamCycle is NP-complete.

For TSP, consider an undirected graph in which all possible edges {u, v} (for u 6= v) are
present, and for which we have a nonnegative integer valued cost function c on the edges.
A tour is a simple cycle containing all the vertices (exactly once) – that is, a Hamiltonian
cycle – and the cost of the tour is the sum of the costs of the edges in the cycle.

12

HamCycle
Instance:
〈G〉 where G is an undirected graph.

Acceptance Condition:
Accept if G has a Hamiltonian cycle.

TSP
Instance:
〈G, c,B〉 where G is an undirected graph with all edges present, c is a nonnegative integer
cost function on the edges of G, and B is a nonnegative integer.

Acceptance Condition:
Accept if G has a tour of cost ≤ B.

Theorem 9. TSP is NP-Complete.

Proof: It is easy to see that TSP ∈ NP.
We will show that HamCycle ≤p TSP.
Let α be an input for HamCycle, and as above assume that α is an instance of HamCycle,
α = 〈G〉, G = (V,E). Let
f(α) = 〈G′, c, 0〉 where:
G′ = (V,E ′) where E ′ consists of all possible edges {u, v};
for each edge e ∈ E ′, c(e) = 0 if e ∈ E, and c(e) = 1 if e /∈ E.

We leave it as an exercise to show that
G has a Hamiltonian cycle ⇔ G′ has a tour of cost ≤ 0.

Note that the above proof implies that TSP is NP-complete, even if we restrict the edge
costs to be in {0, 1}.

We will omit the proof that SubsetSum is NP-complete, and instead will concern ourselves
now with some consequences of the NP-Completeness of SubsetSum.

SubsetSum
Instance:
〈a1, a2, · · · , am, t〉 where t and all the ai are nonnegative integers presented in binary.

Acceptance Condition:
Accept if there is an S ⊆ {1, · · · ,m} such that

∑
i∈S ai = t.

13

Recall the Simple and General Knapsack decision problems:

SKD (Simple Knapsack Decision Problem).
Instance:
〈w1, · · · , wm,W,B〉 (with all integers nonnegative and represented in binary).

Acceptance Condition:
Accept if there is an S ⊆ {1, · · · ,m} such that B ≤

∑
i∈S wi ≤ W .

GKD (General Knapsack Decision Problem).
Instance:
〈(w1, g1), · · · , (wm, gm),W,B〉 (with all integers nonnegative represented in binary).

Acceptance Condition:
Accept if there is an S ⊆ {1, · · · ,m} such that

∑
i∈S wi ≤ W and

∑
i∈S gi ≥ B.

Theorem 10. The languages SKD, GKD, and SDPDD are all NP-Complete.

Proof: It is easy to see that all three languages are in NP.
We will show that SubsetSum ≤p SKD. Since we have already seen that
SKD ≤p GKD ≤p SDPDD, the theorem follows from the NP-Completeness of SubsetSum.

To prove that SubsetSum ≤p SKD, let x be an input for SubsetSum. Assume that x is
an Instance of SubsetSum, otherwise we can just let f(x) be some string not in SKD. So
x = 〈a1, a2, · · · , am, t〉 where t and all the ai are nonnegative integers presented in binary.
Let f(x) = 〈a1, a2, · · · , am, t, t〉. It is clear that f is computable in polynomial time, and
x ∈ SubsetSum ⇔ f(x) ∈ SKD.

Related to SubsetSum is the language PARTITION.

PARTITION
Instance:
〈a1, a2, · · · , am〉 where all the ai are nonnegative integers presented in binary.

Acceptance Condition:
Accept if there is an S ⊆ {1, · · · ,m} such that

∑
i∈S ai =

∑
j /∈S aj.

Theorem 11. PARTITION is NP-Complete.

Proof: It is easy to see that PARTITION ∈ NP.
We will prove SubsetSum ≤p PARTITION. Let x be an input for SubsetSum. Assume
that x is an Instance of SubsetSum, otherwise we can just let f(x) be some string not
in PARTITION. So x = 〈a1, a2, · · · , am, t〉 where t and all the ai are nonnegative integers
presented in binary. Let a =

∑
1≤i≤m ai.

14

Case 1: 2t ≥ a.
Let f(x) = 〈a1, a2, · · · , am, am+1〉 where am+1 = 2t − a. It is clear that f is computable in
polynomial time. We wish to show that
x ∈ SubsetSum ⇔ f(x) ∈ PARTITION.

To prove ⇒, say that x ∈ SubsetSum. Let S ⊆ {1, · · · ,m} such that
∑

i∈S ai = t. Letting
T = {1, · · · ,m} − S, we have

∑
j∈T ai = a − t. Letting T ′ = {1, · · · ,m + 1} − S, we have∑

j∈T ′ ai = (a− t) + am+1 = (a− t) + (2t− a) = t =
∑

i∈S ai. So f(x) ∈ PARTITION.

To prove ⇐, say that f(x) ∈ PARTITION. So there exists S ⊆ {1, · · · ,m + 1} such that
letting T = {1, · · · ,m+ 1}−S, we have

∑
i∈S ai =

∑
j∈T aj = [a+ (2t− a)]/2 = t. Without

loss of generality, assume m+ 1 ∈ T . So we have S ⊆ {1, · · · ,m} and
∑

i∈S ai = t, so
x ∈ SubsetSum.

Case 2: 2t ≤ a. (Exercise.)

Warning: Students often make the following serious mistake when trying to prove that
L1 ≤p L2. When given a string x, we are supposed to show how to construct (in polynomial
time) a string f(x) such that x ∈ L1 if and only if f(x) ∈ L2. We are supposed to construct
f(x) without knowing whether or not x ∈ L1; indeed, this is the whole point. However, often
students assume that x ∈ L1, and even assume that we are given a certificate showing that
x ∈ L1; this is completely missing the point.

NP-Completeness of Graph 3-Colorability

Before we discuss the problem of graph colorability, it will be convenient to first deal with a
language more closely related to SAT, namely SymSAT (standing for “Symmetric SAT”).

3SymSAT
Instance:
〈F 〉 where F is a 3CNF propositional calculus formula with exactly 3 literals per clause.

Acceptance Condition:
Accept if there is a truth assignment τ such that for every clause C of F , τ satisfies at least
one literal of C and τ falsifies at least one literal of C.

Theorem 12. 3SymSAT is NP-Complete.

Proof: It is easy to see that 3SymSAT ∈ NP.
We will prove 3SAT ≤p 3SymSAT. Let 〈F 〉 be an instance of 3SAT, and assume that every
clause of F contains exactly 3 literals. (If not, we can always “fill out” a clause that contains
one or two literals by merely repeating a literal; this will not change the satisfiability of F .)
We will now show how to construct (in polynomial time) a 3CNF formula F ′ such that F is
satisfiable if and only if F ′ ∈ 3SymSAT.

15

Say that F is C1 ∧C2 ∧ . . .∧Cm. The formula F ′ will contain all the variables of F , as well
as a new variable x, as well as a new variable yi for each clause Ci.
F ′ will be D1 ∧D2 ∧ . . . ∧Dm, where Di is the following 3CNF formula:
Say that Ci is (Li,1 ∨ Li,2 ∨ Li,3);
then Di will be (¬yi ∨ Li,1 ∨ Li,2) ∧ (¬Li,1 ∨ yi ∨ x) ∧ (¬Li,2 ∨ yi ∨ x) ∧ (yi ∨ Li,3 ∨ x).

We wish to show that
F is satisfiable ⇔ F ′ ∈ 3SymSAT.

To show ⇒, let τ be a truth assignment that satisfies F . Extend τ to a truth assignment τ ′

on the variables of F ′ by letting τ ′(yi) = τ(Li,1 ∨ Li,2) and τ ′(x) = “false”. Then it is easy
to check that τ ′ satisfies at least one literal of each clause of F ′, and that τ ′ falsifies at least
one variable of each clause of F ′.

To show ⇐, let τ be a truth assignment to the variables of F ′ such that τ satisfies at least
one literal of each clause of F ′ and τ falsifies at least one variable of each clause of F ′. If
τ(x) = “false”, then it is easy to check that τ satisfies every clause of F . If τ(x) = “true”,
then define τ ′ to be the truth assignment that reverses the value of τ on every variable. Then
τ ′ must also satisfy at least one literal in every clause of F ′ and falsify at least one literal in
every clause of F ′, and τ ′(x) = “false”; so, as above, τ ′ satisfies F .

We will now discuss the problem of graph colorability. Let G = (V,E) be an undirected
graph, and let k be a positive integer. A k-coloring of G is a way of coloring the vertices
of G such that for every edge {u, v}, u and v get different colors. 3COL is the language
consisting of graphs that can be colored with 3 colors. More formally:

Definition 4. A k-coloring of G = (V,E) is defined to be a function c : V → {1, 2, . . . , k}
such that for every {u, v} ∈ E, c(v) 6= c(u). We say G is k-colorable if there exists a
k-coloring of G.

3COL
Instance:
〈G〉 where G is an undirected graph.

Acceptance Condition:
Accept if G is 3-colorable.

Theorem 13. 3COL is NP-Complete.

Proof: It is easy to see that 3COL ∈ NP.
We will prove 3SymSAT ≤p 3COL. Let 〈F 〉 be an instance of 3SymSAT, where
F = (L1,1∨L1,2∨L1,3)∧ (L2,1∨L2,2∨L2,3)∧ . . .∧ (Lm,1∨Lm,2∨Lm,3). We will now construct
(in polynomial time) a graph G = (V,E) such that F ∈ 3SymSAT ⇔ G is 3-colorable.

16

V will contain a special vertex w. In addition, for each variable x of F , V will contain a
vertex x and a vertex ¬x; the vertices w, x,¬x will form a triangle, that is, we will have
(undirected) edges {w, x}, {x,¬x}, {¬x,w}. It is convenient to think of our three colors as
being “white”, “true”, and “false”. Without loss of generality we can choose to always give
node w the color “white”; thus, a 3-coloring will always color one of x and ¬x “true” and
the other one “ false”.

For each clause of F we will have three additional nodes. Corresponding to the ith clause
of F we will have vertices vi,1, vi,2, vi,3; these will be formed into a triangle with edges
{vi,1, vi,2}, {vi,2, vi,3}, {vi,3, vi,1}. If the ith clause of F is (Li,1 ∨ Li,2 ∨ Li,3), then we will
also have edges {Li,1, vi,1}, {Li,2, vi,2}, {Li,3, vi,3}.
(For an example of this construction, see the figure below.)

We wish to show that
F ∈ 3SymSAT ⇔ G ∈ 3COL.

To show ⇒, let τ be a truth assignment that satisfies at least one literal of every clause of
F , and falsifies at least one literal of every clause of F . We now define a mapping
c : V → { “true”, “false”, “white” } as follows.
Let c(w) = “white”.
For every literal L, let c(L) = τ(L).

It remains to assign colors to the vertices corresponding to the clauses.
Consider the ith clause.
If τ(Li,1) = “true” , τ(Li,2) = “false” , τ(Li,3) = “true” , then assign
c(vi,1) = “false”, c(vi,2) = “true”, c(vi,3) = “white”;
the result is a (legal) coloring of G.

The other five cases are similar, and are left as an exercise. For example,
if τ(Li,1) = “true” , τ(Li,2) = “true” , τ(Li,3) = “false” , then assign
c(vi,1) = “false”, c(vi,2) = “white”, c(vi,3) = “true”.

To show ⇐, let c : V → { “true”, “false”, “white” } be a (legal) coloring of G; assume
(without loss of generality) that c(w) = “white”. We define the truth assignment τ , by
τ(x) = “true” ⇔ c(x) = “true”. We leave it as an exercise to prove that τ satisfies at least
one literal of every clause of F , and falsifies at least one literal of every clause of F .

17

 w

 x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

 v1,2 v2,2

 v1,1 v1,3 v2,1 v2,3

Graph Constructed From the Formula

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

18

