Search and Optimization Problems

These notes supplement the old CSC 364S course notes “NP and NP-Completeness” and “Turing Machines and Reductions” by presenting NP Search and Optimization problems.

Problems in NP are formally sets of strings, but we often define them as decision problems. For example SAT is defined as follows:

SAT
Instance: \(\langle \varphi \rangle \), where \(\varphi \) is a formula of the propositional calculus.

Question: Is \(\varphi \) satisfiable?

Thus SAT is the problem: given a propositional formula, decide whether or not it is satisfiable. But in practice we often want to know more: If \(\varphi \) is satisfiable, we would like to find a satisfying truth assignment. This problem can be stated as follows:

SAT-SEARCH
Instance: \(\langle \varphi \rangle \), where \(\varphi \) is a formula of the propositional calculus.

Output: A satisfying assignment for \(\varphi \), or ‘NO’ if none exists.

This idea can be generalized to apply to arbitrary sets \(A \subseteq \Sigma^* \) in NP. By definition (see Definition 1 in the notes NP and NP-Completeness) \(A \) is in NP iff there is a polynomial time computable relation \(R(x, y) \) and constants \(c, d \) such that for all \(x \in \Sigma^* \)

\[
x \in A \iff \text{there exists } y \in \Sigma^* \text{ so } |y| \leq c|x|^d \text{ and } R(x, y)
\]

Here we call any string \(y \) a certificate for \(x \) if it satisfies the conditions \(|y| \leq c|x|^d \) and \(R(x, y) \) in the definition.

The corresponding search problem for \(A \) is

A-SEARCH
Instance: \(x \in \Sigma^* \)

Output:
\[y \in \Sigma^* \text{ such that } |y| \leq c|x|^d \text{ and } R(x, y), \text{ or 'NO' if no such } y \text{ exists.} \]

It turns out that if \(A \) is \textbf{NP}-complete, then the two problems \(A \) (the decision problem) and \textbf{A-SEARCH} are polynomial time reducible to each other.

For this kind of polynomial reducibility we refer the reader to Definition 6 in the Notes Turing Machines and Reductions. Repeating this definition we have

\textbf{Definition 6.} \(P_1 \) is polynomial-time reducible to \(P_2 \) (in symbols: \((P_1 \overset{p}{\rightarrow} P_2) \)) if there is a polynomial-time algorithm for \(P_1 \) which is allowed to access a solver for \(P_2 \), where the time taken by \(P_2 \) is not counted.

\textbf{Theorem 1 (Self Reducibility).} 1) If \(A \) is any problem in \textbf{NP}, then \(A \overset{p}{\rightarrow} \text{A-SEARCH}. \)

2) If \(A \) is \textbf{NP-complete} then \(\text{A-SEARCH} \overset{p}{\rightarrow} A. \)

\textit{Proof.} The proof of 1) is obvious: An input \(x \) is in \(A \) iff the answer to \textbf{A-SEARCH} is a certificate \(y \) for \(x \).

For the proof of 2), we use the fact that if \(A \) is \textbf{NP-complete}, then \textit{every} decision problem \(B \) in \textbf{NP} is polytime reducible to \(A \). We leave it to the reader to think of a useful \textbf{NP} problem \(B \) such that the answers to polynomially many queries to \(B \) can be used to find a certificate \(y \) for \(x \) (assuming \(x \in A \)).

Although we know from part 2) of the above theorem that \(\text{A-SEARCH} \overset{p}{\rightarrow} A \) when \(A \) is \textbf{NP}-complete, it is interesting to give explicit reductions from search to decision for specific \textbf{NP-complete} problems \(A \).

\textbf{Example 1:} \(\text{SAT-SEARCH} \overset{p}{\rightarrow} \text{SAT} \). (i.e. \textbf{SAT} is self-reducible.)

\textit{Proof.} Assume that \(\text{Sat}(\varphi) \) is a Boolean solver for \textbf{SAT}. Thus

\(\text{Sat}(\varphi) \text{ is true } \Leftrightarrow \varphi \in \text{SAT} \)

We assume that Boolean formulas can have constants 1 (for true) and 0 (for false). We use the notation \(\psi[x_i \leftarrow 1] \) for the result of replacing every instance of the variable \(x_i \) in formula \(\psi \) by 1, and similarly for \(\psi[x_i \leftarrow 0] \).

Below is the program: (We assume that the input formula \(\varphi \) has variables \(x_1, \ldots, x_n \).)
Input φ
if $\neg \text{Sat}(\varphi)$ then output ‘NO’
$\psi \leftarrow \varphi$
for $i = 1 \ldots n$ (*)
 if $\text{Sat}(\psi[x_i \leftarrow 1])$ then
 $\psi \leftarrow \psi[x_i \leftarrow 1]; \tau(x_i) = 1$
 else $\psi \leftarrow \psi[x_i \leftarrow 0]; \tau(x_i) = 0$
end if
end for
Output τ

(*) Loop Invariant: ψ is satisfiable and $\psi = \varphi[x_1 \leftarrow \tau(x_1), \ldots, x_i \leftarrow \tau(x_i)]$.

Example 2: Recall that if $G = (V, E)$ is an undirected graph and $V' \subseteq V$, then V' is a clique in G iff $(u, v) \in E$ for every pair u, v of distinct nodes in V'. The associated decision problem is:

CLIQUE

Instance: $\langle G, k \rangle$ where G is an undirected graph an k is a positive integer.

Question: Does G have a clique of size k?

The associated search problem for the same input as above is to find a clique of size k, if one exists. But a more interesting associated search problem is the following optimization problem:

MAX CLIQUE-SEARCH

Instance: $\langle G \rangle$ where $G = (V, E)$ is an undirected graph.

Output: A clique $V' \subseteq V$ in G such that $|V'| \geq |V''|$ for every clique V'' in G.

Theorem 2. $\text{MAX CLIQUE-SEARCH} \xrightarrow{p} \text{CLIQUE}$.

Proof. Assume that $\text{Clique}(G, k)$ is a Boolean solver for CLIQUE. The program for MAX CLIQUE-SEARCH has two parts. On input $G = (V, E)$, the first part finds the largest number k_G such that G has a clique of size k_G, and the second part finds a clique of size k_G.

3
Here is the program for **MAX CLIQUE-SEARCH**. We assume that the input graph is $G = (V, E)$, where $V = \{v_1, \ldots, v_n\}$.

If H is a graph, then the notation $H - \{v_i\}$ stands for the graph obtained from H by removing the vertex v_i and all edges incident to v_i.

\[
\begin{align*}
\text{for } i = 1 \ldots n & \\
\text{ if } \text{Clique}(G, i) \text{ then } k \leftarrow i & \\
\text{end for} & \\
\text{ } & \\
\text{ } & \\
H \leftarrow G & \\
\text{for } i = 1 \ldots n \text{ (*)} & \\
\text{ if } \text{Clique}(H - \{v_i\}, k_G) \text{ then } H \leftarrow H - \{v_i\} & \\
\text{end for} & \\
V' = \text{the set of vertices in } H & \\
\text{Output } V' & \\
\end{align*}
\]

Correctness proof:

It is clear from the first part of the program that k_G is the size of the largest clique in G.

To see that the output V' of the second part is a clique of size k_G we use the following loop invariant (which is proved by induction on i):

\begin{align*}
\text{(*) Loop invariant: } & \\
\text{Let } H = (V_i, E_i). \text{ Then } H \text{ has a clique } V' \text{ of size } k_G, \text{ where} & \\
V_i \cap \{v_1, \ldots, v_{i-1}\} \subseteq V' \subseteq V_i & \\
\end{align*}

Hence after the for loop is finished, in effect the next $i = n + 1$, so $V_{n+1} = V'$, where V_{n+1} is the set of vertices in the final graph H. Thus the set of vertices in the final H is a clique of size k_G. \hfill \square