
CSC 463F Supplementary Notes Winter, 2015

Search and Optimization Problems

These notes supplement the old CSC 364S course notes “NP and NP-Completeness”
and “Turing Machines and Reductions” by presenting NP Search and Optimization
problems.

Problems in NP are formally sets of strings, but we often define them as decision problems.
For example SAT is defined as follows:

SAT
Instance:
〈ϕ〉, where ϕ is a formula of the propositional calculus.

Question:
Is ϕ satisfiable?

Thus SAT is the problem: given a propositional formula, decide whether or not it is satisfi-
able. But in practice we often want to know more: If ϕ is satisfiable, we would like to find
a satisfying truth assignment. This problem can be stated as follows:

SAT-SEARCH
Instance:
〈ϕ〉, where ϕ is a formula of the propositional calculus.

Output:
A satisfying assignment for ϕ, or ‘NO’ if none exists.

This idea can be generalized to apply to arbitrary sets A ⊆ Σ∗ in NP. By definition (see
Definition 1 in the notes NP and NP-Complteness) A is in NP iff there is a polynomial
time computable relation R(x, y) and constants c, d such that for all x ∈ Σ∗

x ∈ A⇔ there exists y ∈ Σ∗ so |y| ≤ c|x|d and R(x, y)

Here we call any string y a certificate for x if it satisfies the conditions |y| ≤ c|x|d and R(x, y)
in the definition.

The corresponding search problem for A is

A-SEARCH
Instance:
x ∈ Σ∗

1

Output:

y ∈ Σ∗ such that |y| ≤ c|x|d and R(x, y), or ‘NO’ if no such y exists.

It turns out that if A is NP-complete, then the two problems A (the decision problem) and
A-SEARCH are polynomial time reducible to each other.

For this kind of polynomial reducibility we refer the reader to Definition 6 in the Notes
Turing Machines and Reductions. Repeating this definition we have

Definition 6. P1 is polynomial-time reducible to P2 (in symbols: (P1
p−→ P2)) if there is a

polynomial-time algorithm for P1 which is allowed to access a solver for P2, where the time
taken by P2 is not counted.

Theorem 1 (Self Reducibility). 1) If A is any problem in NP, then A
p−→ A-SEARCH.

2) If A is NP-complete then A-SEARCH
p−→ A.

Proof. The proof of 1) is obvious: An input x is in A iff the answer to A-SEARCH is a
certificate y for x.

For the proof of 2), we use the fact that if A is NP-complete, then every decision problem
B in NP is polytime reducible to A. We leave it to the reader to think of a useful NP
problem B such that the answers to polynomially many queries to B can be used to find a
certificate y for x (assuming x ∈ A).

Although we know from part 2) of the above theorem that A-SEARCH
p−→ A when A is

NP-complete, it is interesting to give explicit reductions from search to decision for specific
NP-complete problems A.

Example 1: SAT-SEARCH
p−→ SAT. (i.e. SAT is self-reducible.)

Proof. Assume that Sat(ϕ) is a Boolean solver for SAT. Thus

Sat(ϕ) is true ⇔ ϕ ∈ SAT

We assume that Boolean formulas can have constants 1 (for true) and 0 (for false). We use
the notation ψ[xi ← 1] for the result of replacing every instance of the variable xi in formula
ψ by 1, and similarly for ψ[xi ← 0].

Below is the program: (We assume that the input formula ϕ has variables x1, . . . , xn.)

2

Input ϕ
if ¬Sat(ϕ) then output ‘NO’
ψ ← ϕ
for i = 1 . . . n (*)

if Sat(ψ[xi ← 1]) then
ψ ← ψ[xi ← 1]; τ(xi) = 1

else ψ ← ψ[xi ← 0]; τ(xi) = 0
end if

end for
Output τ

(*) Loop Invariant: ψ is satisfiable and ψ = ϕ[x1 ← τ(x1), . . . , xi ← τ(xi)].

Example 2: Recall that if G = (V,E) is an undirected graph and V ′ ⊆ V , then V ′ is a
clique in G iff (u, v) ∈ E for every pair u, v of distinct nodes in V ′. The associated decision
problem is:

CLIQUE
Instance:
〈G, k〉 where G is an undirected graph an k is a positive integer.

Question:
Does G have a clique of size k?

The associated search problem for the same input as above is to find a clique of size k, if
one exists. But a more interesting associated search problem is the following optimization
problem:

MAX CLIQUE-SEARCH
Instance:
〈G〉 where G = (V,E) is an undirected graph.

Output:
A clique V ′ ⊆ V in G such that |V ′| ≥ |V ′′| for every clique V ′′ in G.

Theorem 2. MAX CLIQUE-SEARCH
p−→ CLIQUE.

Proof. Assume that Clique(G, k) is a Boolean solver for CLIQUE. The program for MAX
CLIQUE-SEARCH has two parts. On input G = (V,E), the first part finds the largest
number kG such that G has a clique of size kG, and the second part finds a clique of size kG.

3

Here is the program for MAX CLIQUE-SEARCH. We assume that the input graph is
G = (V,E), where V = {v1, . . . , vn}.

If H is a graph, then the notation H−{vi} stands for the graph obtained from H by removing
the vertex vi and all edges incident to vi.

for i = 1 . . . n
if Clique(G, i) then k ← i

end for
kG ← k

H ← G
for i = 1 . . . , n (*)

if Clique(H − {vi}, kG) then H ← H − {vi}
end for
V ′ = the set of vertices in H.
Output V ′

Correctness proof:

It is clear from the first part of the program that kG is the size of the largest clique in G.

To see that the output V ′ of the second part is a clique of size kG we use the following loop
invariant (which is proved by induction on i):

(*) Loop invariant:

Let H = (Vi, Ei). Then H has a clique V ′ of size kG, where

Vi ∩ {v1, . . . , vi−1} ⊆ V ′ ⊆ Vi

Hence after the for loop is finished, in effect the next i = n+ 1, so Vn+1 = V ′, where Vn+1 is
the set of vertices in the final graph H. Thus the set of vertices in the final H is a clique of
size kG.

4

