
CSC 463F Supplementary Notes Fall, 2012

CFL’s and Noncomputability

These brief notes are intended to supplement the text Introduction to the Theory of

Computation by Michael Sipser, Third Edition.

We are especially interested in the proof of Theorem 5.13 (ALLCFG is undecidable). (See
Sections 2.1, 2.2, and 2.4. for background on CFLs.)

Here we assume Theorem 2.20 (A language is context free iff some PDA (pushdown automa-
ton) recognizes it). Thus (letting CFL denote the set of context free languages)

CFL = {L(M) : M is a PDA}.

From Section 2.4 we have the following definition:

DCFL = {L(M) : M is a DPDA}, where DCFL is the set of deterministic context free
languages and DPDA stands for deterministic pushdown automaton.

Here are some facts about DCFL:

1) DCFL is closed under complementation.

2) DCFL is not closed under union, and not closed under intersection.

3) Both CFL and DCFL are closed under intersection with regular sets.

Here are proof sketches for the above:

1) If the L = L(M), where M is a DPDA, then L = L(M ′), where M ′ is obtained from
M by changing accept states to reject states and vice versa.

2) Define

Labc = {anbncn : n ≥ 0}

A1 = {aibjck : i, j, k ≥ 0}

A2 = {aibicj : i, j ≥ 0}

A3 = {aibjcj : i, j ≥ 0}

Note that Labc is NOT a context free language (this can be shown by the Pumping
Lemma).

1



However it is easy to see that each of A1, A2 and A3 is a deterministic CFL (and in
fact A1 is a regular language). Hence A1 is a regular language, and A2 and A3 are in
DCFL.

It is not hard to see that
Labc = A1 ∪ A2 ∪ A3 (1)

(The union of the three sets represents the three reasons that a string might not be in
Labc.)

Since DCFL is closed under complementation and CFL is closed under union, it follows
that Labc is a context-free language. However Labc is not a deterministic context free
language, because DCFL is closed under complementation. It follows that DCFL is not
closed under union. But then DCFL is not closed under intersection, since otherwise
by De Morgan’s laws, it would be closed under union.

3) Suppose that L1 = L2∩L3, where L2 is a regular set and L3 is a context free language.
Then L2 is accepted by a FA M2 and L3 is accepted by a PDA M3. We can design a
PDA M1 which accepts L1 by simultaneously simulating M2 and M3, and M1 accepts
its input iff both M2 and M3 accept. (The states of M1 consist of all pairs (q, q

′) where
q is a state of M2 and q′ is a state of M3.) If M3 is deterministic then M1 is also
deterministic.

Now in order to show ALLCFG is not semidecidable we show HB ≤m ALLCFG. Given a
Turing machine M we want to construct a CFG G such that M does not halt on a blank
tape iff L(G) = Σ∗.

We will construct G so that L(G) consists of all strings which do not code a halting of M
computation starting with a blank tape. This suffices, because if M halts on a blank tape
then L(G) is missing exactly one string, namely the string coding the halting computation
of M on a blank tape. But if M does not halt on a blank tape, then L(G) = Σ∗, as required.

We code computations of M by the sequence of configurations C1, C2, . . ., except that the
strings representing every second configuration are reversed (see Figure 5.14, page 226 in the
text). The configurations are separated by the symbol #.

To construct the CFG G we use the idea from equation (1) above, except now Labc is replaced
by the language Lcomp, which consists of all strings encoding a halting computation of M
on a blank tape. Thus Lcomp is either empty (if M does not halt) or consists of exactly one
string.

Now we construct three languages L1, L2, L3 (to correspond to A1, A2, A3 in (1)), so

L(G) = Lcomp = L1 ∪ L2 ∪ L3

where L1, L2, L3 represent the three reasons that a string might not code a halting compu-
tation of M on a blank tape.

2



Further L1 is a regular set, and L2 and L3 are deterministic CFLs.

Thus

1) L1 is the set of all strings which begin with #q0b# and end with #u# where u codes
a halting configuration or its reverse, and the segment between any consecutive pair of
#’s codes a configuration (or its reverse).

2) L2 is the set of all strings w such that for every segment of w of the form #u#v#
(with the first # preceded by an even number of #’s), if u codes a configuration C

of M and v has no occurrence of #, then v codes the reverse of the successor to the
configuration C.

3) L3 is the set of all strings w such that for every segment of w of the form #u#v# (with
the first # preceded by an odd number of #’s), if u codes the reverse of a configuration
C of M and v has no occurrence of #, then v codes the successor to the configuration
C.

It is not hard to see that L1 is accepted by some Finite Automaton, and both L2 and L3 are
accepted by deterministic PDAs. Thus L1 and L1 are regular sets, and L2, L2, L3, L3 are all
deterministic CFLs.

3


